
Allocation of Teleporters in Major Cities to Minimize

Air Traffic.

Aditya Shankar, Ho Joong Kim, Qingyu Chen, Ryan Harty, Vincent Peng

Abstract

The teleportation allocation problem highlights the usage of Dijkstra’s Al-
gorithm to optimize weighted edge removal that will produce minimum air
traffic. Given a specific number of airport hubs and teleporters, we created
graphs that has hubs as vertices and weighted edges between the hubs re-
flecting the air traffic between the hubs. Then we used the shortest path
algorithm to compute optimal allocation that will minimize air traffic for
the case of 10 hubs and 4 teleporters in this paper, and reached air traffic
reduction of 69.55%.

1. Introduction

The year is 20xx, and teleportation technology has finally arrived! While
the field of quantum physics has improved by a significant margin to allow
for this, the field of Operations Research still has a ways to go, and the
assistance of students is required to tackle an important problem regarding
air traffic.

Four teleporter systems have been made available by the government to
reduce air traffic between 10 airports. A teleporter system is a direct connec-
tion between two airports which, when initialized, reduces the total air traffic
between those two airports to zero by making it possible for people to instan-
taneously travel from one of these airports to the other. The problem we are
given is how to assign these four teleporter systems in order to minimize the
total edge weight (air traffic) between the 10 airports we have chosen. We
will use Dijkstra’s Algorithm to find the shortest path value for each city for
each combination of four teleporter system placements, which will allow us
to ascertain the optimal combination of teleporter system placements that
minimize the total air traffic between the 10 airports.

Preprint submitted to Elsevier December 16, 2019

2. Background

Above is a map of the 10 airports we are using (the circled locations),
which can be represented as a complete graph (pictured on Page 9). Installing
a teleporter system between two airports has the effect of removing the ”edge”
between the two airports and merging the two ”vertices” together. In theory,
this should make the distance between the two airports 0 (though we ran into
a problem with our code with this line of reasoning, which will be explained
later).

There are a lot of assumptions we made when constructing this prob-
lem. Teleportation technology will probably never be implemented in our
lifetimes, so we had to think about what exactly we wanted our teleporters
to do. Because of the seemingly unlimited amount of options we had, the
difficulty of this problem could have been anywhere from extremely easy or
extremely challenging, so we found an appropriate middle ground with one
teleporter system removing one edge from the graph and merging the vertices
it connected. After choosing this option for our teleporters, we had to make
some more assumptions regarding how they would actually operate: We had
to assume that there would never be technical issues with the teleporters,

2

everyone who wanted to travel on a direct route a teleporter system was in-
stalled for could and would use the teleporters for travel rather than flying,
and the normal route a plane took from one airport to another was a straight
line, without any stops or complications.

To solve this problem, we made plentiful use of Dijkstra’s Algorithm,
which was a big concept we were taught in class. Dijkstra’s Algorithm finds
the shortest path from a single source vertex to all of the other vertices in a
graph in a few steps:

1. Assign every node except for the source node a tentative distance value
of infinity, and assign the source node a distance value of 0. Keep track of
all the visited and unvisited nodes in the graph

2. For the current node (we start the algorithm at the source vertex),
look at all of the unvisited neighbors and for each neighbor, find the distance
to the current node and add it to the distance from the current node to the
neighbor. If this is less than the current tentative distance of the neighbor
node, update the tentative distance of the neighbor node with this new value

3. When all of the neighbors of the current node are considered, mark
the current node as visited and remove it from the list of unvisited nodes

4. The unvisited node with the smallest tentative distance is now the
current node. Go back to Step 2 and repeat the process

(Important note: The algorithm is normally finished when the destination
node is marked visited; however, in our problem we don’t have a specific
destination node so we will keep going until every node has been marked
visited)

For each allocation of four teleporter systems, we had to run Dijkstra’s
Algorithm for each vertex in order to calculate the minimum air traffic/edge
weight between all of the vertices, and the minimum air traffic/edge weight
among all of the different allocations of four teleporter systems gives us our
solution. As Dijkstra’s Algorithm is an O(n2) algorithm, we had to limit the
number of airports we could look at and the teleporter systems we could use,
or else our code would take too long to run. This issue is discussed in more
detail further into our report.

3

3. Data Collection

Our data collection proved more difficult than we first imagined- after all,
while distances between airports are easy enough to find online, the number
of passengers traveling those routes are more difficult to secure. The Bureau
of Transportation Statistics in the United States Department of Transporta-
tion was ultimately our most reliable source of passenger data between United
States airports. We used their Airline Origin and Destination Survey, which
is a ten percent sample of all airline tickets processed from participating carri-
ers that discloses the origin and destination airports on a certain passenger’s
ticket, thus revealing their flight path and whether they traveled between two
of the airports included on our graph. Moreover, our sample only included
tickets from the first quarter of 2019.

4

The airports that we chose to included in our graph were the following:
Hartsfield-Jackson Atlanta International Airport (ATL), Los Angeles Inter-
national Airport (LAX), O’Hare International Airport (ORD), Dallas/Fort
Worth International Airport, (DFW), Denver International Airport (DEN),
John F. Kennedy International Airport (JFK), San Francisco International
Airport (SFO), Seattle-Tacoma International Airport (SEA), McCarran In-
ternational Airport (LAS) and Orlando International Airport (MCO). These
are the twelve busiest airports as designated by Federal Aviation Adminis-
tration data, and we decided on ten airports for our study to balance model
run time and regional representation. For our project, we decided to place
teleporters in such a way that they minimized total air traffic- with air traffic
being the product of an airline route’s distance in miles and its number of
passengers along that route. Our data is displayed below.

5

We calculated air traffic by using the passenger and distance statistics
from our Bureau of Transportation Statistics data, creating a 10x10 matrix
that reflected passenger numbers for the air routes in our study. Since we
chose the 10 largest airports in the United States, our airports and flights
formed a complete graph, and all that was left was to ensure that the pas-
sengers on a route from A to B were added to those on a route from B to
A (and vice-versa), as a teleporter system between points A and B would
reduce air traffic equally in each direction. At this stage, we had the input
we needed for our shortest path algorithm- an adjacency matrix, symmetric
on the diagonal, that weighted the edges in our graph based on their air
traffic value (passengers times distance for an air route between two cities).

Obviously, the data we used was not perfect, but rather the best we could
manage for a project with a short time horizon. The Bureau of Transporta-
tion Statistics data was only a ten percent sample of airline tickets from
participating carriers, and when we compared the list of participating carri-
ers to the list of largest air carriers in the United States, 1 large carrier and a
few mid-size carriers were missing. This could certainly account for regional
bias, which seemed evident in two of the airports we studied- JFK and MCO.
JFK is well-known as one of the largest airports in the United States, but
our data showed relatively low passenger numbers, a phenomenon that we
found puzzling. While we originally thought this might be due to JFK pro-
cessing more international flights than other airports, we realized that this
would still be present in our data- if a passenger flew into the United States
through JFK, they would still have to fly somewhere else from JFK, and if

6

this destination were one of our chosen locations, it would still show up in
our study. Another source of variation in our model is the data surrounding
the MCO airport- two of the five busiest airline routes included as edges in
our model featured MCO despite MCO’s status as only the 10th busiest air-
port in the United States (as per FAA data). These are the types of regional
variation that can occur due to sampling preferences, and since we unsure if
the 10 percent sample was truly random or not, we cannot be entirely sure
that our model is unbiased in this way.

Finally, a last weakness of our data is that our air traffic values are quar-
terly in the United States for sample of airline carriers, so it would prove
difficult to convert them to yearly, nation-wide absolutes that convey the
true number of passenger-miles the optimal teleporter placement has saved.
An example of this is that while the ATL-ORD air route is estimated to
serve 2.7 million passengers a year as per the FAA, scaling our data up to a
yearly, 100 percent airline ticket basis still only indicated about 460,000 pas-
sengers along this route. Clearly, there is another scaling factor that must be
applied to account for sample bias here, and without knowing the exact sam-
pling procedure used, it would be foolish to attempt to bring our quarterly,
10 percent sample results up to a yearly, nationwide basis. In essence, while
we have confidence in the values of our data relative to other values in our
data, we would need better data to find the true savings of the teleporters-
the structure of our data lends to more accurate allocation than cost analysis
results.

7

4. Method

4.1. Set Up

As our goal was to minimize air traffic, which factors in frequency of flight
and distance between two airports, by placing a teleporter. We set up the
problem as follows:

• Represent the n airport hubs as nodes, or vertices in a graph.

• Represent the air traffic between two airport hubs as a weighted edge
in a graph.

• If a teleporter is placed between two airport hubs, it reduces the air
traffic of the edge between the two hubs to zero.

• Select up to k edges that will have their air traffic reduced to zero.

• Find the best possible placement of teleporters to minimize total air
traffic.

In this problem, n would be 10, and k would be 4. With graph construction
fit to USA’s landscape, the original complete weighted graph looks like below.

8

Figure 1: Original Complete Weighted Graph

We do not simply reduce the top five edges with most air traffic, but
instead, using the shortest path algorithm and fast machine calculation, we
create all possible instances of original graph with k weighted edges reduced
to zero, and run the algorithm on each instances to deduce the optimal
reduction.

4.2. Approach

We used python to code out the process. First we considered the airports
as nodes that will be represented as columns and rows of adjacency matrix.
Based on the real air traffic data we collected from major airport hubs in the
country, we created a table with weighted number representing the amount
of people traveling between two cities and multiplied that number with the
distance between two cities. Then, we create an n-complete graph, with
each edge between nodes weighted with the traffic number obtained from
the table. From

(
n
2

)
total edges, a teleporter system will erase the weight of

9

the edge connecting two nodes to zero, and total of k edges will have their

weights reduced to zero. Thus
((n

2)
k

)
possibilities of sample graphs that have

unique k edges’ weights reduced to zero will be created.
For each instances of the graphs, we would run the Dijkstra’s Shortest Path
Algorithm for each vertices to all other vertices. We then sum up the value
output from the algorithm for all vertices. This number will represent the
unique instance of graph’s air traffic reduction resulting from the teleporter
placement.

Then take the minimum of the summed up values of all
((n

2)
k

)
instances.

Analyze the result and determine which weighted edge reduction led to the
optimal result.

4.3. Adjustments

While writing out the code, an error occurred where the summed up
output of running the shortest path algorithm for each instance of a graph
returned identical number amongst all instances. Struggling to find out the
cause, we separately ran bits of our codes on much smaller scaled graphs,
and soon found out that our adjacency matrix used for data input caused
unintentional bug. While the air traffic adjacency matrix represented the
same airport to its own as zero, when we reduced certain edges’ air traffic to
zero, the program recognized the reduced edge as infeasible air service. This
caused our program to end up with same instance of graph all the time with
same edges removed all the time. After fixing the issue, the bug disappeared,
and unique results were displayed for each instances of the graph.

10

Library for INT_MAX

import sys

import math

import copy

from itertools import combinations

class Graph():

def __init__(self, vertices):

self.V = vertices

self.graph = [[0 for column in range(vertices)]

for row in range(vertices)]

def printSolution(self, dist):

print("Vertex \tDistance from Source")

for node in range(self.V):

print(node, "\t", dist[node])

A utility function to find the vertex with

minimum distance value, from the set of vertices

not yet included in shortest path tree

def minDistance(self, dist, sptSet):

Initilaize minimum distance for next node

cur_min = sys.maxsize

Search not nearest vertex not in the

shortest path tree

for v in range(self.V):

if dist[v] < cur_min and sptSet[v] == False:

cur_min = dist[v]

min_index = v

return min_index

Funtion that implements Dijkstra’s single source

shortest path algorithm for a graph represented

using adjacency matrix representation

11

def dijkstra(self, src):

dist = [sys.maxsize] * self.V

dist[src] = 0

sptSet = [False] * self.V

for cout in range(self.V):

Pick the minimum distance vertex from

the set of vertices not yet processed.

u is always equal to src in first iteration

u = self.minDistance(dist, sptSet)

Put the minimum distance vertex in the

shotest path tree

sptSet[u] = True

Update dist value of the adjacent vertices

of the picked vertex only if the current

distance is greater than new distance and

the vertex in not in the shotest path tree

for v in range(self.V):

if self.graph[u][v] > 0 and sptSet[v] == False and

dist[v] > dist[u] + self.graph[u][v]:

dist[v] = dist[u] + self.graph[u][v]

#print(sum(dist))

return sum(dist)

Driver program

g = Graph(10)

#12 * 12 matrix

original_graph = [[0, 9910026, 1665288, 2797902, 4400084, 952280,

5102650, 8344441, 5905380, 2756430, 1848345, 666699],

[9910026, 0, 9476480, 5109552, 2852493, 9452690, 1190098,

2619565, 933543, 3467124, 4479221, 5720337],

[1665288, 9476480, 0, 2758078, 3257064, 353502, 7665037,

5274984, 3987529, 3068329, 1549437, 1543024],

[2797902, 5109552, 2758078, 0, 1652498, 1040361, 3361974,

4508102, 3236922, 2984472, 2056370, 3369872],

12

[4400084, 2852493, 3257064, 1652498, 0, 676374, 2956926,

3198860, 1746195, 3090000, 3133157, 2595240],

[952280, 9452690, 353502, 1040361, 676374, 0, 6284735,

3071880, 2880012, 1044384, 3822, 725481],

[5102650, 1190098, 7665037, 3361974, 2956926, 6284735, 0,

1830584, 876852, 1761403, 6005760, 3655740],

[8344441, 2619565, 5274984, 4508102, 3198860, 3071880,

1830584, 0, 1823796, 2025494, 2033355, 2541175],

[5905380, 933543, 3987529, 3236922, 1746195, 2880012,

876852, 1823796, 0, 1068900, 1999800, 4120360],

[2756430, 3467124, 3068329, 2984472, 3090000, 1044384,

1761403, 2025494, 1068900, 0, 1595361, 2171939],

[1848345, 4479221, 1549437, 2056370, 3133157, 3822,

6005760, 2033355, 1999800, 1595361, 0, 1068144],

[666699, 5720337, 1543024, 3369872, 2595240, 725481,

3655740, 2541175, 4120360, 2171939, 1068144, 0]]

g.graph = [[0, 9910026, 1665288, 2797902, 4400084, 952280,

5102650, 8344441, 5905380, 2756430],

[9910026, 0, 9476480, 5109552, 2852493, 9452690, 1190098,

2619565, 933543, 3467124],

[1665288, 9476480, 0, 2758078, 3257064, 353502, 7665037,

5274984, 3987529, 3068329],

[2797902, 5109552, 2758078, 0, 1652498, 1040361, 3361974,

4508102, 3236922, 2984472],

[4400084, 2852493, 3257064, 1652498, 0, 676374, 2956926,

3198860, 1746195, 3090000],

[952280, 9452690, 353502, 1040361, 676374, 0, 6284735,

3071880, 2880012, 1044384],

[5102650, 1190098, 7665037, 3361974, 2956926, 6284735, 0,

1830584, 876852, 1761403],

[8344441, 2619565, 5274984, 4508102, 3198860, 3071880,

1830584, 0, 1823796, 2025494],

[5905380, 933543, 3987529, 3236922, 1746195, 2880012,

876852, 1823796, 0, 1068900],

[2756430, 3467124, 3068329, 2984472, 3090000, 1044384,

1761403, 2025494, 1068900, 0]]

#find all the possible

def find_edge_lists():

13

result = []

for i in range(len(g.graph)):

rowlist = g.graph[i]

for j in range(len(rowlist)):

if i <= j:

continue

else:

result.append([i,j])

return result

def find_teleporter_sets(edge_list):

all_possible_sets = []

comb = combinations(list(range(45)), 4)

for (i,j,k,l) in list(comb):

all_possible_sets.append([edge_list[i], edge_list[j],

edge_list[k], edge_list[l]])

return all_possible_sets

#graph after putting teleporter (edge weights become 0)

def put_teleporters_one_case(teleporter_set):

new_g = Graph(10)

new_g.graph = copy.deepcopy(g.graph)

for teleporter in teleporter_set:

[a, b] = teleporter

new_g.graph[a][b] = 1

new_g.graph[b][a] = 1

return new_g

def compute_total_traffic(graph):

total_traffic = 0

for node in range(len(graph.graph)):

shortest_total_traffic_for_cur_node = graph.dijkstra(node)

total_traffic += shortest_total_traffic_for_cur_node

return total_traffic

def pick_teleporter_location(graph):

edge_list = find_edge_lists()

14

all_teleporter_sets = find_teleporter_sets(edge_list)

curr_min_total_dist = -1

curr_best_teleporter_set = []

best_graph = Graph(10)

for teleporter_set in all_teleporter_sets:

new_graph = put_teleporters_one_case(teleporter_set)

total_dist = compute_total_traffic(new_graph)

if curr_min_total_dist == -1:

curr_min_total_dist = total_dist

curr_best_teleporter_set = teleporter_set

best_graph = new_graph

elif total_dist < curr_min_total_dist:

curr_min_total_dist = total_dist

curr_best_teleporter_set = teleporter_set

best_graph = new_graph

return (curr_best_teleporter_set, curr_min_total_dist, best_graph)

curr_best_teleporter_set, curr_min_total_dist, best_graph =

pick_teleporter_location(g.graph)

print(curr_min_total_dist)

print(curr_best_teleporter_set)

print(best_graph.graph)

5. Result

We determined that adding a teleporter from New York to 4 other lo-
cations resulted in a graph with the least traffic. The following were the
airports that we added a teleporter to from New York:

1. Dallas-Fort Worth

2. Seattle

3. Las Vegas

4. Miami

15

3 Teleporters 4 Teleporters 5 Teleporters
10 Cities Dallas Fort-Worth Dallas Fort-Worth Dallas Fort-Worth

Seattle Seattle Seattle
Las Vegas Las Vegas Las Vegas

Miami Miami
Atlanta

12 Cities Dallas Fort-Worth Dallas Fort-Worth Dallas Fort-Worth
Seattle Seattle Seattle
Las Vegas Las Vegas Las Vegas

Miami Miami
Atlanta

Table 1: Results from running the program on different numbers of teleporters and cities

We also ran our program on 3, 4, and 5 teleporters and achieved similar
results with New York being the airport hub. Additionally, we ran the pro-
gram on 12 cities, adding Newark, NJ, and Charlotte, NC to our previous 10
cities. We achieved the same exact results that we did with 10 cities.

16

6. Conclusion

The results from our algorithm showed us that small changes in the num-
ber of teleporters or cities in the problem don’t have a material effect on the
structure of the results. Namely, our algorithm prioritized New York City
in every scenario we tested, creating a star-shaped pattern of different cities
joining to New York City in order to link cities near and far. This had far-
reaching effects, as when Seattle and Miami were both linked to New York,
people could travel from Seattle to Miami (and vice-versa) in a much-reduced
amount of time (in addition to being able to travel to New York much faster).
This star pattern appears to be the best way to connect cities given the air-
line data and limitations of the problem, and its results in reducing passenger
miles in our model can be seen below:

This table was calculated by iterating through each entry in the following
way: evaluating if there was any way to use any teleporter route to reduce the
distance between two cities, then making the change in distance if possible
or keeping the old distance if there was no teleporter route that reduced
distance between cities. Since the table is symmetric, this only required 45
iterations that got progressively easier as an understanding of the new graph
was developed, but for further applications of our project a new algorithm
would be required to evaluate its effectiveness in the manner we have below.
As discussed, many of the entries in this table are zero- in fact, while 4

17

teleporters guarantee that a minimum of 4 routes will have zero passenger
miles, we achieved 10 routes with zero passenger miles using our shortest
path algorithm. Overall, the reduction in passenger miles was almost seventy
percent, as the edges our algorithm removed were well-trafficked and their
endpoints were central enough to be used to lower other travel distances.

A great question to be asked is what real-world structure our star-shaped
pattern is mimicking- surely, transportation analysts have conducted similar
analysis when new means of transport emerged to make the most of their
implementation. We found that our teleporter placement actually resembles
the hub system used in the airline industry- except that instead of needing
many large hubs to cover the United States on a geographical basis, we only
need one central hub anywhere in the United States (NYC in this case) to
drastically reduced airline transportation requirements.

Finally, what are the applications of this project? Well, aside from tele-
porters actually be invented in the near future, this could be used to approx-
imate any new method of transportation that is sufficiently faster than those
currently in use. While our assumption of a teleporter instantly transporting
a person between two locations regardless of distance is unrealistic, a relax-
ation parameter could be applied to distance graphs instead, and it is likely
that the results would be similar to ours if the technology being introduced
was sufficiently advanced in comparison to the airline industry. If passenger
miles were able to be reduced on a large scale, and their replacement in the
form of new transportation technology was environmentally friendly, then
the application of these results could go a long way towards helping stave off
climate change. According to a study by Ulrike Burkhardt and Lisa Bock
at the Institute of Atmospheric Physics in Germany, aviation is responsible
for about five percent of harmful emissions currently contributing to global
warming, and while air travel is currently considered necessary to a global
society, finding a way to phase it out could benefit everyone long-term.

However, in order to apply our algorithms to larger data sets, there must
be considerations of runtime and an understanding of the resulting limits
inherent in our computational methods.

7. Runtime

7.1. Runtime Analysis

Here is the runtime analysis for our algorithm. We have a complete
graph with n vertices. There are

(
n
2

)
edges in the graph. Let the number of

18

teleporter systems be k. Since each teleporter system eliminates one edge in

the graph, there are a total of
((n

2)
k

)
possibilities. For each possibility, we run

Dijkstra’s Algorithm (with complexity O(n2)) on each vertex to compute
the shortest path problem for that vertex and sum the weights to get the
total traffic. Then we choose the minimum total traffic solution from all the
possibilities. Therefore, the total runtime complexity is O(

((n
2)
k

)
× n× n2) =

O(n3
(
n2

k

)
).

7.2. Runtime Improvement

For each possible set of teleporters (
((n

2)
k

)
in total), we compute the short-

est path problem for each vertex. However, there are repetitive calculations
involved. For example, Dijkstra’s Algorithm will calculate the shortest path
between Node A and every other node in the graph, if Node A is the source
node. However, when we run the algorithm with Node B as the source, we
will calculate the shortest path between Nodes A and B again, thus doing
unnecessary computations. We could resolve this issue by creating an empty
adjacency matrix that stores the values returned by Dijkstra’s Algorithm for
each node pair. By doing this, we could check if the shortest path algorithm
has already been run between two nodes. If it has already been run, then we
can skip the current iteration of Dijkstra’s Algorithm, and if it has not been
run, we can run the algorithm and store the result in the adjacency matrix.
This would therefore reduce runtime significantly.

7.3. Further Considerations

Consider the smallest weight in a graph. It would be highly unlikely to
replace that edge with a teleporter system. In our example, the edge weight
between JFK and Newark is 3822, which is significantly smaller than any
of the other weights. With a small number of teleporters, we can safely
ignore the edges with the smallest weights when finding the combinations
of teleporter sets. However, for a larger number of teleporters, we need to
consider the fact that certain edges, such as those with small weights, could
connect major hubs together. As we eliminate the edges coming out of these
major hubs by adding teleporters, we would significantly increase the weight
of the edge connecting the hubs. This weight could become large enough
that we would need to add a teleporter.

19

