

Mathematical Sciences Major

Course Scheduling Project
Group E

Hannah Fernandes, Hannah Milano, Alex Liu, Bora Odabasi

21-393 F19

Overview

At Carnegie Mellon, deciding which classes to take and in which order can cause

students a high amount of unnecessary stress throughout their four years as an undergraduate

student. There are a finite number of ways any student could schedule their required courses for

their major in a given semester, and yet undergraduates still face the problem of high levels of

stress during the selection process and once they are actually enrolled in the courses they have

selected. This is especially true of the Mathematical Sciences major who needs to make

decisions on which classes to take and in what order fairly blindly besides the necessary

prerequisite classes. If there were a tool or algorithm to help students in the Mathematical

Sciences major plan their schedule in an optimal way which would reduce their stress during

both the selection process and during their time as a student, many math majors would

experience far less stress. There are many things to consider when planning a course schedule of

a math major at CMU. Mathematics students are frequently faced with required prerequisites

which means that some classes must be taken in a certain order. There are also different

professors who receive positive or negative feedback from previous students. There are course

conflicts and courses not offered during certain semesters. There are FCEs, scores, and unit loads

to consider. Students must prioritize which of these characteristics of a schedule matters the most

to them and create a schedule that, to them, optimally manages their stress for the upcoming

semester based on these inputs. There is also the stress of planning a schedule that has the least

amount of free time between classes as possible so that you can take your classes back to back

rather than having many small blocks of unproductive free time. With this project we hope to aid

mathematics students by creating and implementing an algorithm that plans a schedule for a

Mathematical Sciences major, which minimizes the maximum number of FCEs and minimizes

the hours of free time during a student’s week.

Current Problem

In this project, we would like to address the course scheduling problem of the

Mathematical Sciences major with no specified concentration. We will consider the weights

which we consider the most important: FCEs, FCE scores, and time between classes during the

day. We will plan a schedule that meets the required courses for a Mathematical Sciences major

to graduate in four years and meet all of their graduation requirements while minimizing their

stress based on the inputs which we consider to have the largest impact on stress. We will also

satisfy all prerequisites and ensure that this schedule could be followed by an actual CMU

student in this major. We will also follow the necessary unit loads for a math major. The end

result will be a schedule which, if followed, would allow a Mathematical Sciences major to

graduate with the least amount of stress per semester based on the inputs that we consider most

crucial when discussing a student’s stress during a given semester. We consider the FCEs and

FCE scores to be reliable because they are measures of how long a course takes based on the

students’ input and not just the professor’s. We also want to minimize the breaks throughout the

day so that students have classes back to back and not with breaks between classes because these

breaks are frequently seen as a waste of time.

Assumptions

● This schedule has been made under the assumption that a student comes to CMU with no

AP credit and does not test out of any classes

● All courses are offered in the semesters that we would like them to be offered in (for

example, if our algorithm decides that we should take concepts in the first semester then

we assume it is offered in that semester)

● We assume that the times that classes occur in future years is the same as in past years

when formulating the actual schedule with times

● We assumed a student would want to take classes based on the lowest FCE value and not

their interest level in the course

Overview of Course Scheduling and Dynamic Programming

We formulated constraints for the data that we gathered so that when we run our data

through the constraints we arrive at a final schedule which satisfies the conditions described

above to minimize the stress of the average CMU student. These constraints include minimizing

the FCE load per semester, ensuring that all prerequisite classes come before any given

scheduled class, ensuring that a class is taken at most one time, ensuring that we take at

minimum 36 units and at most 54 units per semester in order for it to be a valid CMU schedule,

ensuring we only satisfy a requirement one time. These constraints alongside of an objective

function which minimizes the amount of FCEs per semester yielded a general schedule of which

semesters we should take every required class in. We formulated a second objective function

which minimizes the amount of time between classes during a given day when we schedule the

lecture times of the classes our first objective function had chosen. The second objective function

has constraints to ensure that no classes overlap and that we only select classes in the semesters

that they are offered based on the schedules of previous semesters. Our final result is a schedule

which minimizes the maximum number of FCEs in any semester and also minimizes the total

amount of time in between classes during a student’s schedule.

Constraints

Our Solution / Results

Semester Mathematics Courses General Electives Time Between Courses
per Week

1 21-127 and 21-241 33-767 and 1 general elective 5 hours

2 21-120 and 21-373 2 general electives 12 hours

3 21-122 and 21-623 2 general electives 12 hours

4 21-259, 21-355 and 21-738 1 general elective 3 hours

5 21-341 and 21-765 36-225 and 1 general elective 12 hours

6 21-228 and 21-882 2 general electives 8 hours

7 21-260 15-390 and 2 general electives 2 hours

8 21-356 15-810 and 2 general electives 0 hours

The maximum FCE units per semester using this schedule is 33.89 units

Total time between classes weekly for all semesters is 54 hours

Conclusion

The planned schedule as stated above is, we believe, a schedule which would minimize

the amount of stress that the average Carnegie Mellon University student in the Mathematical

Sciences major has to endure. This claim is supported by the FCEs of each of the courses

selected and the fact that the algorithm minimizes the amount of time between between courses

in a given week. We hope that this algorithm and schedule can assist future students in this major

select courses which have low FCE scores and will fit their schedule well. If this schedule is

followed it will be the schedule which allows a student to graduate in four years while

minimizing their FCE units and the amount of time between their classes. Our schedule is very

similar to that which appears on the website for Mathematical Sciences majors which helps to

support our conclusion. Ours is slightly different, however, which isn’t surprising because we

doubt that the faculty in the Math Department were considering the two key components that we

considered while planning the suggestion schedule for students at Carnegie Mellon.

Afterthoughts

A major drawback of our algorithm was that it includes graduate student courses. These

courses are valid and will allow a student to graduate, but because they are graduate classes the

FCEs are likely recorded by graduate students and not undergraduate students so they may not be

completely true for an undergraduate’s experience. Another drawback is the fact that we weren’t

able to find the specific general electives a student should take, but because there are so many of

them to fulfill the requirements it would have taken much longer for our program to run had we

included those courses as well. We improved upon previous students’ implementation of this

algorithm or a similar one by including the second objective function to minimize gaps between

classes as well as including some of the information about when to take general electives during

your four years as a student. Please note that our data is all FCEs for both spring and fall

semesters and was far too extensive to include in this report, but is available upon request if

necessary.

Implementation

classObj.py
1. class Class:

2.

3. def __init__(self, id, sem, hours, lecData, recData, units):

4. self.id = id

5. self.sem = sem

6. self.hours = hours

7. self.lecData = lecData

8. self.recData = recData

9. self.units = units

10.

11. def __str__(self):

12. return "ID: " + str(self.id) + "\nSemester: " + str(self.sem) + "\nFCE Hours:
" + str(self.hours) + "\nLecture Data: " + str(self.lecData) + "\nRecitation
Data: " + str(self.recData) + "\nUnits: " + str(self.units)

13. ''’

14. e.g

15. id: 21127

16. sem: 0

17. hours: 9.43

18. lecData: ['MWF', '11:30AM', '12:20PM']

19. recData: [

20. ['TR', '08:30AM', '09:20AM'],

21. ['TR', '09:30AM', '10:20AM'],

22. ['TR', '12:30PM', '01:20PM'],

23. ['TR', '02:30PM', '03:20PM']

24.]

25. units: 10.0 ''

26. '’’

Lookup.py
1. import csv

2.

3. # only have data for 2019 fall and 2020 spring so a lot won't be accurate

4. def lookup(ids, spring):

5. dict = {}

6. id = 0

7. units = 0

8. lecData = ["","",""]

9. recData = []

10. layout = "SpringLayout.csv" if spring else "FallLayout.csv"

11. with open(layout) as file:

12. reader = csv.reader(file, delimiter='"')

13. str_type = 0

14. count = 0

15. for row in reader:

16. try:

17. row_array = ''.join(row).split()

18. if len(row_array) == 0:

19. str_type = 0

20. count = 0

21. continue

22. if str_type == 0:

23. if int(row_array[0]) in ids:

24. id = int(row_array[0])

25. str_type = 1

26. elif str_type == 1:

27. units = float(row_array[0])

28. ind = 3 if row_array[2] == '1' else 2

29. days = row_array[ind]

30. lecData = row_array[ind : ind+3]

31. str_type = 2

32. if row_array[1] != "Lec":

33. count = 4

34. elif str_type == 2:

35. # only considering 1 lecture

36. # at most 3 recitations

37. if not row_array[0].isalpha() or count > 3:

38. dict[id] = (units, lecData, recData)

39. units = 0

40. lecData = ["","",""]

41. recData = []

42. str_type = 0

43. count = 0

44. if int(row_array[0]) in ids:

45. id = int(row_array[0])

46. str_type = 1

47. continue

48. if row_array[0] == "Lec" or len(row_array[1]) > 3:

49. continue

50. recData.append(row_array[1:4])

51. count += 1

52. except (ValueError, IndexError):

53. str_type = 0

54. count = 0

55. continue

56. return dict

57.

58.

59. # ['Year'0, 'Semester'1, 'College'2, 'Dept'3, 'Course ID'4, 'Section'5,

'Name'6, 'Course Name'7, 'Level'8, 'Possible Respondents'9, 'Num

Respondents'10, 'Response Rate %'11, 'Hrs Per Week'12, 'Hrs Per Week 5'13, 'Hrs

Per Week 8'14, 'Interest in student learning'15, 'Clearly explain course

requirements'16, 'Clear learning objectives & goals'17, 'Instructor provides

feedback to students to improve'18, 'Demonstrate importance of subject

matter'19, 'Explains subject matter of course'20, 'Show respect for all

students'21, 'Overall teaching rate'22, 'Overall course rate'23]

Main3.py
1. import read

2. import math

3. import copy

4. import itertools

5. from collections import OrderedDict

6.

7. Prereqs = read.setPrereqs()

8. (CoreAvg, Elc1Avg, Elc2Avg) = read.avgAll()

9. Elc1, Elc2 = read.setElectives(Elc1Avg, Elc2Avg)

10. memo = {}

11.

12. def id_to_index(id):

13. if id in CoreAvg:

14. return list(CoreAvg).index(id)

15. if id in Elc1:

16. return 12 + list(Elc1).index(id)

17. if id in Elc2:

18. return 16 + list(Elc2).index(id)

19. return ValueError

20.

21. def ind_to_obj(ind):

22. if ind < len(CoreAvg):

23. return CoreAvg[list(CoreAvg)[ind]]

24. ind -= len(CoreAvg)

25. if ind < len(Elc1):

26. return Elc1[list(Elc1)[ind]]

27. ind -= len(Elc1)

28. if ind < len(Elc2):

29. return Elc2[list(Elc2)[ind]]

30. return IndexError

31.

32. def compute_options(class_bin, num_genEd):

33. option_set = []

34. # TODO: Change 3,5 to 3,7?

35. for nc in range(3,5):

36. # TODO: Change 2 to 6?

37. for ge in range(3):

38. for comb in itertools.combinations(range(class_bin.count(0)),
nc-ge):

39.

40. #set option: 1's for index of class in option

41. option = [0] * len(class_bin)

42. count = 0

43. for i in range(len(class_bin)):

44. if class_bin[i] == 1:

45. continue

46. if count in comb:

47. option[i] = 1

48. count += 1

49.

50. # genEds count

51. genEds = ge

52.

53. # calculate total time for this semester

54. time = 9 * genEds

55. for i in range(len(option)):

56. if option[i] == 0:

57. continue

58. time += ind_to_obj(i).hours

59.

60. # 36 <= units <= 54 constraint

61. units = 9 * genEds

62. for i in range(len(option)):

63. if option[i] == 0:

64. continue

65. units += ind_to_obj(i).units

66. if units < 36 or units > 54:

67. continue

68.

69. # prerequisite constraint

70. prereq_satisfied = True

71. for i in range(len(option)):

72. if option[i] == 0:

73. continue

74. P_ID = Prereqs.get(ind_to_obj(i).id)

75. if P_ID is None:

76. continue

77. for id in P_ID:

78. ind = id_to_index(id)

79. if class_bin[ind] == 0:

80. prereq_satisfied = False

81. if not prereq_satisfied:

82. continue

83.

84. # don't exceed more units of gen ed than necessary (114 + 9)

85. #if num_genEd + genEds > math.ceil(114 / 9):

86. # continue

87.

88. repeat = set()

89. for i in range(len(option)):

90. if option[i] == 0:

91. continue

92. data = ind_to_obj(i)

93. lec_data = data.lecData

94. rec_data = data.recData

95. # TODO

96.

97. option_set.append((option, time, genEds))

98.

99. return option_set

100.

101. def bin_format(arr, n):

102. new = [0] * (n - len(arr))

103. new.extend(arr)

104. return new

105.

106. def success_condition(class_bin, num_genEd):

107. if all(x == 1 for x in class_bin) and num_genEd * 9 >= 0:

108. return (0, [])

109. else:

110. return (1000000, [])

111.

112. def optimal(state):

113. if state in memo:

114. return memo[state]

115. dec_to_bin = bin_format([int(x) for x in bin(state)[2:]], 26)

116. sem = int("".join(str(x) for x in dec_to_bin[:3]), 2)

117. class_bin = dec_to_bin[3:22]

118. num_genEd = int("".join(str(x) for x in dec_to_bin[22:]), 2)

119. options = compute_options(class_bin, num_genEd)

120. min = 1000000

121. best_option = None

122. fn_plus1 = None

123. count = 0

124. for (option, time, genEds) in options:

125. # runtime: tracking progress

126. if sem == 0:

127. count += 1

128. print(count, len(options), round(count/len(options),2))

129. new_class_bin = [a ^ b for a, b in zip(option, class_bin)]

130. new_genEd = num_genEd+genEds

131.

132. if sem != 7:

133. # convert binary rep back to state int

134. new_temp = bin_format([int(x) for x in bin(sem+1)[2:]], 3)

135. new_temp.extend(new_class_bin)

136. genEd_count = bin_format([int(x) for x in bin(new_genEd)[2:]],
4)

137. new_temp.extend(genEd_count)

138. new_dec = int("".join(str(x) for x in new_temp), 2)

139. # f_n+1

140. (fn_plus1_time, fn_plus1_sch) = optimal(new_dec)

141. # add to memory

142. memo[new_dec] = (fn_plus1_time, fn_plus1_sch)

143. max_t = max(time, fn_plus1_time)

144. else:

145. max_t = time

146. fn_plus1_sch = []

147.

148. if max_t < min:

149. min = max_t

150. best_option = option

151. best_option.extend(bin_format([int(x) for x in bin(genEds)[2:]],
4))

152. fn_plus1 = copy.copy(fn_plus1_sch)

153. if fn_plus1 is None:

154. return (2000000, [])

155. fn_plus1.insert(0, best_option)

156. if sem == 7 and not (all(x == 1 for x in new_class_bin) and new_genEd *
9 >= 114):

157. return (3000000, [])

158. return (min, fn_plus1)

159.

160.

161.

162. if __name__ == "__main__":

163.

164. unit, sch = optimal(0)

165. print("Min max FCE hours per semester: " + str(unit))

166. print("Using Schedule:")

167. for i in range(len(sch)):

168. print("Semester " + str(i) + ": ", end=" ")

169. for j in range(19):

170. if sch[i][j] == 1:

171. print(str(ind_to_obj(j).id), end=" ")

172. print("| Gen Eds: " + str(int("".join(str(x) for x in sch[i][19:]),
2)))

173.

174. '''''
175. Over 6 semesters, max 1 gen ed per semester

176. Min max FCE hours per semester: 33.01

177. Using Schedule:

178. Semester 0: 21127 21241 21623 33767 | Gen Eds: 0

179. Semester 1: 21120 21373 21738 | Gen Eds: 1

180. Semester 2: 21122 21341 21765 | Gen Eds: 1

181. Semester 3: 21259 21355 15812 | Gen Eds: 1

182. Semester 4: 36225 21228 21882 | Gen Eds: 1

183. Semester 5: 21260 21356 15390 | Gen Eds: 1

184.

185. Over 6 semesters, max 2 gen eds per semester

186. Min max FCE hours per semester: 32.92

187. Using Schedule:

188. Semester 0: 21120 21127 21623 33767 | Gen Eds: 0

189. Semester 1: 21122 21228 15812 | Gen Eds: 1

190. Semester 2: 21259 21241 21738 | Gen Eds: 1

191. Semester 3: 36225 21355 21373 21765 | Gen Eds: 0

192. Semester 4: 21356 21341 21882 | Gen Eds: 1

193. Semester 5: 21260 15390 | Gen Eds: 2

194.

195. Over 7 semesters, max 2 gen eds per semester

196. Min max FCE hours per semester: 33.370000000000005

197. Using Schedule:

198. Semester 0: 21120 21127 21882 | Gen Eds: 1

199. Semester 1: 21122 21241 | Gen Eds: 2

200. Semester 2: 21259 21373 21765 | Gen Eds: 1

201. Semester 3: 21355 15812 | Gen Eds: 2

202. Semester 4: 36225 21356 21738 21623 | Gen Eds: 0

203. Semester 5: 21228 21260 15390 | Gen Eds: 1

204. Semester 6: 21341 33767 | Gen Eds: 2

205.

206. Over 8 semesters, max 2 gen eds per semester, 3 or 4 courses per semester

207. Min max FCE hours per semester: 33.89

208. Using Schedule:

209. Semester 0: 21127 21241 33767 | Gen Eds: 1

210. Semester 1: 21120 21373 | Gen Eds: 2

211. Semester 2: 21122 21623 | Gen Eds: 2

212. Semester 3: 21259 21355 21738 | Gen Eds: 1

213. Semester 4: 36225 21341 21765 | Gen Eds: 1

214. Semester 5: 21228 21882 | Gen Eds: 2

215. Semester 6: 21260 15390 | Gen Eds: 2

216. Semester 7: 21356 15812 | Gen Eds: 2

217. '''

Read.py
1. import csv

2. import copy

3. from collections import OrderedDict

4.

5. import classObj

6. import lookup as lk

7.

8. '''''
9. Class Requirements from MCS website: Take all core classes, 45 units from

Electives1, 27 units from Electives2. Some of thse courses overlap and may not

be double counted.

10. Gen Eds are not considered

11. '''

12.

13. CoreClasses =

[21120,21122,21127,21228,21241,36225,21259,21260,21341,21355,21356,21373]

14.

15. def isElective1(id):

16. return (id >= 21300 and id < 22000) or id in [21270,21272,21292]

17.

18. def isElective2(id):

19. return isElective1(id) or (id >= 15200 and id < 16000) or (id >= 33300 and
id < 34000) or (id >= 36300 and id < 37000)

20.

21. '''''
22. Adds class to Type. Throws ValueError if class is discarded because not useful.

If found repeat class in same semester, keep class with less FCE hours.

23. Input: Type - type of class (Core, Electives1, Electives2)

24. row - input row (see bottom for index info) of class containing all

strings

25. rightType - boolean if class id fits class Type

26. '''

27. def addClass(Type, row, rightType, id, f_lookup, s_lookup):

28. if rightType:

29. year = int(row[0])

30. season = row[1] == "Spring"

31. sem = 2 * (year - 2015) - season

32. lookup = f_lookup if sem%2 == 0 else s_lookup

33. if sem not in range(8):

34. raise ValueError

35. hours = float(row[12])

36. units = lookup[id][0]

37. lecData = lookup[id][1]

38. recData = lookup[id][2]

39. # take class with min hours

40. if Type[sem].get(id) is not None:

41. if Type[sem][id].hours < hours:

42. raise ValueError

43. Type[sem][id] = classObj.Class(id, sem, hours, lecData, recData, units)

44.

45. '''''
46. Reads FCE and gets classes relevant to Math major degree

47. Output: (Core, Electives1, Electives2)

48. Core[sem][id] contains class data of core class with id (21393) and semester

(0-7)

49. See classObj.py for info on class object

50. '''

51.

52. def getClasses():

53. Core = [{}, {}, {}, {}, {}, {}, {}, {}]

54. Electives1 = [{}, {}, {}, {}, {}, {}, {}, {}]

55. Electives2 = [{}, {}, {}, {}, {}, {}, {}, {}]

56. ids = set()

57. with open("Export.csv") as file:

58. reader = csv.reader(file, delimiter=',')

59. skip = True # skip first row

60. for row in reader:

61. if skip:

62. skip = False

63. continue

64. try:

65. id = int(row[4])

66. if id in CoreClasses or isElective1(id) or isElective2(id):

67. ids.add(id)

68. except ValueError:

69. continue

70.

71. with open("Export.csv") as file:

72. reader = csv.reader(file, delimiter=',')

73. skip = True

74. f_lookup = lk.lookup(ids, 0)

75. s_lookup = lk.lookup(ids, 1)

76. for row in reader:

77. if skip:

78. skip = False

79. continue

80. try:

81. id = int(row[4])

82. addClass(Core, row, id in CoreClasses, id, f_lookup, s_lookup)

83. addClass(Electives1, row, isElective1(id), id, f_lookup,

s_lookup)

84. addClass(Electives2, row, isElective2(id), id, f_lookup,

s_lookup)

85. except (ValueError, KeyError):

86. continue

87.

88. return (Core, Electives1, Electives2)

89.

90. '''''

91. Calculated via lowest FCE hour while still 9.0 units or higher

92. Input: ClassType is dict of id as key, Class Obj as value, N is int

93. Output: Ordered Dict of length N of Class Objs, ith value is ith best class

94. '''

95. def topN(ClassType,N):

96. top = {}

97. for i in range(N):

98. max = 0

99. bestk = 0

100. for k in ClassType.keys():

101. measure = 1 / ClassType[k].hours

102. if measure > max and k not in top and ClassType[k].units > 8.9:

103. max = measure

104. bestk = k

105. top[bestk] = ClassType[bestk]

106. return top

107.

108. '''''
109. Calculated via best unit to FCE hour ratio

110. Input: ClassType is dict of id as key, Class Obj as value, N is int

111. Output: Ordered Dict of length N of Class Objs, ith value is ith best class

112. '''

113. def topNRatio(ClassType,N):

114. top = {}

115. for i in range(N):

116. max = 0

117. bestk = 0

118. for k in ClassType.keys():

119. measure = ClassType[k].units / ClassType[k].hours

120. if measure > max and k not in top:

121. max = measure

122. bestk = k

123. top[bestk] = ClassType[bestk]

124. return top

125.

126. '''''
127. Input: Array of length 8, ith entry is dict of id key, Class Obj as value

128. Output: Dict of id key, Class Obj as value

129. '''

130. def averageData(ClassType):

131. data = {}

132. IDs = set()

133. for sem in range(8):

134. IDs = IDs.union(ClassType[sem].keys())

135. for k in IDs:

136. fcehour = 0

137. count = 0

138. needTemplate = True;

139. t = None

140. for i in range(8):

141. classData = ClassType[i].get(k)

142. if classData is not None:

143. if k != classData.id:

144. print(k, classData.id)

145. if needTemplate:

146. needTemplate = False

147. t = copy.copy(classData)

148. fcehour += classData.hours

149. count += 1

150. if t is None:

151. continue

152. t.hours = round(fcehour / count, 2)

153. t.sem = None

154. data[k] = t

155. return data

156.

157. def avgAll():

158. (Core, Electives1, Electives2) = getClasses()

159. return (averageData(Core), averageData(Electives1),
averageData(Electives2))

160.

161. '''''
162. Since we hard code prerequisites and are limiting the classes, we don't need

"or". So ouput will be id pointing to set of prerequisite ids

163. '''

164. def setPrereqs():

165. dict = {}

166. dict[21122] = {21120}

167. dict[21228] = {21127}

168. dict[36225] = {21259}

169. dict[21259] = {21122}

170. dict[21260] = {21122}

171. dict[21341] = {21241, 21373}

172. dict[21355] = {21127, 21122}

173. dict[21356] = {21259, 21241, 21355}

174. dict[21373] = {21127, 21241}

175. dict[15390] = {36225}

176. return dict

177.

178. def setElectives(E1, E2):

179. Elc1 = {}

180. Elc1[21882] = E1[21882]

181. Elc1[21738] = E1[21738]

182. Elc1[21623] = E1[21623]

183. Elc1[21765] = E1[21765]

184. Elc2 = {}

185. Elc2[33767] = E2[33767]

186. Elc2[15812] = E2[15812]

187. Elc2[15390] = E2[15390]

188. return (Elc1, Elc2)

189.

190. '''''
191. Too many gen eds to hard code. Just assigning random 76100 id to class with

arbitrary data, 9 units and 9 FCE hours

192. '''

193. def getGenEd():

194. dict = {}

195. dict[76100] = classObj.Class(76100, None, 9.0, [], [], 9.0)

196. return dict

197.

198.

199. # ['Year'0, 'Semester'1, 'College'2, 'Dept'3, 'Course ID'4, 'Section'5,

'Name'6, 'Course Name'7, 'Level'8, 'Possible Respondents'9, 'Num

Respondents'10, 'Response Rate %'11, 'Hrs Per Week'12, 'Hrs Per Week 5'13, 'Hrs

Per Week 8'14, 'Interest in student learning'15, 'Clearly explain course

requirements'16, 'Clear learning objectives & goals'17, 'Instructor provides

feedback to students to improve'18, 'Demonstrate importance of subject

matter'19, 'Explains subject matter of course'20, 'Show respect for all

students'21, 'Overall teaching rate'22, 'Overall course rate'23]

