
 
Bus Routine Profit Maximization Problem  
By: Shenhan Fang, Shaojie Zhang, Laura Zhang, Ran Yao 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 



Introduction 

 For students at Carnegie Mellon University, the buses 61A, 61B, 61C, and 61D are most 

commonly used in our everyday life not only because they all have stops at Carnegie Mellon 

University, but they cover districts like Squirrel Hill, Oakland, and Downtown, where most 

students live and hang out. These four types of buses are run by the Pittsburgh Port Authority. 

61A and 61B cover routes from Braddock Hills Shopping Center to Downtown, 61C covers 

routes from McKeesport Transportation Center to Downtown, and 61D covers routes from 

Waterfront to Downtown. Usually, students take either 61A/61B, or 61C/61D because 61A and 

61B go on almost the same routes and 61C and 61D have almost the same routes. For example, if 

a student wants to go see a movie at Waterfront, then he/she could take either 61C or 61D to get 

to the cinema directly, and if a student lives at Squirrel Hill, he/she could take either 61A or 61B 

to go to school. After doing some research, we found out that the Port Authority’s operating cost 

per passenger is $5.79​ ​and each passenger pays a transfer fee of $2.75 for each ride, regardless of 

the length of the ride. And after conducting surveys around CMU, we are positive to say that the 

bus service provided by Pittsburgh Port Authority is very trustworthy and recognized by CMU 

students, and that is why our team find it even more urgent to solve some problems that the 

Pittsburgh Port Authority is facing with these buses. 

  

 

Understanding the current problems 

 First, let us take a closer look at the schedule of these four types of bus. Each schedule 

contains the inbound and outbound routes of the bus. Usually, inbound means the bus’s final 

destination is Downtown Pittsburgh and outbound means the bus goes from Downtown 

Pittsburgh to other districts. Each route contains around 10 stops, and it takes around 40 minutes 

for 61A and 61B to finish one schedule and 50 minutes for 61C and 61D to finish one schedule. 

Sample schedules of the four buses are displayed in the following page [1][2]. 



 

 



 

 

 



Current Issues 

One major issue that Pittsburgh Port Authority faces is about the operating cost per 

passenger and the revenue generated per passenger. Even though Port Authority is supposed to 

provide fixed-time bus services, the buses are almost guaranteed to be off-schedule due to 

unexpected traffic or weather conditions. The frequent off-schedule situation has caused 

inconvenience to students’ daily life, resulting in a large number of students switching to Uber or 

Lyft as their choice of transportation. Under this scenario, Port Authority is losing its customers 

everyday and with the operating cost still remaining the same, the company is not generating as 

much profit as they used to anymore.  

As we proceed with this project, we decide to analyze and optimize Port Authority’s 

current cost/revenue situation. Thus, our research question is: How many buses should Port 

Authority dispatch on the road everyday in order to minimize operating cost and maximize 

revenue generated? For the simplicity of this project, we defined some assumptions and 

constraints as discussed in the “Assumptions” and “Constraints” sections.  

 

 

Possible Solutions 

We break our solutions down into two parts. The first part is “Base Case” and the second                 

part is “Simulation Method”. Within “Base Case”, we explain in detail the simplest case under               

our research question. Graph, formula and real numbers are used here to demonstrate profit              

generated during different time periods. Within “Simulation Method”, we simulate a much more             

complex and close to reality scenario. Based on predefined assumptions and constraints, we             

generate a real-time model where students are being continuously added and buses are             

continuously moving forward from one station to another. With the base case served as a               

foundation, we hope to use this simulation method to create a more realistic model and give                

readers a better idea on how to optimize the number of buses to maximize profit for Port                 

Authority. 

  

 



Base Case 

Since the data set is too large and the variables are too many, we first use a base case to 

present a clear and simplified connections among variables. In the base case, we reduce the 

number of stops to only one stop and types of buses to only one type. To be more specific, in the 

base case we claim that this type of bus only picks up students at one stop. Furthermore, we 

make a few assumptions based on this claim: 

1. The time interval that this type of bus arrives at the bus stop is a fixed ​‘T’​​ minutes, and 

we denote each time interval as T₁, T₂, T₃, …  

2. Every time the bus comes, it picks up a number of students, leaving ​‘H’​​ students at the 

bus station. Since the stop is randomly chosen (i.e., not necessarily the first stop in the 

bus route), the number of students already on the bus variates, hence the number of 

empty seats on the bus variates. So ​H​​ is a random non-negative variable. 

3. The capacity of an empty bus is a fixed ​‘C’​​ (students). 

4. We denote the students’ increase rate at the bus stop as ​‘CR’​​. ​CR​​ is fixed. 

5. Students are willing to wait a fixed ​‘L’ ​​minutes for the bus before they get impatient and 

leave with Uber or Lyft instead of continue waiting at the bus stop. 

6. The fee of each ride is a fixed ​‘d’​​ dollars. 

The graph of the base case sketches as follows: 

 



For the sake of calculation, we assume the students’ coming rate to the bust stop is 2                 

students/min, student’s maximum willingness to wait is 10 minutes, the length of each time              

interval is 20 minutes, bus capacity is 15 students, fee for each ride is $1.  

During the first 10 minutes, the student coming rate is 2 students/min. And after 10               

minutes, students start to leave with Uber, so the student coming rate and leaving rate cancel off                 

with each other. Hence the slope becomes 0. At the end of T₁=20 minutes, the bus comes and                  

picks up 15 students, leaving 10*2-15=5 students at the bus station. Therefore, the student              

increase rate at the bus stop CR₂ at second interval is CR₁ from the previous period less the                  

student leaving rate equals . And the loop stops when H is nonpositive,   R₁ ₁/(L ₁)C − H − H          

meaning the students at the bus stop are all picked up by the bus. 

During T₁,  

₁ R apacity 0 5  studentsH = C * L − c = 2 * 1 − 1 = 5

rof it in(capacity, CR₁ ) $1 in(15, 0) 15p = m  * L *  = m 2 * 1 = $  

During T₂, 

;R₂ R₁ ₁/(L ₁) /(10 )  students/minC = C − H − H = 2 − 5 − 5 = 1

, meaning all the students can be picked₂ R₂ apacity 0 5  studentsH = C * L − c = 1 * 1 − 1 =  − 5         

up by the bus and there are still 5 seats empty ; 

.rof it in(capacity, CR₂ ) $1 in(15, 0) 10p = m  * L *  = m 1 * 1 = $  

 

Now that we have explained the base case, and before we move onto the more complicated                

simulation method, the readers need to understand the assumptions and constraints that we based              

our simulation model on. 

 

 

Assumptions 

 In order to make the problem more realistic and closer to the real life situation, but at the 

same time not too complicated for us to simulate, we make some assumptions to the problem. 

The first such assumption is about the route. Taking into account of the fact that the buses go 

through CMU like 61ABCD, we think of the bus routes of type A and B the same and the bus 



route of the type C and D the same. And we also take into account that buses ABCD all share the 

same routes in part of their itinerary. So our design of the route is as such: 15 stations in total, 

where all of ABCD buses cover the same first 10 stations and they go separate ways after the 10​th 

station, where buses AB go to the same last 5 stations while CD go to the other 5 stations. And 

the route is circular, meaning that after each of the buses finish their 15-station route, they will 

complete their itinerary by going back to station one and then keep going. Also we make the 

capacity assumption for different type of buses. Unlike in the base case where we had no 

capacity roof for buses, we set the capacity of buses A and B at 40 students per bus. Similarly, 

the capacity of type C and D has a 55 students limit. It is also important to note that the bus 

service is only provided for students. In other words, only CMU students take these buses. 

One of the most complicated assumptions we make for the problem is that the intervals 

between each stations are different while the buses all travel in the same speed. To break it 

down, this means that to travel from station 1 to station 2, buses ABCD will spend the same 

amount of time but the travel time between stations 1 and 2 is different from that between station 

2 and 3. We randomly generate the intervals between the stations by time. So it could be like that 

the interval between station 1 and 2 is 3 minutes while the interval between station 3 and 4 is 6 

minutes. We do realize that this is basically ignoring the speed limits and traffic, but if you think 

about the Pittsburgh traffic, it really is not that bad. This assumption also entailed that the time 

each bus spend at the stations can be ignored. We also assume that at the beginning, one single 

bus is “generated” randomly every 10 minutes from the start station. 

The next assumption we make is about the student. We assume every minute, at each 

station, 3 more students show up to wait for the bus. This is probably a dialed up parameter in 

the sense that on average in real life, the student coming rate at each station should be less than 

3. Also, there are tricky cases where one student may have to change a bus at some point in order 

to make the final destination. For example, they might get off of bus A at some point to wait for 

but C. And in this case, they abandon their original student ID we assigned to the student when 

they got on to bus A and they acquire a new student ID when they get on to bus C. 

  

 



Constraints 

 The followings are the constraints given to our problem in order to do the simulation. We 

try to keep in mind the fact that this problem should be solvable and that the results should make 

sense as well as being economically feasible. The first constraint we introduce is that each 

student has a different destination which we will pick randomly. The reason why this is a 

constraint and not an assumption is that this limits the bus choice for a student. And another 

constraint is that the operation cost of each bus is 300 dollars per day, including the payment for 

the driver and the cost of fuel. Since we are only trying to figure out the number of buses that 

will maximize our revenue, we don’t want to consider too many buses, say like 100 buses goes 

around in Pittsburgh every day is just too much for this city. So we consider up to 50 buses. And 

we consider a time span of 800 minutes for the purpose of our study. Last but not least, we say 

that one student will wait 10 minutes for a bus before he or she run out of patience and leave the 

station and take Uber or Lyft instead. 

 

 

Simulation Method 

To find the bus number that optimizes the total profit, we simulate the real-time situation 

by continuously adding students to each bus stop, moving each bus forward to the next stop, and 

removing students from the bus once they reach their destination. Here we will introduce the 

general code skeleton for our simulation method. In general, we have three helper classes, 

student class​, ​bus class​ and ​stations class​, in which we define the specific parameters and have 

some specific methods. 

  

1.1  Bus Class: 

Each bus object has parameters ​busId​​, ​busType​​, ​capacity​​, ​totalStudents​​, 

stationList​​, ​stationIdx​​, ​atStation​​, ​stationInterval​​ dictionary and ​student 

dictionary. The ​busId​​ is uniquely assigned to each bus, and the ​busType​​ can only be one out 

of the all possible bus types (i.e. [A,B,C,D]). The capacity of bus is assigned corresponding to 

the ​busType​​ (as we stated in the assumption part). The ​stationList​​ defines all the stations 



ID that the bus will visit in its routine and it is ordered by the station ID. For the 

stationList​​, each of the bus will have the same first ten common stations and then the 

remaining 5 stops may differ among different type of buses. For instance, for bus1 of type A we 

have ​bus1.stationList = [0,1,2,3,4,5,6,7,8,9,10,11,12,13,14]​​ and for 

bus2 of type B we have ​bus2.stationList = 

[0,1,2,3,4,5,6,7,8,9,15,16,17,18,19]​​, where the last five elements in the lists 

are different. The ​stationIdx​​ is the index that ​stationList[stationIdx]​​ refers to the 

station ID we are currently at. If the parameter ​atStation​​ is true if a bus in at one station. For 

instance, ​bus2.stationIdx = 11​​, ​bus2.stationList[11] = 15​​, and if 

atStation = True​​, then bus2 is currently at station with station ID 15, otherwise bus2 is in 

the process of moving from station with ID 15 to next station.And the student dictionary has key 

as the student ID and value as student object. 

Because it’s hard to compute the time interval between each station, we randomly 

generate fixed time interval between each stops. And the ​stationIntervalDict​​ has the 

key as the stationed and value as the time taken to transport to next stop. As we assume all 

routines are circular, then for the last stop in the stationList of each bus, the value associated with 

it in the ​stationIntervalDict​​ is the time to go back to initial station 0. Additionally, for 

each bus object, it has method ​station()​​ to return its current station (or the previous station it 

just left) and method ​isNotFullandAtStation​​ returns true when the bus has empty space 

and is currently not in the process of moving to next station. Also, each bus has ​moveBus 

method to move toward next station by decrementing the count in ​stationIntervalDict 

and it also has ​pickUpStudents​​ method to add new student object to its student dictionary. 

 

1.2  Student Class: 

Each student object has parameters: ​studentID​​, ​buses​​, ​timeArrival​​ and 

numStopsToDestination​​. As stated in assumption part, we assume the student ID for each 

student is unique. The buses parameter defines the ​busType​​ that the student can actually take in 

an array. For instance, if a student can only take bus A and bus B, then the buses parameter will 

be [A,B]. The ​numStopsToDestination​​ defines the number of stops the student need to 



stop by before they get off the bus. For instance, if ​numStopsToDestination = 1​​, then 

the student will get off the bus at the next station. For each student, the most important method is 

needGetOff​​ function, which checks whether the student has reached his/her final destination. 

Since it’s hard for us to collect the real-life data, we have a function 

generateRandomStudent​​ to generate student object with ​studentId​​ and 

timeArrival​​ as input. And we randomly choose number between 1 and (total number of 

stops  - 1) as ​numStopstoDestination​​ and randomly select the ​busType​​ the student can 

take. 

 

1.3  Station Class: 

Each station object has ​stationID​​ and ​student​​ dictionary as parameters. And for 

each station, we have ​addStudent​​ method to add a student coming to the station into the 

corresponding ​student​​ dictionary. Similarly, we have a ​removeStudent​​ method to remove 

the given student object from the ​student​​ dictionary. 

 

1.4  Main Class: 

Here is pseudocode of our main function, where we iteratively to try different number of 

buses using the simulation method: 

 



Result Analysis 

As stated in our research question, we want to optimize the number of buses to use every 

day in order to maximize profit. Note that here profit refers to revenue generated from students 

paying to get on the bus minus the fixed operating cost of the bus per day. In the following part 

of this section, we present two result plots demonstrating how profit change according to the 

different number of buses used. As a reminder, our simulation is based on the following main 

assumptions: 

(1) Total time span we study is 800 minutes 

(2) Each student pay a fixed fee of $3 to get on the bus 

(3) Each bus has a fixed operating cost of $300 per day 

  
 Now we look at the profit chart for profits against number of buses. 
 

 



The above two plots are generated from running the simulation twice. Notice that the 
y-axis indicating the profit are quite different in range from the plot on the top to the one on the 
bottom. There are two reasons for this discrepancy in the amount of profit generated. 

(1)  Since the design of our model largely depends on randomly picking parameters, the 
results of one simulation run could be very different from another run of the simulation. 

(2) Potential profit depends on the ​numStopToDestination​​ parameter within the 
student class, i.e. how many stops a student still has until he/she reaches the final 
destination. In this case, when ​numStopToDestination​​ is larger, this means that the 
bus would pick up fewer students along the way, thus leading to less profit. 

(3) Potential profit also depends on the travel time interval between two adjacent stops. If the 
travel time interval is smaller, then buses move to the next station faster, the amount of 
students who switch to Uber or Lyft will be smaller, hence leading to more profit. 
 
Other than the fact that the two plots display quite different y-axis ranges, we observe 

that the general trends of both plots are quite similar. Profit starts off low when only a small 
number of buses are used (less than 5 buses), but then profit starts to increase as we use more 
buses. There is a certain amount of fluctuations in the plots, but in general, we can see that the 
trends display an upward shift, indicating an increase in profit as we use more buses.  

Looking at the two plots together, we conclude that the most amount of profit will be 
achieved by using 40-50 buses on the road per day.  

 
 

Future Plans 

Although we are able to determine the range of the number of buses to use to maximize 

profit, our whole model and simulation are based on heavy assumptions, constraints and 

simplification of the real-world problem. The real problem that Port Authority faces regarding 

operating cost and revenue takes into account real-time traffic situations. During rush hours, the 

buses are almost guaranteed to be late and that is why we often see huge amount of students 

waiting for the buses between 5pm and 6pm everyday.  

A more realistic and well-defined model can be included into our future research plans by 

contacting Port Authority, getting real data on the amount of people who ride 61ABCD 

everyday, calculating the average time that buses move from one station to another and so on…  

Overall, our solution demonstrates that the Pittsburgh Port Authority bus service can 

potentially be optimized to benefit both the customers and Port Authority itself. With the optimal 



number of buses on the road everyday, students’ waiting time can be shortened and the 

maximum profit can be ensured for Port Authority.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



References 

[1] Sample bus schedule for 61A and 61B. Retrieved from 

http://www.portauthority.org/rt/61a.pdf 

[2] Sample bus schedule for 61C and 61D. Retrieved from 

http://www.portauthority.org/rt/61c.pdf 

 

 

http://www.portauthority.org/rt/61a.pdf
http://www.portauthority.org/rt/61c.pdf

