
Classroom Assignment to Minimize Vacancy in Classes

Bryan Ding, Sahil Abraham, Jordan Klodowski, Foster Boales

December 17, 2018

1 Introduction

A common dilemma for Carnegie Mellon students when registering for classes is the inevitability of
facing long waitlists. For both the students and the departments, it becomes an unpleasant scenario
when classrooms are assigned suboptimally to the demand met by the students. For instance, it
would be unwise to have a classroom assignment where the capacity of the room is far smaller than
the amount of students wishing to take the course, and likewise, it would also be unwise to have
a classroom where the amount of empty seats greatly exceed the number of students registered
for the course. Our goal is to find a way to minimize waitlist lengths for classes, by optimizing
the amount of students placed into a room for a course, and by minimizing the number of classes
with multiple empty seats. If we can use large and small classrooms optimally so that we eliminate
as many empty seats as possible while still getting everyone into their desired courses, we could
potentially minimize the number of students on waitlists across campus by a considerable degree.
We will accomplish this by assigning classes to rooms based on room capacity, time availability for
each classroom, and student demand for each individual course.

2 Model Assumptions

To approach this problem, there are several important assumptions we need to make. Although
not all are realistic, the assumptions provide us a reasonable framework to work under. The
assumptions are as follows:

1. Each class can have more than 1 lecture, but we disregard recitations.

2. Departments do not hold priorities over specific rooms.

3. Walking distance is negligible. That is, we do not need to worry about walking across buildings
while deciding an assignment.

4. Time is measured from 0 to 13, where 0 represents 8:30 AM to 9:30 AM and 13 represents
9:30 PM to 10:30 PM.

5. Every class is only one hour to make up for the fact that some classes are 50 minutes, which
is slightly less than an hour, and some classes are 80 minutes, which is slightly over an hour.

These assumptions could be loosely modified to adapt to different situations, but for now, this is a
framework we will use to construct a simple, yet informative, model.

1



3 Objective Function

Our problem is essentially an integer linear programming problem. The variables that we need to
have are

• Course x.

• Classroom k.

• Capacity of classroom k: Ak.

• Course capacity of course x: Cx.

Furthermore, we have the following variable to account for courses taking place in a certain class-
room:

yk,x =

{
1 if course x happens in room k,

0 else.

Our problem is thus:

Minimize
∑
k

∑
x

yk,x(Ak − Cx)

subjected to
∑
k

yk,x = 1 for all x

Cxyk,x ≤ Akyk,x for all x, k,∑
x

yk,x ≤ 13 for all k.

It is important to note that the time constraint t is not directly inputted into the formulation.
This is because we can solve this problem for one particular time and then apply it generally. Also
note that we do not have a variable for students, because the actual student is not important in
the formulation; we only care about the classroom size and the course capacity.

4 Explaining the Constraints

First, observe what we are trying to minimize. We want to minimize∑
k

∑
x

yk,x(Ak − Cx),

because this expression ensures that we are subtracting the capacity of a course from its classroom
capacity. This is multiplied by the indicator variable yk,x because we do not want to consider
courses that do not occur in rooms at a certain time. By summing over k and x, we efficiently
manage to consider all possible combinations of courses and classrooms for a particular time slot.

The first constraint we have is that∑
k

yk,x = 1 for all x.

2



This constraint ensures that we can match a course with an appropriate classroom at a given time.
The second constraint we have is that

Cxyk,x ≤ Akyk,x for all x, k.

This is necessary because we want to ensure that the actual course capacity of a certain class does
not exceed the actual classroom capacity.

The final constraint we have is that∑
x

yk,x ≤ 13 for all x.

This is necessary to ensure that the total number of courses in one day does not exceed 13, which
is the same as the number of hours in one academic day. (We assume that 0 ≤ t ≤ 13, where t = 0
corresponds to 8:30 AM to 9:30 AM and t = 13 corresponds to 9:30 PM to 10:30 PM).

5 Solving the Problem

We will solve the problem of assigning Spring 2019 math courses. To solve this problem, we take
two approaches. For the first approach, we can use the Greedy Algorithm to assign courses to
classrooms with the closest capacities. However, in the Greedy Algorithm we will allow rooms to
be assigned multiple times to different courses. The goal of this is so we can see that if we had
access to any classroom at any time, which classroom would be best suited to which class. Of
course, this by itself is not enough, because in real life, courses are assigned at different times. We
will then complement this by applying the Hungarian Algorithm on subsets of the data with their
respective matchings obtained from the Greedy Algorithm to assign a maximum of ten courses with
each time.

5.1 Greedy Algorithm

To apply the Greedy Algorithm, we rank all the classroom and course capacities and start assigning
them based on how well their capacities match. We will do this for the Department of Mathematical
Sciences as an example, and we will try to impose the following constraints in our Greedy Algorithm:

1. To reduce walking distance as much as possible, we will try to assign math courses to buildings
as close to Wean Hall as possible, if not in Wean Hall itself. The actual student schedule will
vary based on their choice of courses, but by assigning as many math courses in Wean Hall
as possible, we can reduce congestion in the center of the campus when students are moving
between classes. We rank the order of the buildings based on their approximity to Wean Hall
as follows:

(a) Wean Hall.

(b) Doherty Hall.

(c) Porter Hall.

(d) Baker Hall.

(e) Hamerschlag Hall.

(f) Gates-Hillman Center.

(g) Posner Hall.

3



(h) Margaret Morrison Hall.

(i) Scaife Hall.

It is important to note that in our assignment, we prioritize matching classrooms with courses
with similar capacity sizes over the actual location of the classroom.

2. We will also forsake recitations attached to math courses and focus only on the lectures.

3. For realistic purposes, we will try to limit our time from 8:30 AM to 4:30 PM. We can have
multiple courses at the same time, but likewise so can other departments, so we will make
the assumption that we cannot have more than 10 courses at any given time.

Using Excel, we can rank classrooms by their capacities. Figure 1 below shows the top 20 class-
rooms/lecture halls with the most capacities.

Figure 1: The top 20 classrooms/lecture halls with the largest capacities.

Figure 2 below shows the top 20 math courses with the largest capacities:

4



Figure 2: The top 20 math courses with the largest capacities.

We now apply the Greedy Algorithm. One particular matching is given as follows:

5



6



Figure 3: Courses matched with classrooms with closest capacities. The fourth column indicates
if the classroom perfectly matches the capacities needed for the course.

There are a few interesting remarks about the Greedy Algorithm and its solution. First, with the
Greedy Algorithm, there is no need for backtracking. The moment we find an applicable room, we
immediately assign it. We see that the course with the highest capacity is 21-270, and the room
with the closest size capacity is Posner 160. This by default means that we do not consider any
classroom/lecture hall that has a higher capacity than that of Posner 160. We also notice that
there are many rooms repeated. This comes naturally from the fact that many courses might have
set course capacities, and as such, there are specific rooms that specifically suit those capacities. To
offset the fact that many of these rooms are shared across different courses, it becomes important
to allocate a time for each of them such that none of them overlap. To do that, we will implement
the Hungarian Algorithm to allocate the classrooms with their respective courses.

7



5.2 The Hungarian Algorithm

The Hungarian Algorithm is a particular method for solving assignment problems. We have found
which courses are best associated with which classrooms. The question now is to assign a subset of
these courses with times such that there is no overlap between classrooms. We make the following
assumptions about our model:

1. Classes with multiple lectures will not take place during the same time. This is a realistic
assumption to make scheduling-wise if we want students to have more options in terms of
scheduling their classes. (Hence, for instance, 21-122 has two lectures, but we will not include
both of them during the same hour).

2. We have a maximum of ten math courses at any given time, with 5 of them at most being
lecture halls (i.e. at least 90 students in the classroom). This is another realistic assumption
to make since we don’t want to put too many courses that require lecture halls at once.

Let us consider a subset of the courses in the math department for our first iteration of the Hun-
garian Algorithm. Suppose we consider

{21-270, 21-122 A, 21-127 A, 21-256 A, 21-259 A 21-325, 21-329, 21-341, 21-344, 21-355 A}

for time t = 1. We will also consider an arbitrary subset of the classrooms that we deem are
“reasonable” for this subset of classes:

{POS 160, WEH 7500, BH A51, DH A302, POS A35}∪
{BH 235A, BH 235B, BH 237B, BH 255A, SH 220}.

Then by applying the Hungarian Algorithm, our matrix for the 5 lecture halls would look like
20 0 0 0 0
30 0 0 0 0
60 30 24 12 24
60 30 24 12 24
60 30 24 12 24

 .

The rows are the courses 21-270, 21-122 A, 21-127 A, 21-256 A, and 21-259 A respectively, and the
columns are the classrooms POS 160, WEH 7500, BH A51, DH A302, and POS A35, respectively.

By applying the algorithm, we get that the optimal assignment at time 1 is
20 0 0 0 0
30 0 0 0 0
60 30 24 12 24
60 30 24 12 24
60 30 24 12 24

 ,

where the numbers bolded are the rooms selected. Hence, we would assign 21-270 to POS 160,
21-122 A to WEH 7500, 21-256 A to BH A51, and 21-259 A to POS A35.

To assign the non-lecture hall classes we follow a near identical procedure. Our matrix for the
5 classes 21-325, 21-329, 21-341, 21-344, and 21-355 A alongside the rooms BH 235A, BH 235B,
BH 237B, BH 255A, SH 220 would be 

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

 .

8



Notice that this solution appears to be “trivial” since all five classrooms match the course capacities
perfectly. Hence, it becomes obvious that a solution is

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

 .

We can repeat this for every instance by selecting up to 5 lecture halls arbitrarily and up to 5
smaller courses. We then proceed by picking reasonable classrooms for them to be assigned to by
the Hungarian Algorithm. Our results are:

9



Figure 4: Results from the Hungarian Algorithm.

6 Conclusions

There are several conclusions that we can draw from this. First, we notice that in the math
department, there is no need for any course to assign a classroom larger than Posner 160 (i.e.
there is no need to assign Doherty 2210, Doherty 2315, Gates 4401, or Porter 100). Of course,

10



this seems a bit arbitrary because we need to have data on other departments and how they would
like to assign classes. Another important conclusion is that we do not necessarily need to have 10
courses at every time. In fact, doing that would lead to a suboptimal assignment of classrooms
because many courses, especially the graduate-level ones, have similar capacities so we would prefer
spreading these courses across different times rather than having them all at once. Finally, a very
important conclusion is that our Greedy Algorithm was quite efficient in matching courses with
classrooms. We saw above that courses assigned with the Greedy Algorithm led to a lot of perfect
matches, especially for courses with capacities fewer than 48. It is thus not surprising that when
we applied the Hungarian Algorithm to these courses, a lot of wastage is actually 0. This hints
that this is indeed an optimal assignment.

7 Future Studies

Of course, we have only applied this algorithm to one department within Carnegie Mellon University.
For this to be more realistic, we would have to apply this to every single department by looking
at every single course and every single possible time. Doing this will require more work, but given
that we have completed a draft of our project with one department, the next step would be to
expand our course choices. It is also important to note that our Hungarian Algorithm was rather
arbitrary in terms of courses selected. This can also be perfected once we have more courses across
departments so we can better assign our classrooms. Lastly, there are other rooms that are not
being considered in this project, namely ones that are reserved by the math department such as
Wean 7201, Wean 8201, and Wean 8220. These rooms are often used by the math department, but
since they are reserved only for the math department, we might not be able to include them in a
more generalized implementation of this project.

8 References

https://www.cmu.edu/es/docs/classrooms.pdf

https://enr-apps.as.cmu.edu/open/SOC/SOCServlet

http://www.hungarianalgorithm.com/index.php

11


