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Introduction
For this project, we attempt to derive and optimal player strategy for The
Weakest Link. The original version of the show began in 2000 in England
and continued to run till 2014; there are over 44 international versions of
the show, making it the 2nd most popular TV game show franchise.
Although there are slight variations in the various versions, we go with the
specifications from the British version as our set-up. There are N players,
typically 9, that play (N-1) ’standard’ rounds where the contestants form a
chain along which they will answer various trivia questions. Questions are
asked through the chain for increasing amounts of money until the chain is
broken when a contestant either answers a question incorrectly or they
’bank’ the current money earned. At the end of each of these rounds, all the
players in the chain vote remove one player, ’the weakest link.’
Once the rounds have been played and 2 players remain, they play a
head-to-head format under which they each answer 5 questions - the person
to answer the most question wins. In the event of a tie, the game goes into
’sudden death’ - the players are asked questions until a player answers a
question incorrectly and the next player answers their question correctly.
The player that remains wins the entire pot earned. All other players earn
no money.
The goal of any player is to maximize their expected earnings, and since the
game has multiple stages, the best approach is to work backwards. We first
compute the probability a player will win in the final round analytically. To
solve the standard rounds, the optimal banking strategy must first be
solved; this is done through dynamic programming. Since the optimal
banking strategy does not leave us with a closed-form solution, the voting
strategy for the penultimate round is approached empirically.

Final Round Probability Calculation
In this section, we will compute the probability that a player wins in the
final head-to-head round of The Weakest Link. We let player one and player
two be the two players competing in the final round with probability p1 and
p2 respectively that they will answer any given question correct. We will
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compute the probability that player one wins.
The problem can be separated into two sub-problems. The probability that
player one wins during the five questions, and the probability that player
one wins in the sudden death round.

Five Round Problem
Player one wins in this round if they answer more questions correct than
player two. The number of questions each player answers correctly follows a
binomial probability mass function, and therefore the probability that
player one wins in this round is the following.∑5
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pk1(1− p1)
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Probability They Enter Sudden Death
The players enter sudden death if they both answer the same number of
questions correctly. This is the product of two binomial probability mass
functions with an equal number of successes and successes ranging from 0 to
5.∑5
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Probability P1 Wins Sudden Death
Consider the case where player one wins on the ith round with i ∈ N \ {0}.
This could only happen if the players either answer all the previous i− 1
questions both correct or both incorrect. The probability of both players
answering a question correct or incorrect is p1p2 + (1− p1)(1− p2).
Therefore, the probability of player one winning on the ith round is
(p1p2 + (1− p1)(1− p2))

i−1p1(1− p2). This implies that the probability of
player one winning during sudden death is the following.∑∞

i=1(p1p2 + (1− p1)(1− p2))
i−1p1(1− p2)

= p1(1− p2)
∑∞

i=1(p1p2 + (1− p1)(1− p2))
i−1

Because both p1, p2 are probabilities we have that 0 ≤ p1, p2 ≤ 1. By
looking at the critical points of the expression p1p2 + (1− p1)(1− p2) we can
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see that 0 ≤ p1p2 + (1− p1)(1− p2) ≤ 1. However, it is only possible for this
expression to be 1 if p1 = p2 = 1. In this case, the p1(1− p2) expression will
go to zero and our entire probability will go to zero. Therefore, we can treat
our infinite series as converging and it won’t cause any issues in our final
expression.

We know that
∑∞

i=1 x
i−1 = − 1

x−1 when |x| < 1

Therefore,

= p1(1− p2)
∑∞

i=1(p1p2 + (1− p1)(1− p2))
i−1

= −p1(1−p2)
p1p2+(1−p1)(1−p2)−1

= p1(1−p2)
1−p1p2−(1−p1)(1−p2)

Final Probability of Player One Winning

Therefore, the final probability of player one winning is the probability of
player one winning in the first five rounds plus the probability that they
enter sudden death and win during sudden death.

P (Player One Wins) =
∑5
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)2
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5−k ∗ p1(1−p2)

1−p1p2−(1−p1)(1−p2)
Optimal Banking Strategy
In order to find an optimal banking strategy, we set the problem up as a
dynamic programming problem with the following functional equation.

Assume f(n, ri, pj) gives the expected return for the optimal banking
strategy with n questions remaining, k players, current reward ri and
current player with probability pj of answering a question correct.

i ∈ {0, 1, 2, ...9}
j ∈ {0, 1, ..., k − 1}
ri ∈ {0, 20, 50, 100, 200, 300, 450, 600, 800, 1000}
0 ≤ pj ≤ 1 ∀j
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1[i+1=10] is an indicator function that equals one if i + 1 = 10 and 0
otherwise.

f(n, ri, pj) = max

{
pjf(n− 1, r1, p(j+1 mod k)) + (1− pj)f(n− 1, r0, p(j+1 mod k)) + ri
pj(f(n− 1, r(i+1 mod 10), p(j+1 mod k)) + 1[i+1=10] ∗ r9) + (1− pj)f(n− 1, r0, p(j+1 mod k))

The functional equation finds the max between the two cases of whether or not the player
chooses to bank or chooses to answer the question without banking. The top expression is
the case where they bank, and the bottom is when they don’t bank. We include an
indicator function in the first addend of the bottom expression. This makes it so that if the
players reach 1000, the money is automatically banked.

Empirical Results for Voting Strategy
Through developing our framework, it became intuitively clear that the
optimal voting strategy to maximize a player’s expected winnings is
dependant on player probabilities. Furthermore, we hypothesized that the
optimal voting strategy would also depend on the spread of the player’s
probabilities. Specifically, consider a game with three players with player
probabilities, p1 = 0.1, p2 = 0.8, p3 = 0.9. Consider the optimal voting
strategy of player three. Although voting off player two would certainly
maximize player three’s chances of winning the game, the expected
winnings in this scenario, according to the formulas and methods outlined
above, is actually lower than if player three voted off player one. Thus, in
this section, we will outline the methodology and approach we’ve utilized to
examine this problem, showcase the results of our experiments, and provide
a road map for future exploration into this subject.
We present a figure that highlights the point of interest. The results are the
expected values of dollars earned in the next round given two player
probabilities.
Where the expected winnings is computed as follows:
E(Expected P1 Winnings) = Expected Banked(P1, P2) * P(P1 wins)

Scenarios P1 vs P2 P1 vs P3 P2 vs P1 P2 vs P3 P3 vs P1 P3 vs P2

S1 15.83 10.41 30.135 17.717 38.885 33.51

S2 1.416 0.004 44.962 2.651 88.135 82.072

S3 5.635 0.004 21.458 0.652 88.135 84.478

S4 0.047 0.004 75.18 58.52 88.135 151.42

S1: p1 = 0.4, p2 = 0.5, p3 = 0.6,
S2: p1 = 0.1, p2 = 0.5, p3 = 0.9,
S3: p1 = 0.1, p2 = 0.2, p3 = 0.9,
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S4: p1 = 0.1, p2 = 0.8, p3 = 0.9.
The results are computed under the assumption that there is zero dollars in the bank.

The figure utilizes the player expected winnings methods listed above to
compute the expected earnings in certain scenarios. Due to limitations in
time, we’ve chosen to examine some select cases. As you can see, although
the optimal voting strategy is to vote off the player with the highest
probability in scenarios one to three; In scenario four, it was optimal for
player three to vote off the player with the lowest probability. We wanted to
explore this phenomena further to discover the threshold values at which,
the voting strategy changes. We first fix one player’s probability, we then
vary the other two players’ probabilities, we compare the expected winnings
between the two voting strategies for the highest player, and finally, we
record the optimal voting strategy.
The results are presented in the figure below.

p1 0.1 0.2 0.3 0.4 0.5

Threshold Value Pair (0.7,0.9) (0.8,0.8) (0.8,0.7) (0.8,0.6) (0.6,0.6)
(0.9,0.7) (0.9,0.6)

The results are listed in ordered pairs (a, b) = (p2, p3). Note that the results imply that any
combination of player probabilities higher than the threshold pair will result in the optimal
voting strategy to be to vote off the player with the lowest probability.

Although the empirical results presented in this section gives us some
insight in how the voting strategy dynamically adapts to different player
probabilities. The limited amount of data points, due to the high
computational cost of running simulations, isn’t enough to substantiate any
conclusive statement about the optimal voting strategy. Given more time,
the empirical approach definitely has the potential to provide a more
general understanding of the optimal voting strategy.
Conclusion
Throughout this analysis, we notice that much of the results are intuitive
until we backtrack into the earlier rounds. Due to the nature of the
dynamic programming framework, earlier rounds result in complex and
often intractable solutions.
Some next steps include exploring variations of the parameters for the
banking strategy and voting strategies. An additional approach that can be
taken is to do the same type of modeling presented in the previous section
with parameters that we see during real runs of the game show.
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