

AJ Druck, Neha Gupta, Olivia Montanha, Juliette Wong

Introduction

- The Cheesecake Factory
- Clients supply:
 - Number of attendees (20)
 - Dietary restrictions of attendees
 - Minimum number of dishes they want
 - 2 appetizers, 4 main dishes, 2 desserts
- Goal: choose set of dishes that
 - Maximizes expected revenue

Meets dietary restrictions of all attendees

× 0->none

× 1->vegetarian

- × 2->vegan
- × 3 -> lactose intolerant
- × 4 -> seafood free
- × 5 -> nut allergy
- × 6 -> gluten free
- × 7 -> no meat or dairy
- × 8 -> gluten free vegetarian

(8/20 - 40%)(2/20 - 10%)(1/20 - 5%)(4/20 - 20%)(1/20 - 5%)(1/20 - 5%)(1/20 - 5%)(1/20 - 5%)(1/20 - 5%)

Note: we created this data based on the

United States

percentages for these food allergies in the

	Dietary Restrictions	Gluten Free	Meat Free	Dairy Free	Nut Free	Seafood Free	Egg Free
0	None						
1	Vegetarian		\checkmark			\checkmark	
1	Vegetarian		\checkmark			\checkmark	
2	Vegan		\checkmark	\checkmark		\checkmark	\checkmark
3	Lactose Intolerant			\checkmark			

Data (Food)

 \mathbf{X}

Based on our encoding of attendees, we represented each dish on the menu as a set of types of individuals who could consume that food

	Price	Gluten Free	Meat Free	Dairy Free	Nut Free	Seafood Free	Egg Free	
Parmesan Garlic Cheese Bread	8.95		\checkmark			\checkmark		$\{0, 1, 4\}$
Roadside Sliders	9.95				\checkmark	\checkmark	\checkmark	{0, 4, 5}
Chicken Pot Stickers	10.95				\checkmark	\checkmark		{0, 4, 5}
Avocado Eggrolls	11.5		\checkmark	\checkmark		\checkmark		$\{0, 1, 4\}$
Quesadilla	9.95		\checkmark		\checkmark	\checkmark	\checkmark	$\{0, 1, 4, 5\}$
Fried Mac and Cheese	11.5		\checkmark		\checkmark	\checkmark		$\{0, 1, 4, 5\}$
Southern Fried Chicken Sliders	10.95				\checkmark	\checkmark		{0, 4,5}
Hot Spinach and Cheese Dip	10.95		\checkmark		\checkmark	\checkmark		$\{0, 1, 4, 5\}$
Tex Mex Eggrolls	10.95				\checkmark	\checkmark		{0, 4, 5}
Fried Calamari	12.95				\checkmark			{0,5}
Buffalo Blasts	11.95				\checkmark	\checkmark		{0, 4, 5}
Sweet Corn Tamale Cakes	10.95	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark	{0, 1, 4, 5, 6, 8

Set Cover Algorithm

- × Have a universe
 - In our case it would be a set of the types of people present : {0, 1, 2, 3, 4, 5, 6, 7, 8}
- Have a set of subsets whose union equals the universe
 - Would be the dishes
 - O Ex. { {0}, {0, 1, 2, 3, 4, 7}, {0, 5, 6}, {0, 1, 5, 6, 8} }
- Find the smallest set of subsets whose union equals the universe
 - i.e. find the smallest number of dishes that satisfies everyone (and maximises revenue)


```
Algorithm
```

Greedy Set Cover Algorithm

```
def set_cover(universe, subsets, weights):
    """Find a family of subsets that covers the universal set"""
    elements = set(e for s in subsets.values() for e in s)
   # Check the subsets cover the universe
    if elements != universe:
        return None
    covered = set()
    cover = []
   # Greedily add the subsets with the most uncovered points
    while covered != elements:
        subset, bestI = maxHelper(subsets, covered, weights)
        del subsets[best]]
        del weights[bestI]
        cover.append((subset, bestI))
        covered |= subset
```

return cover


```
Algorithm (cont.)
def maxHelper(subsets, covered, weights):
    maxS = None
    maxH = -1
    bestI = None
    for key in subsets:
        heuristic = len(subsets[key]-covered)*weights[key]
        if maxS == None or heuristic > maxH:
            maxS = subsets[key]
            maxH = heuristic
            bestI = key
    return maxS, bestI
```


Appetizers:

- Factory Chopped Salad -- \$12.50
- × Guacamole Made-To-Order -- \$11.95
- × Factory Nachos -- \$12.50

Results (cont.)

Main Dishes:

- Chinese Chicken Salad -- \$14.95
- × Cobb Salad -- \$14.95
- × Sante Fe Salad -- \$15.50
- × Four Cheese Pasta -- \$15.95
- × Luau Salad -- \$14.95
- × Evelyn's Favorite Pasta -- \$15.95

Results (cont.)

Desserts:

- Bowl of Fresh Strawberries -- \$7.50
- × Dairy-Free Key Lime Pie -- \$7.95
- Kodiva Chocolate Cheesecake -- \$7.95

Results (cont)

- We assumed that of the foods an individual can consume, they have an equal chance of choosing each dish
 - E [Appetizers] = \$245.97
 - E [Main Dishes] = \$305.81
 - E [Dessert] = \$155.40
 - Total Expected Revenue: \$707.18 Expected Revenue/Person: \$35.36

Conclusion

- Compared to a visual inspection of the data, the algorithm chose the correct dishes
- This specific example can be generalized to different menus, number of attendees, number of dietary restrictions, number of dishes requested, etc.

Acknowledgements

- × Dr. Alan Frieze
 × Cheesecake Factory
 - o Menu

 \bigcirc

- Nutrition Information
- Martin Broadhurst
 - Greedy Set Covering Algorithm

