
Minimize Cost of Food for CMU Students

21-393 Final Project Fall 2019

Cheyenne Ehman, Julia Keating, Shane Keating, Elizabeth Schulz

1

1 Abstract

The goal of this project is to determine a meal plan for a Carnegie Mellon University student that provides

adequate nutrition while minimizing the cost. Nutrition is looked at over one month where a meal is either

from an on campus restaurant or made up of food products from a predesignated list. The number of each

unique food product and the number of meals at each restaurant throughout the month are first determined

using linear programming based on nutritional constraints. After the linear program is run, the Greedy

Algorithm is used to sort food products and restaurant meals into breakfast, lunch, and dinner for thirty

days. The result of the linear program was a minimum cost of $344.30 per month and amounts of food

specified in section 5.1. Then, the products and meals were separated into meals to create a full meal plan

for the month which can be looked at in section 8.

2 Introduction

We will plan and assign meals throughout the course of the month with minimizing cost of the meals and

meeting standard nutritional constraints for a CMU student. Our proposed algorithm will be comprised of

2 unique steps: First, we will calculate the total amounts of each food product and restaurant meals eaten

over the entirety of the month while taking into account the nutritional constraints and minimizing costs.

After we have the totals, they need to be partitioned into 90 separate meals for the entire month. To do so,

we introduce a greedy algorithm that produces meals based on the recommended caloric intake for each meal

type (Breakfast, Lunch, Dinner). Once we have created a list of 90 meals for the month, we can randomly

permute them to introduce variety into our monthly recommended diet.

3 Assumptions

• You must eat three meals a day

• When eating a meal at a restaurant, you have one option

• a healthy individual should eat 2000 calories a day

• You can only eat out at most 9 times per month

• we assume there are 30 days in a month

• food is categorized as being either a breakfast food, lunch food, or a dinner food

• lunch foods and dinner foods can be interchangeable

2

4 Total products eaten in a month

In the first part of our algorithm, we will calculate the total servings of products and restaurant meals eaten

over the course of month.

4.1 Objective Function

Our objective is to minimize the cost of all food bought over the course of the month.

min

P∑
p=1

cpxp +

R∑
r=1

krmr

4.2 Variables

p = 1,2,... P # of food products

r = 1,2,... R # restaurants

cp = cost of product p per serving

kr = cost of one serving of food at restaurant r

xp = servings of product p eaten in a month

mr = servings eaten at restaurant r in a month

gp = servings of grains in one serving of product p

vp = servings of vegetables in one serving of product p

fp = servings of fruits in one serving of product p

lp = servings of protein in one serving of product p

sp = servings of sugars in one serving of product p

Gr = servings of grains in meal from restaurant r

Vr = servings of vegetables in meal from restaurant r

Fr = servings of fruit in meal from restaurant r

Lr = servings of protein in meal from restaurant r

Sr = servings of sugar in meal from restaurant r

Cp = calories of a product p

Kr = calories of a meal r

3

4.3 Constraints

4.3.1 Maximum restaurant meals

Here, we assume that you can eat out a maximum of 30 times in the month.

R∑
r=1

mr ≤ 30

4.3.2 Can buy at most 60 of any given food product

xp ≤ 60∀p

4.3.3 Calories

The recommended calorie intake per day 2000 calories, but since we are calculating meals for the month,

you should consume at least 60,000 calories in total. Also, no one should eat more than 2500 calories per

day, so there is an upper limit of 75,000 calories per month.

60, 000 ≤
P∑

p=1

xpCp +

R∑
r=1

mrKr ≤ 75, 000

4.3.4 Grains

It is recommended to eat 9 servings of grains a day for 30 days in the month, so over the course of the month,

you should consume 270 servings of grains.

P∑
p=1

gpxp +

R∑
r=1

Grmr ≥ 270

4.3.5 Fruits

It is recommended to eat 3 servings of fruits a day for 30 days in the month, so over the course of the month,

you should consume 90 servings of fruits.

P∑
p=1

fpxp +

R∑
r=1

Frmr ≥ 90

4

4.3.6 Vegetables

It is recommended to eat 4 servings of vegetables a day for 30 days in the month, so over the course of the

month, you should consume 120 servings of vegetables.

P∑
p=1

vpxp +

R∑
r=1

Vrmr ≥ 120

4.3.7 Proteins

It is recommended to eat 2 servings of protein a day for 30 days in the month, so over the course of the

month, you should consume 60 servings of protein.

P∑
p=1

lpxp +

R∑
r=1

Lrmr ≥ 60

4.3.8 Sugars

It is recommended to eat no more than 2 servings of artificial sugar a day for 30 days in the month, so over

the course of the month, you should consume between 30 and 60 servings of artificial sugar.

30 ≤
P∑

p=1

spxp +

R∑
r=1

Srmr ≤ 60

5 Data Collection

Data were collected on 13 different food products spanning categories such as proteins, fruits, vegetables,

grains, and dairy. The amount of calories in each food product was collected based on averages given by

the United States Department of Agriculture (USDA). The serving sizes for each food product were taken

from recommendations by the United States Food and Drug Administration (FDA). Data regarding meals

from six different campus restaurants were collected from the CMU Dining Services website. As per the

assumptions in section 3, we have assumed that when going to a certain restaurant, you have only one meal

option. The meals assigned to each restaurant can be found in the appendix in section 11.1. Some estimation

was made based on serving sizes of food products in each meal from the USDA.

5.1 Linear Program Results

The linear program as described above was computationally solved using the simplex algorithm in Microsoft

Excel. The output of the algorithm can be seen in the table below. The totals below was calculated with

5

the minimum cost of $334.30. It’s important to note that there as many non-zero decision variables as there

are constraints, so this is something to be taken into consideration in the future work section 9.

restaurant/product value

abp 0
ug 11
resnik 17
tepper 0
exchange 0
inoodle 0
broccoli 0
carrots 60
spinach 60
bread 60
pasta 60
rice 60
chicken 0
cheese 0
egg 18
beans 25
orange 30
apple 0
banana 60

Table 1: Resulting totals from Linear Program

6 Partitioning the Totals into Meals

We combine all of totals from the linear programming output into one set of products/restaurant meals N .

N = {x1, x2, ..., xn,m1,m2, ...mR}

For any product xp, if the total xp > 1, we represent that product in N by listing the product

in N, xp times. (e.x. suppose the optimal LP output is 3 apples and 2 bananas, the respective N =

{apple, apple, apple, banana, banana})

We also categorize food products in the optimal N as being from a restaurant or not and if it is a breakfast

item. Because we assumed that lunch and dinner items are interchangeable, if an item is not a breakfast

item, it falls into this category.

Ri =


1 if item i is bought from a restaurant ∀i = 1, 2, ..., |N |

0 otherwise

6

Bi =


1 if item i is a breakfast item ∀i = 1, 2, ..., |N |

0 otherwise

6.1 Greedy Algorithm

To partition the optimal food items into 90 meals, we implement a modified greedy algorithm. For each of

the 90 meals, it chooses the item with the highest amount of calories that is still less than the recommended

calorie intake for a given meal with a certain error. This error is 100 calories, to account for some meals

being slightly more due to variability. Once each meal is created, it is then added to S, the array of meals

for the month. Note: This algorithm was coded using the program, R. the code used to implement the

partitioning is included in the appendix in section 11.3.

Algorithm 1: Greedy Algorithm

Data: Finite set N of food items, non-negative function f

Result: array S : M ∈ S is a meal composed of products in N

S ← ∅ ;

while |S| ≤ 90 do

M ← ∅ ;

while there exists x ∈ N such that f(M ∪ {x}) > f(M) do

add the best such element x to meal M ;

M ←M ∪ {x} ;

remove the used item from the set of items;

N ← N \ {x};

end

add the meal M to the array S;

S ← S ∪ {M} ;

end

return S ;

6.2 Meal Calorie Requirement Function f(M)

It is recommended that you eat around 400 calories for breakfast and 800 calories for both lunch and dinner.

A meal is considered a breakfast meal, if all items in the meal are categorized as breakfast items.

7

CM =


400 calories if meal M is a breakfast meal: Bi = 1 ∀i ∈M

800 calories otherwise

f(M) is the function that is being maximized in the greedy algorithm. It calculates the calories of a

given meal given that the total calorie count is still less than the recommended calories for the type of meal

plus an error of 100 calories. Because this function is being maximized, it ensures that each meal is fairly

close to the recommended calorie amount as represented in CM . The first case in f(M) ensures that each

meal is composed of at least 1 item, as |M | with a value of 0 would never be the maximum value. The

second case limits that amount of one specific item in any given meal, and the third case ensures that the

meal does not go drastically over the recommended calorie intake, and the fourth case forces a meal to be all

breakfast items of no breakfast items. Finally, the fifth case, counts the calories given that all of the previous

requirements were met multiplied by the umber of unique items in the meal, and this is what is maximized.

f(M) =



0 if |M | = 0

0 if there is more than 10 of one item in M

0 if
∑

y∈M Calories(y) > CM + 100

0 if Bi 6= Bj ∀i 6= j ∈M

(# unique items in M) ∗
∑

y∈M Calories(y) otherwise

6.3 Downfall of the Greedy Algorithm

It is important to note that the Greedy algorithm is not a perfect or incredibly efficient solution to our

partitioning. The algorithm cannot guarantee the conditions in the f(M) function as it only maximizes it.

When implementing the algorithm in code, it actually produced 97 meals rather than just 90.

7 Reordering of the Meals

The Greedy algorithm will result in an array S such that each element in S is a meal or a set food products.

We assume that lunch and dinner meals are interchangeable, so the resulting array will be composed of

breakfast and lunch/dinner meals. From this, 30 breakfast meals are separated, and we can then randomly

permute the set of breakfast meals to introduce variety in the order of meals. The order of these meals will

be assigned to the breakfast meal-slot for each of the 30 days. After we have the breakfasts in order, we

8

permute the remaining 60 lunch/dinner meals, and this will be the order or the lunches and dinner in the

month. The first two meals in this order will be lunch and dinner of day 1, the second two meals will be

lunch and dinner of day 2, and so on.

8 Final Meal Plan Results

M T W TH F S SUN

Breakfast
Breadx2
Banana

Bread
Bananax2
Egg
Orange

Breadx2
Banana
Orange

Bread
Bananax2
Orange
Egg

Bread
Bananax2
Egg
Orange

Breadx2
Banana

Breadx2
Banana
Orange

Lunch UG
Banana
Breadx2

Resnik

Rice
Pastax4
Carrotx8
Spinachx2

UG

Ricex3
Pastax2
Carrotx2
Spinachx2

Resnik

Dinner

Ricex3
Pastax2
Carrotx2
Spinachx2

Beansx2
Rice
Pastax2
Carrot
Spinach

Ricex3
Pastax2
Carrotx2
Spinachx2

UG

Ricex3
Pastax2
Carrotx2
Spinachx2

Resnik UG

Table 2: Meals for One Week

8.1 Discussion

We were able to successfully create a meal plan for the month. Table 2 above shows a sample week in our

resulting meal plan. Our initial methodology was successful in accomplish our goal of creating this meal plan

while meeting nutritional constraints and minimizing costs. However, we see that despite our current efforts,

there is not much variety in meals from day to day. The only restaurant meals present in this week are form

the Underground and Resnik Cafe. Also, almost every day for breakfast, the plan suggests eating bread,

bananas, and oranges. This may be a result of the limited breakfast foods in our initial data collection of

the implications or the Greedy algorithm.

9 Future Work

In the future, there are several things that would could implement to improve our results. To increase the

variety in the types of meals we could use a wider variety of food products like prepared or frozen foods

as well as use all meals from a restaurant instead of one. As said earlier, we could also implement more

variety constraints into the initial linear program so that are more non-zero decision variables in the final

9

output. We could also introduce some sort or time constraint as well because cooking at home is relatively

costly in terms of time, especially for Carnegie Mellon students, who this study was designed for. We could

also better modify the greedy algorithm such that calorie constraints are met per day. For the sake of

customization, there should be an added option of ”happiness” to customize the output to an individual

person. We acknowledge that most people have preferences or allergies that greatly impact how and where

they eat.

10

10 References

Axe, Josh. “How Many Grams of Sugar Per Day Should You Consume?” Dr. Axe, 24 Sept. 2018,

draxe.com/nutrition/how-many-grams-of-sugar-per-day/.

Dietary Guidelines: Build a Healthy Base, health.gov/dietaryguidelines/dga2000/document/build.htm.

“Dining Locations.” IIS Windows Server, apps.studentaffairs.cmu.edu/dining/conceptinfo/?page=listConcepts.

“FoodData Central.” FoodData Central, fdc.nal.usda.gov/.

“Nutrition Facts Label.” Accessdata.fda.gov, www.accessdata.fda.gov/scripts/interactivenutritionfactslabel.

11 Appendix

11.1 Restaurant Meal Assignments

• Au Bon Pain: Turkey Chipotle Sandwich

• Underground: Ultimate Brownie

• Resnik: Chicken Strips

• Tepper: Cheese Pizza

• Exchange: Pasta with Chicken and Marinara

• iNoodle: Noodle Bowl with Chicken and Vegetables

11.2 FDA Recommended Daily Servings

• 9 servings of grain

• 3 servings of fruit

• 4 servings of vegetable

• 2 servings of protein

• 2 servings of sugar

11

11.3 Greedy Algorithm Code

Data Prep

l i b r a r y (” readx l ”)

data <− r e a d e x c e l (” t o t a l s . x l sx ” , shee t = ” Sheet1 ”)

res tauran t t o t a l s

r e s t a u r a n t s <− data [1 : 6 , 2 : 3]

r e s t a u r a n t s <− r e s t a u r a n t s [which(data$value [1 : 6] != 0) ,]

how many re s t auran t meals

r mea l s <− sum(r e s t au r an t s $va lu e)

need to make h meals homemade

h meals <− 90 − r mea l s

t o t a l s <− data [7 : 1 9 , c (2 , 3 , 9 , 1 1)]

#a l l r e s t au ran t meals l a b e l e d out

r mea l s ve c <− rep (r e s taurant s$ ‘ r e s t au ran t / product ‘ , r e s t au ran t s$va lu e)

crea t e N l i s t

item <− rep (t o t a l s $ ‘ r e s t au rant / product ‘ , t o t a l s $ v a l u e)

B <− rep (t o ta l s $ Brea k f a s t , t o t a l s $ v a l u e)

C a l o r i e s <− rep (t o t a l s $ c a l o r i e s , t o t a l s $ v a l u e)

N <− l i s t (item = item ,

B = B,

C a l o r i e s = C a l o r i e s)

f <− function (M){

#meal not empty

i f (length (M) == 0){

max <− 0

12

}

i f (max(t a b l e (M$item)) > 10){

max <− 0

}

sum ca l o r i e s

sum cal <− sum(M$Calories)

u n i q u e f a c t o r <− length (unique (M$item))

max <− u n i q u e f a c t o r ∗ sum cal

#i s b r e a k f a s t meal

B <− prod (M$B)

400 ca l i f b r e a k f a s t meal

CM <− i f e l s e (B == 1 , 400 , 800)

can ’ t go over c a l o r i e amount

i f (sum cal > CM + 100){

max <− 0

}

a l l i tems must be b r e a k f a s t i tems or none

i f (length (unique (M$B)) > 1){

max<− 0

}

return (max)

}

#i n i t i a l i z e meal p lan S

S <− l i s t ()

for (i in 1 : length (r mea l s ve c)){

S <− append (S , r mea l s ve c [i])

}

13

while (length (S) <= 100){

M <− l i s t (item = c () , B = c () , C a l o r i e s = c ())

max f <− 1

while (max f != 0){

max vec <− c ()

for (n in 1 : length (N$item)){

Append new item to meal

M new <− mapply (append ,M,

l i s t (N$item [n] , N$B[n] , N$Calor ies [n]) ,

SIMPLIFY = FALSE)

#ca l c f va lue f o r new M, add to vec t o r

max vec <− c (max vec , f (M new))

}

#f ind which one i s the max

max f <− max(max vec)

i f t he r e i s a max , add i t to meal

i f (max f != 0){

max index <− which(max vec == max f) [1]

add b e s t item to meal

M <− mapply (append ,M, l i s t (N$item [max index] ,

N$B[max index] ,

N$Calor ies [max index]) ,

SIMPLIFY = FALSE)

remove item used from t o t a l l i s t

N <− l app ly (N, function (x) x[−1∗max index]) }

}

14

add meal to meal p lan S

S <− append (S , l i s t (M$item))

}

add whats l e f t

S <− append (S , l i s t (M$item))

names (S) <− paste0 (”meal” , 1 : length (S))

l a b e l which ones are b r e a k f a s t meals

IS B <− c ()

for (meal in S){

Break fas t <− c ()

for (i in 1 : length (meal)){

Break fas t <− c (Breakfast ,

data$Breakfast [which(data$ ‘ r e s t au ran t / product ‘ == meal [i])])

boo <− as . l o g i c a l (Break fas t)

}

IS B <− c (IS B , a l l (boo))

}

Permute Break fas t Meals

B meals <− S [which(IS B == TRUE)]

samp B meals <− sample (B meals)

B meals <− samp B meals [1 : round(length (S) / 3)]

Permute o ther meals

O meals <− S [which (! names (S) %in% names (B meals))]

O meals <− sample (O meals)

#separa t e in t o lunch and dinner meals

L meals <− O meals [1 : (length (O meals) / 2)]

D meals <− O meals [((length (O meals)/2) + 1) : length (O meals)]

15

merge b r e a k f a s t and o ther meals in order

meal plan <− l i s t ()

br e a k f a s t

meal plan [seq (1 , length (S) , 3) [1 : round(length (S) / 3)]] <− B meals

lunch

meal plan [seq (2 , length (S) − 1 , 3)] <− L meals [1 : length (seq (2 , length (S) −1 ,3))]

dinner

meal plan [seq (3 , length (S) , 3)] <− D meals [1 : length (seq (3 , length (S) , 3))]

l app ly (meal plan ,

function (x) wr i t e . t a b l e (data . frame (t (x)) ,

’ meal plan . csv ’ ,

append= T, sep=’ , ’ ,

c o l . names = F))

16

