
CMU Math Department TA Assignment Problem
Operations Research II, 21-393

Selena Ma, Xiaohua Shi, Katherine Li, Kimberly Bau, Jong Won Lim
Carnegie Mellon University

Abstract— This project mainly concerns the TA (teaching
assistant) assignment at the Mathematics Department of
Carnegie Mellon University (CMU). Every semester, the math
department at CMU needs to recruit and assign students
to work as teaching assistants for over 20 courses for the
upcoming semester. While the traditional assignment is done
by hand, there are many opportunities for us to improve
the process to set up the assignment more effectively. In
this paper, we’re going to work with student application
data and schedule data to formulate an optimization problem
that aim to minimize assignment cost or maximize faculty
and applicants’ satisfaction value. We will briefly discuss our
feature engineering and optimization method, of which the
source code is publicly available at https://github.com/
pawsagainsthoomanity/TA_Assignment_Problem.

I. INTRODUCTION

Every semester, the CMU math department faces
the needs to recruit and assign both graduate and
undergraduate teaching assistants to approximately 30
courses department-wide. Although it has been a routine,
there are still persisting problems that make it a
complicated task: specifically, aligning students’ needs
(course preference, students’ schedules) with course
requirement (GPA, recitation time). Since the selection
process has been manual and no computer-aided means is
available at the moment, we decided to develop an automated
tool that helps alleviate the workload and facilitate the
faculties make decisions on interview scheduling, preferable
student ranking, etc.

A. Current State

After interviewing Professor Howell, the faculty member
who is responsible for TA selection, we gathered the
following insights: (1) Every semester, approximately 90
undergraduate and 30 graduate students apply for TA
positions for 30 courses; (2) Professor Howell first manually
picks eligible applicants, then matches the applicants’
schedules to available recitations one by one, which needs
frequent adjustments.

The interview reveals some pain points that the current
method is laborious in terms of scheduling, ranking, and
matching. Therefore, we propose an assignment problem
solver that tailors to the needs of the math department.

B. Goals

Our end goal is to formulate the TA assignment to
a non-regular assignment problem. It should provide an
easy-to-use interface, ranking of preference, filtering

functionalities, and most importantly providing an
assignment solution given students’ preferences, course
schedules, students’ schedules, grades and interview
feedback.

II. DATA COLLECTION

Our project requires a lot of data, used as inputs or
constraints in our assignment problem. We received students
application information from professor Jason Howell in our
meetings, which contains the courses that are hiring TA,
as well as students’ preferences. However due to privacy
concerns some information such as student names was
concealed. The table below is an example of the preferences
data.

#ID Course Interested In Teaching

1 21-111: Calculus I , 21-112: Calculus II , 21-120: Differential and
Integral Calculus

2 21-228: Discrete Mathematics , 21-241: Matrices and Linear
Transformations

3 21-301: Combinatorics , 21-341: Linear Algebra , 21-355:
Principles of Real Analysis I

4 21-370: Discrete Time Finance
5 21-241: Matrices and Linear Transformations
6 21-256: Multivariate Analysis

7 21-217: Concepts of Mathematics, 21-241 Matrices and Linear
Transformations, 21-259: Calculus in Three Dimensions

...

TABLE I: Application Information

This data gave us information such that: there are in total
of 92 undergraduate applicants, and there are in total of 23
distinct courses that are hiring TAs. With this initial data
in hand we retrieved some information from the Schedule
of Course (SOC) system and constructed a total of 4 data
structures for our program: (1) Recitation Schedules (R); (2)
Applicants Schedules (S); (3) Applicants Grades (G); (4)
Applicants Preferences (P)

A. Recitation Schedule Data

We only consider undergraduate math courses in our
problem, so there were a total of 23 courses. Some courses
had multiple recitation sections, so the total number of
recitation sections to consider was 44. We constructed a data
structure of the recitation schedules based on the information
in the CMU website on the course schedules for Spring 2020.

A partial screenshot of the data we constructed for the
recitation schedules is on the next page. We basically
converted the information into a 2D matrix where each of

https://github.com/pawsagainsthoomanity/TA_Assignment_Problem
https://github.com/pawsagainsthoomanity/TA_Assignment_Problem

the single entries is a list of size 5. Each row in the matrix
represents a recitation section, where if a TA is assigned to
that section, he/she would be obligated to teach during that
duration. The columns represent the time of a single day,
divided into 1 hour blocks. The list of size 5 represents each
weekday of the week, Monday through Friday.

#Course 8:30-9:30 9:30-10:30 10:30-11:30 11:30 12:30 ...
21-111 [0,1,0,1,0] [0,0,0,0,0] [0,0,0,0,0] [0,0,0,0,0] ...
21-112 [0,0,0,0,0] [0,0,0,0,0] [0,0,0,0,0] [0,0,0,0,0] ...
21-120 [0,1,0,1,0] [0,1,0,1,0] [0,0,0,0,0] [0,0,0,0,0] ...
21-122 [0,1,0,1,0] [0,1,0,1,0] [0,1,0,1,0] [0,1,0,1,0] ...
21-124 [0,0,0,0,0] [0,0,0,0,0] [0,1,0,1,0] [0,1,0,1,0] ...
...

TABLE II: Course Schedule Data

For example, the top left entry [0,1,0,1,0] for row Calculus
1 and column 8:30-9:30 means that a section for a recitation
for Calculus 1 meets from 8:30-9:30 on Tuesday and
Thursday.

B. Applicant Schedules Data

We needed to remove applicants that have other academic
obligations during a recitation period, so we also needed
all the applicants academic schedules. We organized the
application schedules into the same data structure we used for
the course schedules. However unlike the course schedules,
we did not have concrete data for applicant schedules due
to privacy issues. So for our program purposes, we created
random schedules for each applicant. The structure is the
same as course schedule we previously discussed.

C. Applicant Grades Data

Much like the applicant schedules, we were given no
information regarding the applicants’ grades of the math
courses. However, we felt that the grades were essential
for the assignment problem since they provide an objective
measure of part of the applicant’s ability to perform well for
the job.

At first, we generated the grades uniformly randomly from
A to B. However we felt that this was rather an unrealistic
generation, since most people who apply for the position
apply because they received relatively good grades. So we
generated the grades for the 100 and 200 level courses (which
were the majority of the courses) uniformly randomly from
A to B, and the others from A to C.

#Course Stu1 Stu2 Stu3 Stu4 Stu5 Stu6 ...
21-111 3 3 4 3 4 3 ...
21-112 3 4 4 3 4 3 ...
21-120 4 4 3 3 4 4 ...
...

TABLE III: Applicants Grade Data

Above is part of the data we constructed. Each entry
is a number from 0 to 4, representing the grades R to A
respectively. Each row is a math course, and the column is
the applicant.

D. Applicant Preferences Data

Finally we have created a data structure representing the
course preferences for each applicant. We received a list of
courses that the applicants were interested to teach from
Professor Howell, but we additionally gave each course a
preference score for each applicant.

#Course Stu1 Stu2 Stu3 Stu4 Stu5 Stu6 ...
21-111 0 1 0 0 4 3 ...
21-112 0 0 0 5 1 0 ...
21-120 0 0 0 0 0 0 ...
...

TABLE IV: Applicants Preference Data

The rows represent the courses, the columns represent
each applicant, and finally each entry represents the
preference score. The preference scores are from 0-5. A
preference score of 0 means that the applicant did not apply
to teach for the course. Regarding scores from 1 to 5, a
lower score means that applicant prefers the course more.
The process of calculating the scores were as follows: we
first give courses that the applicant did not apply to all
score 0. Then we randomly sorted the courses that he/she
did apply to and ranked them in ascending order. However,
since the number of courses applied were different for each
applicant, we normalized the generated rankings by the total
number of applied courses so that all rankings ranged from
1 to 5.

III. PROBLEM FORMULATION

Let’s formulate the previous dataset with the following
variables

Rij =

{
1, if recitation i is taking place at time j

0, otherwise
(1)

(i = 1, 2,43, j = 1, 2,9)

Sij =

{
1, if student i is available at time j

0, otherwise
(2)

(i = 1, 2,92, j = 1, 2,9)

Gij= student j’s grade for recitation i, grade = 0-4

Pij= student j’s preferences for recitation i, pref = 0-5

(i = 1, ...43, j = 1, ...92)

A. Feature Engineering

There are many operations we can perform on the data
structures to make the data more valuable for us. First of
all, we use Recitation Schedule and Applicant Schedule to
create a new array that tells us a student’s availability for
each classes.

Availabilityij =

{
1, if (RST)ij = 1

0, otherwise
(3)

Fig. 1: Computation of Availability Array

Fig. 2: Computation of Eligibility Array

(i = 1, 2,43, j = 1, 2,92)

After that, we formulate the grade constraint by getting
an entry-wise product of the availability matrix and grade
matrix. We will treat the entries of students who - although
available and interested in teaching a course - received a
grade lower than B, as not eligible. This operation gives a
finalist of eligible students.

Eligibilityij =

{
1, if ((RAT) ◦G)ij ≥ 3

0, otherwise
(4)

(i = 1, 2,43, j = 1, 2,92)

It’s important to know that the preferences value is directly
related to a student’s satisfaction. That is, the lower the
preference value, the higher the satisfaction. So in order to
formulate the objective function, we want to find out the
preferences among the students who are eligible to teach
by, again, taking the entry-wise product of eligibility matrix
and the preferences array. With the new matrix, maximizing
satisfaction can be effectively expressed with minimizing
preferences score.

We introduce a new variable “Cost”, which is 10 times the
value of preferences. Because we want to create a larger gap
between distinct satisfaction/preference values. By doing so,
we are also allowing Prof.Howell to come into the picture.
For example, after he interviews a few candidates, if he
decides to assign student j to teach recitation i, we will
shrink the corresponding preference value by 90%, which
can almost guarantee the assignment.

Cost = 10 ∗ (Eligibility ◦ Preferences)

B. Intermediate Output

With the cost matrix, there already are a few valuable
insights we are able to produce. For example, we can return
a list of students who are capable to teach over 4 courses, in
which case it’s more necessary for prof.Howell to interview
these candidates. In addition, we are able to identify the
classes for which we found no eligible applicants; We can
also identify the applicants that are not eligible to teach
any classes. More importantly, because these courses and/or
students are no longer part of the assignment problem, we
need to set them as dummy variables so that our solver can
run without error.

Algorithm 1 Feature Engineering Output

0: procedure OUTPUT1(Cost)
0: Initialize L1, L2
0: m = nrow(Cost)
0: n = ncol(Cost)
0: Initialize C ′

0: (C ′)ij = 1 if Costij > 0 else 0
0: C1←

∑m
i (Costij)

0: C2←
∑n

j (Costij)
0: C3←

∑m
i (C ′

ij)
0: for i in (1,2, ... m) do
0: if C2i == 0 then
0: Costij = 999999 for all j
0: end if
0: end for
0: for j in (1, 2, ... n) do
0: if C1j == 0 then
0: L1.append(j)
0: Costij = 999999 for all i
0: end if
0: if C3j > 4 then
0: L2 append j
0: end if
0: end for
0: return L1, L2, Cost
0: end procedure=0

A sample output from the program is the following:

Hi Jason, we are unable to find
qualified or available candidates
for the following courses:
Course #21-124
Course #21-236
Course #21-238
Course #21-254
Course #21-261
Course #21-269
Course #21-292
Course #21-369
Course #21-469

Additionally,

Found 5 candidates for course 21-111.
Found 15 candidates for course 21-112.
Found 16 candidates for course 21-120.
Found 21 candidates for course 21-122.
Found 27 candidates for course 21-127.
Found 11 candidates for course 21-228.
Found 9 candidates for course 21-240.
Found 23 candidates for course 21-241.
Found 1 candidates for course 21-242.
Found 8 candidates for course 21-256.
Found 9 candidates for course 21-259.
Found 6 candidates for course 21-260.
Found 1 candidates for course 21-268.
Found 1 candidates for course 21-270.

Here are the people who are qualified
to teach more than 4 courses.
Candidate #16: 21-111; 21-112;
21-120; 21-122; 21-256;
Candidate #21: 21-111; 21-112;
21-120; 21-228; 21-240;
Candidate #31: 21-111; 21-112;
21-120; 21-122; 21-241; 21-259;
Candidate #54: 21-112; 21-122;
21-127; 21-228; 21-241; 21-260;
Candidate #79: 21-111; 21-112;
21-127; 21-228; 21-240; 21-241; 21-260;

You may consider an interview for them.
If you do, please fill out the
evaluation form with the COURSE NUMBER
of your preferred assignment in the
column next to student ID.
Good Luck!

With this information, Jason Howell can select students to
interview and then dynamically change the value from an
auto-generated evaluation form to express his preferences.
Prof.Howell will have the ability to practically determine the
assignments of many students when he fills out the evaluation
form. Let’s say Prof.Howell has completed the evaluation file
after the interviews as such:

#Student Course
16 21-256
21 21-228
31 21-241
54 21-260
79 21-127

TABLE V: Prof. Howell’s Evaluation

As we’ve discussed earlier, the cost of assigning a student
to a course will shrink by 90% if prof.Howell prefer the
assignment. Thus, after the evaluation, we can modify the
cost matrix again using the following method:

Algorithm 2 Post Interview Cost

0: procedure NEWCOST(Cost, Eval, courseDict)
0: for row in Eval do
0: i ← courseDict[row1]
0: j ← row0

0: curr ← Costij
0: Costij ← curr/10
0: end for
0: return Cost
0: end procedure=0

C. Problem Setup

Let M be the assignment matrix, Mij = 1 if student j is
assigned to lead recitation i. We want to

Min.

43∑
i

92∑
j

(Cost ◦M)ij

s.t.

92∑
i

Mij = 1 (each recitation has one TA)

43∑
j

Mij = 1 (each TA teaches one recitation)

IV. SOLUTION

A. Tools

We tried to use Google Sheets to solve the assignment
problem first. By using integer programming tool, the
number of variables is too big and the runtime for getting
the solution is quite slow. Also, the result is still not ideal,
saying that the constraints are not linear.

B. Assignment Solver

We then switched to the python distribution of Google
OR-Tools, an open source OR package that handles
vehicle routing, flows, integer and linear programming,
and constraint programming. We customized its assignment
solver in following ways:

(i) The solver is built for minimization problem,
whereas ours is a maximization. Hence, we
re-ranked the cost matrix and fit it to the solver.

(ii) The solver is designed for standard assignment
problems that take in equal number of workers
and tasks. However, in our case, we have more
applicants than available recitations. In order to
align with the input format, we created dummy
applicants with extreme costs that would not make
the algorithm consider them as eligible applicants.

Our modification is robust - it gives sensible successful
assignments in very short run-time (less than 0.05 seconds).

C. Output

Hello Professor Howell! Here’s your TA assignment result.
Applicant #1 is assigned to Recitation 21-228-2. Cost = 10
Applicant #2 cannot be assigned to any recitation.
Applicant #3 cannot be assigned to any recitation.
Applicant #4 is assigned to Recitation 21-260-1. Cost = 20
Applicant #5 is assigned to Recitation 21-112. Cost = 10
Applicant #6 cannot be assigned to any recitation.
Applicant #7 cannot be assigned to any recitation.
Applicant #8 cannot be assigned to any recitation.
Applicant #9 cannot be assigned to any recitation.
Applicant #10 cannot be assigned to any recitation.
Applicant #11 cannot be assigned to any recitation.
Applicant #12 is assigned to Recitation 21-241-1. Cost = 10
Applicant #13 cannot be assigned to any recitation.
Applicant #14 cannot be assigned to any recitation.
Applicant #15 cannot be assigned to any recitation.
Applicant #16 is assigned to Recitation 21-111. Cost = 10
Applicant #17 cannot be assigned to any recitation.
Applicant #18 cannot be assigned to any recitation.
Applicant #19 cannot be assigned to any recitation.
Applicant #20 is assigned to Recitation 21-259-3. Cost = 10
Applicant #21 is assigned to Recitation 21-228-1. Cost = 3
Applicant #22 cannot be assigned to any recitation.
Applicant #23 cannot be assigned to any recitation.
Applicant #24 is assigned to Recitation 21-241-3. Cost = 20
Applicant #25 is assigned to Recitation 21-127-1. Cost = 20
Applicant #26 cannot be assigned to any recitation.
Applicant #27 cannot be assigned to any recitation.
Applicant #28 is assigned to Recitation 21-268. Cost = 50
Applicant #29 cannot be assigned to any recitation.
Applicant #30 is assigned to Recitation 21-256-3. Cost = 10
Applicant #31 is assigned to Recitation 21-241-2. Cost = 1
Applicant #32 cannot be assigned to any recitation.
Applicant #33 is assigned to Recitation 21-259-4. Cost = 20
Applicant #34 cannot be assigned to any recitation.
Applicant #35 cannot be assigned to any recitation.
Applicant #36 is assigned to Recitation 21-127-4. Cost = 20
Applicant #37 is assigned to Recitation 21-122-3. Cost = 10
Applicant #38 cannot be assigned to any recitation.
Applicant #39 cannot be assigned to any recitation.
Applicant #40 cannot be assigned to any recitation.
Applicant #41 cannot be assigned to any recitation.
Applicant #42 cannot be assigned to any recitation.
Applicant #43 cannot be assigned to any recitation.
Applicant #44 cannot be assigned to any recitation.
Applicant #45 cannot be assigned to any recitation.
Applicant #46 is assigned to Recitation 21-240. Cost = 10
Applicant #47 cannot be assigned to any recitation.
Applicant #48 cannot be assigned to any recitation.
Applicant #49 is assigned to Recitation 21-270-3. Cost = 10
Applicant #50 is assigned to Recitation 21-122-2. Cost = 10
Applicant #51 cannot be assigned to any recitation.
Applicant #52 cannot be assigned to any recitation.
Applicant #53 is assigned to Recitation 21-259-1. Cost = 10

Applicant #54 is assigned to Recitation 21-260-2. Cost = 3
Applicant #55 cannot be assigned to any recitation.
Applicant #56 cannot be assigned to any recitation.
Applicant #57 cannot be assigned to any recitation.
Applicant #58 is assigned to Recitation 21-122-4. Cost = 20
Applicant #59 cannot be assigned to any recitation.
Applicant #60 is assigned to Recitation 21-256-2. Cost = 20
Applicant #61 cannot be assigned to any recitation.
Applicant #62 is assigned to Recitation 21-256-1. Cost = 20
Applicant #63 cannot be assigned to any recitation.
Applicant #64 cannot be assigned to any recitation.
Applicant #65 cannot be assigned to any recitation.
Applicant #66 cannot be assigned to any recitation.
Applicant #67 cannot be assigned to any recitation.
Applicant #68 cannot be assigned to any recitation.
Applicant #69 cannot be assigned to any recitation.
Applicant #70 is assigned to Recitation 21-127-5. Cost = 20
Applicant #71 is assigned to Recitation 21-122-1. Cost = 20
Applicant #72 is assigned to Recitation 21-242. Cost = 40
Applicant #73 cannot be assigned to any recitation.
Applicant #74 cannot be assigned to any recitation.
Applicant #75 is assigned to Recitation 21-120. Cost = 10
Applicant #76 is assigned to Recitation 21-259-2. Cost = 20
Applicant #77 cannot be assigned to any recitation.
Applicant #78 cannot be assigned to any recitation.
Applicant #79 is assigned to Recitation 21-127-3. Cost = 4
Applicant #80 cannot be assigned to any recitation.
Applicant #81 cannot be assigned to any recitation.
Applicant #82 cannot be assigned to any recitation.
Applicant #83 cannot be assigned to any recitation.
Applicant #84 cannot be assigned to any recitation.
Applicant #85 cannot be assigned to any recitation.
Applicant #86 cannot be assigned to any recitation.
Applicant #87 is assigned to Recitation 21-127-2. Cost = 10
Applicant #88 cannot be assigned to any recitation.
Applicant #89 cannot be assigned to any recitation.
Applicant #90 cannot be assigned to any recitation.
Applicant #91 cannot be assigned to any recitation.
Applicant #92 cannot be assigned to any recitation.

V. CONCLUSION

We have by now completed a program that report list
of courses with no candidates, allows for Jason Howell to
dynamically interview candidates to modify cost value, and
returns a complete assignment.

A. Value Of Use

One of the more pressing matters, according to Jason
Howell, when assigning TAs is scheduling conflicts. Before
the TAs are assigned in our program Prof. Howell is able to
see the number of eligible students that are available to teach
a certain recitation and which students those are. This solves
the scheduling conflict problem in a matter of seconds. This
list also ranks the eligible students based on their grades
and preferences. Prof. Howell can then use this information
to decide which students he wants to interview. Once done
his personal interview score can be added into the program
and run to get an assignment. This program can make the
application cycle easier and smoother for Prof. Howell.

B. Limitations and Future Opportunities

Although we have created a model to use for TA
assignments there were many limitations that prevented us
from modeling real life data. Due to privacy concerns, we
were not able to gather actual data such as student grades,
schedules, and preference rankings. In real life the person
using this model would be Jason Howell, who does have
access to all this information, so that would make this
program more practical.

We’ve completed a comprehensive GitHub documentation
that serves as a user guide for Prof.Howell so it can be
as simple as possible when he uses our tool. However,
Command line is not the most user-friendly interface, it
leaves us some room to further improve on this model in
the future we would try to create a web based solution to use.

Another limitation in our model are the constraints. The
current program runs a 1 to 1 match up between the students
and recitations. This means only one student gets assigned
to one course recitation. In real life, students will often teach
multiple recitations within the same course or more than one
TA will be assigned to a section. In the future we would be
able to change this in the program to model the real life
situation. Furthermore, TAs need to include extra hours to
hold office hours. These need to be convenient to the course,
most likely before homework and exam dates. In the future
we can find a way to consider this aspect. Finally, in our
simulation only undergraduates were considered. In the math
department many TAs are actually doctoral students, since
teaching experience may be part of their curriculum. There
may be a preference to give positions to doctoral students.
This can either decrease the positions available or add more
students into the program. In the future we would like to be
able to fix all these limitations.

REFERENCES

1. Google OR-Tools
https://developers.google.com/
optimization/assignment/assignment_min_
cost_flow

APPENDIX

You can use our program by downloading the code
and data from github (https://github.com/
pawsagainsthoomanity/TA_Assignment_
Problem) or copy the code from Appendix AB, then
follow the procedures below.

1. Install ortools package (make sure you’re using
Python3)

python -m pip install --upgrade
--user ortools

2. Run this command to get cost matrix:

python feature_engineering.py
course_schedule.csv
student_schedule.csv
undergrad_preferences.csv
grades.csv cost.csv

3. Fill out the file eval.csv as instructed by the output
file if you plan to interview candidates.

4. If no interview. Run this command to get TAs
assigned (You can replace the cost.csv with your
own cost matrix):

python assign_ta.py cost.csv

5. If interview, run this command instead:

python assign_ta_w_interview.py
cost.csv evaluation.csv

Check out the output.txt file in your current
directory

https://developers.google.com/optimization/assignment/assignment_min_cost_flow
https://developers.google.com/optimization/assignment/assignment_min_cost_flow
https://developers.google.com/optimization/assignment/assignment_min_cost_flow
https://github.com/pawsagainsthoomanity/TA_Assignment_Problem
https://github.com/pawsagainsthoomanity/TA_Assignment_Problem
https://github.com/pawsagainsthoomanity/TA_Assignment_Problem

A: Feature Engineering Code

import pandas as pd
import random
import numpy as np
import sys
import csv
import time

def replace_all(text, dic):
for k, v in dic.items():

text = text.replace(k, v)
return text

def cleanPreference(filename, rep):
data = dict()
data[’course’] = [’21-111’, ’21-112’, ’21-120’, ’21-122’, ’21-124’, ’21-127’,

’21-228’, ’21-236’, ’21-238’, ’21-240’, ’21-241’, ’21-242’,
’21-254’, ’21-256’, ’21-259’, ’21-260’, ’21-261’, ’21-268’,
’21-269’, ’21-270’, ’21-292’, ’21-369’, ’21-469’]

course_index = dict()
for i in range(len(data[’course’])):

course_name = data[’course’][i]
course_index[course_name] = i

with open(filename, ’r’) as csvfile:
prefs = list(line for line in csvfile)
prefs.pop(0)
nrow, ncol = len(prefs), len(data[’course’])
for i in range(nrow):

data[str(i+1)] = [0]*ncol

for i in range(len(prefs)):
pref = prefs[i].replace(’"’, "").strip().split(’,’)[2:-6]
selection = [k+1 for k in range(len(pref))] #number of choices
total_preferences = len(pref)

for course in pref:
number = course[:7]
if number[0] == ’ ’: number = number[1:]
else: number = number[:6]
if number in course_index:

choice = random.choice(selection)
data[str(i+1)][course_index[number]] = choice #student i, course j
selection.remove(choice)

data[str(i+1)] = np.ceil(np.array(data[str(i+1)])*5/total_preferences)
print(data[str(69)])
course_name = data[’course’]
for key in data:

data[key] = pd.Series(data[key]).repeat(rep)

return pd.DataFrame(data), course_name

#read course schedule file
def getCatalog(filename):

schedule = pd.read_csv(filename).dropna()

course_name = [name for name in schedule.Number]
course_catalog = dict() #key: course name, val: how many recitations, typically less than 5
for i in range(len(schedule.Number)):

name = schedule.Number.iloc[i]
name_ = str(name)[0:6]
if name_ in course_catalog:

course_catalog[name_] += 1
else: course_catalog[name_] = 1

return course_name, course_catalog

def cleanSchedule(filename, nrow, col_start):
days = [’Monday’, ’Tuesday’, ’Wednesday’, ’Thursday’, ’Friday’]
schedule = dict()
for key in days:

schedule[key] = list()
with open(filename, ’r’) as file:

rawdata = list(file)
rawdata.pop(0)
rawdata = rawdata[0:nrow]
rep = {’"’: "", "[": "", "]": "", " ":""}
for row in rawdata:

times = replace_all(row, rep)
times = times.strip().split(’,’)[col_start:col_start+45]
for i in range(5):

sequence = [int(times[int(i+j*5)]) for j in range(9)]
schedule[days[i]].append(sequence)

return schedule

def cleanGrades(filename, rep):
res = list()
with open(filename, ’r’) as file:

rawdata = list(file)
rawdata.pop(0)
for i in range(len(rawdata)):

row = rawdata[i]
vals = row.strip().split(’,’)[1:]
seq = list()
for val in vals:

if int(val) > 3:
seq.append(1) #pass if student got more than b

else:
seq.append(0) #disqualified otherwise

for t in range(rep[i]):
res.append(seq)

return res

def main(courseScheduleFile, studentScheduleFile, preferenceFile, gradesFile):

#get catalog: return course number and index alignment, repition of recitation
recitation_name, course_vol = getCatalog(courseScheduleFile)
repeat = [v for k, v in course_vol.items()]

print("Processing schedules .. ")
#clean course schedule, return NxT matrix
#1 if class takes place, 0 otherwise
N = len(recitation_name)

courseSchedule = cleanSchedule(courseScheduleFile, N, 2)

#clean student schedule, return MT matrix
#1 if student is available, 0 otherwise
M = 92
studentSchedule = cleanSchedule(studentScheduleFile, M, 1)

print("Processing grades .. ")
#clean grades, return NxM matrix
grades_arr = cleanGrades(gradesFile, repeat)
grades_matrix = np.array(grades_arr)

print("Processing undergrad preferences .. ")
#clean preference matrix, return dataframe, then return N*M matrix
pref_df, class_name = cleanPreference(preferenceFile, repeat)
pref_df.to_csv(r’pref.csv’, sep = ’,’, index = False)
pref_matrix = np.array(pref_df.iloc[:, 1:])
cost_mat = np.multiply(pref_matrix, 10)

print("Retrieving eligibility and scores .. ")
#compute availability matrix NxM, 1 if student can lead recitation, 0 otherwise
availability = np.zeros((N, M))
rowtotal = np.zeros(N)
for day in [’Monday’, ’Tuesday’, ’Wednesday’, ’Thursday’, ’Friday’]:

course, student = np.array(courseSchedule[day]), np.array(studentSchedule[day])
rowsum = np.sum(course, axis = 1)
rowsum[rowsum>0] = 1 #indicator of whethere or not there’s class at all
rowtotal += rowsum
avail = np.dot(course, np.transpose(student))
avail[avail > 0] = 1
availability = availability + avail

availability[availability<1] = 0
rowtotal[rowtotal<1] = 1 #prevent division overflow

TA who apply should be available for both days if there’re 2 recitation a week
for col in range(len(availability[0])):

availability[:, col] = np.divide(availability[:, col], rowtotal)
availability[availability<1] = 0

#21-236, 21-238, 21-270 don’t have recitation/ or recitation in the evening
#assume everyone is available for now
availability[15:17,] = np.ones(92)
availability[-8:-4,] = np.ones(92)

#apply grades as a filter
eligibility = np.multiply(availability, grades_matrix)

#compute cost
cost = np.multiply(eligibility, cost_mat)
print("Finished!")

#filter unqualified people, collapse vertically
candidates = np.sum(cost, axis = 0)
#filter unpopular class, collapse horizontally
recitations = np.sum(cost, axis = 1)

for i in range(N):

for j in range(M):
if candidates[j] == 0 or recitations[i] == 0:

cost[i, j] = 999999

#make dataframe
out = dict()
out[’Course’] = recitation_name
for i in range(M):

out[str(i+1)] = [int(val) for val in cost[:, i]]
#add dummies
for i in range(M-N):

for key in out:
if key == ’Course’: out[key].append(’dummy’+str(i+1))
else: out[key].append(int(999999))

cost_df = pd.DataFrame(out)
cost_df.to_csv(r’cost.csv’, sep = ’,’, index = False)

cost = cost[[0,1,2,3,7,8,13, 15, 16, 17, 18, 21, 22, 23,
26, 30, 32, 33, 34, 35, 39, 40, 42], :]

cost[cost == 999999] = 0
cost[cost > 0] = 1

interviewee = np.sum(cost, axis = 0) #it’s different from candidates!!!
classes = np.sum(cost, axis = 1) #it’s different from recitation!

outputFile = open("fe_report.txt", "w+")
outputFile.write("Hi Jason, we are unable to find qualified or available candidates for the following courses: \n")
for i in range(len(classes)):

if classes[i] == 0:
outputFile.write("Course #" + class_name[i])
outputFile.write(’\n’)

outputFile.write(’\n’)

outputFile.write("Additionally, \n")
for i in range(len(classes)):

print("Found %d candidates for course %s."% (sum(cost[i]), class_name[i]))
if classes[i] != 0:

result = "Found %d candidates for course %s."% (sum(cost[i]), class_name[i])
outputFile.write(result)
outputFile.write(’\n’)

outputFile.write(’\n’)

eval_form = dict()
eval_form["student"] = list()
eval_form[’you_preferred_assignment’] = list()

outputFile.write("Here are the people who are qualified to teach more than 4 courses. \n")
for i in range(len(interviewee)):

if interviewee[i] >4:
eval_form["student"].append(str(i+1))
eval_form["you_preferred_assignment"].append("21-XXX")
outputFile.write("Candidate #" +str(i+1)+’: ’)
for j in range(len(cost[:, i])):

if cost[j, i] >0:
outputFile.write(class_name[j]+’; ’)

outputFile.write(’\n’)
pd.DataFrame(eval_form).to_csv(r’evaluation.csv’, sep = ’,’, index = False)

conclusion = "You may consider an interview for them. " +\
"If you do, please fill out the evaluation form " +\
"with the COURSE NUMBER of your preferred assignment " +\
"in the column next to student ID. \n Good Luck! \n"

outputFile.write(conclusion)
outputFile.close()

if __name__ == ’__main__’:
start_time = time.perf_counter()

course = sys. argv [1]
student = sys. argv [2]
pref = sys. argv [3]
grades = sys. argv [4]
main(course, student, pref, grades)
print("Finished in ", time.perf_counter() - start_time, "seconds")

B: Solver Code

from __future__ import print_function
from ortools.graph import pywrapgraph
import time
import numpy as np
import sys
import csv

inputArgs = sys.argv
FILENUM = 3
THRESHOLD = 999999

def main():

dumped_costs = 0
cost = createDataArray()
course_dict = createCourseDict()
rows = len(cost)
cols = len(cost[0])
outputFile = open("output.txt", "w+")
outputFile.write("Hello Professor Howell! Here’s your TA assignment result. \r\n")

assignment = pywrapgraph.LinearSumAssignment()
for ta in range(rows):

for recitation in range(cols):
if cost[ta][recitation]:

assignment.AddArcWithCost(ta, recitation, cost[ta][recitation])

solve_status = assignment.Solve()

if solve_status == assignment.OPTIMAL:
print(’Total cost = ’, assignment.OptimalCost())
for i in range(0, assignment.NumNodes()):

if assignment.AssignmentCost(i) < THRESHOLD:
result = ’Applicant #%d is assigned to Recitation %s. Cost = %d’ % (

i+1,
course_dict[assignment.RightMate(i)],
assignment.AssignmentCost(i))

else:
result = ’Applicant #%d cannot be assigned to any recitation.’ %(i+1)
dumped_costs += 999999

print(result)
outputFile.write(result + "\r\n")

print()
print(’Total cost = ’, (assignment.OptimalCost()-dumped_costs))

elif solve_status == assignment.INFEASIBLE:
print(’No assignment is possible.’)

elif solve_status == assignment.POSSIBLE_OVERFLOW:
print(’Some input costs are too large and may cause an integer overflow.’)

outputFile.close()
print()
print("Please check out output.txt in your current directory.")

def checkFileExistence(testFile):

try:
openedFile = open(testFile)
openedFile.close()

except:
raise Exception(’File cannot be opened.’)

def isValidCommand():
if len(inputArgs) != FILENUM:

raise Exception("The number of input files is incorrect. A sample command looks like this: ’python assign_ta.py your_cost_matrix.csv’.")
return False

return True

def convertInput():
if isValidCommand():

inputFile = inputArgs[1]
checkFileExistence(inputFile)
with open(inputFile, ’r’) as csvfile:

rawCost = list(csv.reader(csvfile, delimiter=’,’))
print("Cost matrix is created.")
return rawCost

def createCourseDict():
if isValidCommand():

inputFile = inputArgs[1]
checkFileExistence(inputFile)
res = dict()
with open(inputFile, ’r’) as csvfile:

rawCost = list(csv.reader(csvfile, delimiter=’,’))
rawCost.pop(0)
for i in range(len(rawCost)):

res[i] = rawCost[i][0] #recitation number
return res

def getEval():
if isValidCommand():

inputFile = inputArgs[2]
checkFileExistence(inputFile)
with open(inputFile, ’r’) as csvfile:

scores = list(csv.reader(csvfile, delimiter=’,’))
scores.pop(0)
student = [scores[i][0] for i in range(len(scores))]
course = [scores[i][1] for i in range(len(scores))]
return student, course

def createDataArray():
rawCost = convertInput()
for row in rawCost:

del row[0]
rawCost.pop(0)

ref = createCourseDict()
student, course = getEval()
for i in range(len(student)):

s = student[i]
s_index = int(s)-1
c = course[i]
for k, v in ref.items():

if v[:6] == c:
temp = rawCost[k][s_index]
rawCost[k][s_index] = float(temp)/10

transposedCost = [[int(string) for string in inner] for inner in rawCost]
cost = [[row[i] for row in transposedCost] for i in range(len(transposedCost[0]))]

return cost

if __name__ == "__main__":
start_time = time.perf_counter()
main()
print("Finished in ", time.perf_counter() - start_time, "seconds")

	INTRODUCTION
	Current State
	Goals

	Data Collection
	Recitation Schedule Data
	Applicant Schedules Data
	Applicant Grades Data
	Applicant Preferences Data

	Problem Formulation
	Feature Engineering
	Intermediate Output
	Problem Setup

	Solution
	Tools
	Assignment Solver
	Output

	Conclusion
	Value Of Use
	Limitations and Future Opportunities

	References
	Appendix

