Solving a Catering Problem with the Greedy Set Cover Algorithm AJ Druck, Neha Gupta, Olivia Montanha, Juliette Wong

Introduction
× The Cheesecake Factory

- Clients supply:
- Number of attendees (20)
- Dietary restrictions of attendees
- Minimum number of dishes they want - 2 appetizers, 4 main dishes, 2 desserts

Goal: choose set of dishes that

- Maximizes expected revenue
- Meets dietary restrictions of all attendees

Dała (Ałtendees)

Note: we created this data based on the percentages for these food allergies in the United States

\times	$0->$ none
\times	1 -> vegetarian
\times	$2->$ vegan
\times	$3->$ lactose intolerant
\times	$4->$ seafood free
\times	5 -> nut allergy
\times	$6->$ gluten free
\times	$7->$ no meat or dairy
\times	$8->$ gluten free vegetarian

(8/20-40\%)
× 1 ->vegetarian
(2/20-10\%)
× 2 -> vegan
(1/20-5\%)
x 3 -> lactose intolerant
$\times 4$-> seafood free
(4/20-20\%)
$\times 5$-> nut allergy
$\times 6$-> gluten free
(1/20-5\%)
$\times \quad 7->$ no meat or dairy
8 -> gluten free vegetarian
(1/20-5\%)
(1/20-5\%)
(1/20-5\%)
(1/20-5\%)

Dietary Restrictions	Gluten Free	Meat Free	Dairy Free	Nut Free	Seafood Free	Egg Free
0 None	\square	\square	\square	\square	\square	\square
1 Vegetarian	\square	\checkmark	\square	\square	\checkmark	\square
1 Vegetarian	\square	\checkmark	\square	\square	\checkmark	\square
2 Vegan	\square	\checkmark	\square	\square	\square	\square
3 Lactose Intolerant	\square	\square	\square	\square	\square	\square

Dała (Food)

X
Based on our encoding of attendees, we represented each dish on the menu as a set of types of individuals who could consume that food

	Price	Gluten Free	Meat Free	Dairy Free	Nut Free	Seafood Free	Egg Free	
Parmesan Garlic Cheese Bread	8.95	\square	\checkmark	\square	\square	\checkmark	\square	$\{0,1,4\}$
Roadside Sliders	9.95	\square	\square	\square	\checkmark	\checkmark	\checkmark	$\{0,4,5\}$
Chicken Pot Stickers	10.95	\square	\square	\square	\checkmark	\checkmark	\square	$\{0,4,5\}$
Avocado Eggrolls	11.5	\square	\checkmark	\checkmark	\square	\checkmark	\square	$\{0,1,4\}$
Quesadilla	9.95	\square	\checkmark	\square	\checkmark	\checkmark	\checkmark	$\{0,1,4,5\}$
Fried Mac and Cheese	11.5		\checkmark		\checkmark	\checkmark	\square	$\{0,1,4,5\}$
Southern Fried Chicken Sliders	10.95	\square	\square	\square	\checkmark	\checkmark	\square	$\{0,4,5\}$
Hot Spinach and Cheese Dip	10.95	\square	\checkmark	\square	\checkmark	\checkmark	\square	$\{0,1,4,5\}$
Tex Mex Eggrolls	10.95	\square	\square	\square	\checkmark	\checkmark	\square	$\{0,4,5\}$
Fried Calamari	12.95	\square		\square	\checkmark	\square	\square	$\{0,5\}$
Buffalo Blasts	11.95	\square	\square	\square	\checkmark	\checkmark	\square	$\{0,4,5\}$
Sweet Corn Tamale Cakes	10.95	\checkmark	\checkmark	\square	\checkmark	\checkmark	\checkmark	$\{0,1,4,5,6,8\}$

Set Cover Algorithm

x Have a universe

- In our case it would be a set of the types of people present: $\{0,1,2,3,4,5,6,7,8\}$
$\times \quad$ Have a set of subsets whose union equals the universe
- Would be the dishes
- Ex. $\{\{0\},\{0,1,2,3,4,7\},\{0,5,6\},\{0,1,5,6,8\}\}$
\times Find the smallest set of subsets whose union equals the universe
- i.e. find the smallest number of dishes that satisfies everyone (and maximises revenue)

Algorithm

× Greedy Set Cover Algorithm

```
def set_cover(universe, subsets, weights):
    """Find a family of subsets that covers the universal set"""
    elements = set(e for s in subsets.values() for e in s)
    # Check the subsets cover the universe
    if elements != universe:
                return None
```

 covered \(=\operatorname{set}()\)
 cover = []
 \# Greedily add the subsets with the most uncovered points
 while covered != elements:
 subset, bestI = maxHelper(subsets, covered, weights)
 del subsets[bestI]

covered $=\operatorname{set}()$
cover = []
\# Greedily add the subsets with the most uncovered points while covered != elements:
subset, bestI = maxHelper(subsets, covered, weights)
del subsets[bestI] del weights[bestI]
cover.append((subset, bestI))
covered |= subset
return cover

Agorithm (cont.)
def maxHelper(subsets, covered, weights):
$\operatorname{maxS}=$ None
$\operatorname{maxH}=-1$
bestI = None
for key in subsets:
heuristic $=$ len(subsets[key]-covered)*weights[key] if maxS == None or heuristic > maxH:
$\operatorname{maxS}=$ subsets[key]
maxH = heuristic bestI = key
return maxS, bestI

Results

Appetizers:
× Factory Chopped Salad -- \$12.50

* Guacamole Made-To-Order -- \$11.95
* Factory Nachos -- \$12.50

Results (cont.)
Main Dishes:
× Chinese Chicken Salad -- \$14.95
× Cobb Salad -- \$14.95
× Sante Fe Salad -- \$15.50
\times Four Cheese Pasta -- \$15.95
× Luau Salad -- \$14.95

* Evelyn's Favorite Pasta -- \$15.95

Results (cont.)

Desserts:
× Bowl of Fresh Strawberries -- \$7.50
x Dairy-Free Key Lime Pie -- \$7.95
× Godiva Chocolate Cheesecake -- \$7.95

Results (cont)

\times We assumed that of the foods an individual can consume, they have an equal chance of choosing each dish
E [Appetizers] = \$245.97
E [Main Dishes] = \$305.81
E [Dessert] = \$155.40

Total Expected Revenue: \$707.18

Expected Revenue/Person: \$35.36

Conclusion

x Compared to a visual inspection of the data, the algorithm chose the correct dishes
\times This specific example can be generalized to different menus, number of attendees, number of dietary restrictions, number of dishes requested, etc.

${ }_{\circ}^{\circ} \odot$
Acknowledgements

Acknowledgement's
Dr. Alan Frieze
× Cheesecake Factory

- Menu
- Nutrition Information

Martin Broadhurst

- Greedy Set Covering Algorithm

8

