21-393 OPERATIONS RESEARCH II GROUP PROJECT

WALMART SUPPLY CHAIN
MANAGEMENT

December 16, 2018

Chaoran Jin
David Liu
Jessica Liu
Anny Yang

1. Abstract

In this paper, we will study the optimal ordering strategy for Walmart e-commerce to
minimize the total cost of ordering and storing their products. The key factors we aim
to optimize is the Days on Hand and level of inventory per order.

2. Introduction

(a)

Background, keywords and definitions

As one of America’s largest multinational retail corporation, Walmart sells around
35 million products on its online store. It is obvious that not all products get or-
dered by customers at the same frequency. For example, furniture is ordered
online way less than toys and games are, Walmart tries to keep as many of prod-
ucts sold online in stock as possible to improve customer experience. This leads
to the problem that we would like to discuss in our study.

Before we dive into the problem, we would like to introduce the following terms
that we will use in this paper:

i. Days on Hand (DOH): describes the number of days on average a product
stay in inventory until it is sold.

ii. Cube on Hand (COH): describes the space on average a product needs in
storage before it is sold.

iii. Stock Keeping Unit (SKU): is a billable product often displayed in a way that
helps track the item for inventory.

Note that DOH and COH are closely tied together. SKUs that have smaller DOH
do not necessarily have a cheap inventory cost since they may have large COH
that increases inventory cost.

Overall, we are interested in how to optimize DOH to reduce total inventory cost.
For our study, we would like to focus on products that have > 67 DOH. We would
like focus on these SKUs to investigate on whether it is possible to reduce the
DOH of these products. Since it is still a broad question, we will narrow down
the problem more in the following section.

In this study, We will investigate how to optimize the DOH in order to minimize
the overall costs of these SKUs.

The problem we face and its significance

The total inventory cost of a product is determined by many factors, major ones
being the COH and DOH of the product.We would not go into details on how

COH and DOH affect total inventory cost, instead we will work with the inventory
cost as function of COH and DOH.

Generally, the COH of a SKU is fixed and unchangeable since it denotes the space
a product takes in storage. COH could only be altered if we could change the
physical shape or the packaging of a product, which is not feasible in most cases.
Therefore, to reduce total inventory, we must look into optimizing DOH.

Cube on Hand by Category from SKUs(DOH>67 Days)

140,000 80%
70%

120,000
60%

100,000

80,000

60,000

40%

30%
40,000 20%
20,000 10%

0 . 0%

BABY

USEHOLD

HC

MENS APPAREL

KITCHEN BED AND

CHILDRENS APPAREL
JEWELRY AND.

z
z
§

Based on the graph, top 4 categories occupied 70% of space. Figuring out how
optimizing DOH for these 4 categories will give us an important insight on how
optimizing DOH would help reduce total inventory cost. Therefore for our. study,
we will be focusing on the top 4 categories.

Why does the problem exist

To understand why the problem exist, we need to look at how inventory is acquired
and replenished. There are 5 steps:

i. Network Demand Forecasting

At the first step, Walmart forecasts demand using SIMS forecasting algorithm
for existing items, which takes into consideration demand uncertainty (the
standard deviation).

ii. Ordering Decisions

After forecasting is done, Walmart places orders for a particular service level
to its suppliers. Sometimes these are closely related to the tradeoff between
lost of sales and overstock

iii. Allocation to warehouses

Allocation of SKUs are based on geo location, facility inbound capacity and
facility cube capacity.

iv. Logistics

Logistics takes into account all others contributors such as whether lead time
could be shortened, what is the delivery speed, and what is transportation
cost.

v. Inventory handling

Finally, everything leads to the problem we care the most about: inventory
handling.

Now that we’ve understood the problem, its existence and its significance, we can move
on to the next section where we model the problem.

3. Modelling
(a) Overview

We learned four different models of inventory control in class, each with slight
variations from one another. For this research, we will use Model 2 and Model 4
as references to build our model for Walmart.

Model 2
-A
Q<
T2
/_H
T }S

We are using Model 2 to simulate each product. Each product has demand A
units per period. There is a fixed cost A for each order and the cost of storing
the product is I per unit per period. Each product is allowed to go out of stock
and the cost of back order is 7 per period. As suggested by the illustration above,
@ is the order quantity per period. T; is the number of days on hand. 75 is the
number of days that the product goes out of stock. T} + T5 is the interval between
two orders. S is the back order amount.

Now that we have a model for each product, we can build an overall model for
multiple items in Walmart. Let there be n distinct types of product, each with
a different demand \;, A9, ... , A,. Each item follows the Model 2 as described
above. Let Tj be the ordering interval for item j. (), is the order quantity per
period for product j and S; is the is the back order amount per period for item j.

(b) Assumptions

i. We assume that the demand X for each product is constant during each period.

ii. We assume that every item shares the same 77 and 7,. By assuming the same
ordering interval T" for every product, we can minimize the inventory cost as
well as eliminate extra order cost.

iii. We assume that the order cost A is fixed for all orders regardless of the size

of the order or the type of products. Hence it averages out to A/n for each
individual SKU.

iv. We assume that the back order cost 7 is fixed for all orders regardless of the
size of the order or the type of products.

v. We assume that the inventory cost I is the same for all products.

(c) Correlation between terms

T = T1 + T2
Q; = AT

Qj — Sj - /\jTl
Sj —)\jTQ

(d) Problem and Optimization

Let K be the average cost per period
j=1

where K denotes the average cost per period for product j and
A T Q; — 5, T S;
T 2 T

Since the inventory cost [is the same for every product, we can simply analyze
the total cost for one category.

Ty _ Qi—5; Ty _ Sj
Note that T = a and 7 =0

So we can rewrite K; in terms of \;,); and S;, and we have

AN (Q; — S;)? S?
K. = J + 1 J J 4+ J
J an QQ] QQ]
Set
0K, _0K; _
0Q; 0S;

4

and solve the equation

OK; _ AN [(Q; =5, 1(Q; =85> =57

9Q; nQ3 Q 20; 203
OK; _ _2(Qi=8i); 7% _,
8Sj Qj Qj
From equation 2, we have S; = Sﬂ

Plug into equation 1, we have

OK; AN, 1(Q; — 2 Q- 902 p(2g)?

= — + —
0Q; nQ’ Q; 203 2Q3
Q I Q212
_A)\] Ty I? (Q2_2ﬂ—+[+ (71—4_[)) _ w2
nQ3 T+1 203 2(m+1)?
AN I? I I? g wI?

_nQ§+ Al 2 atl 240?22t Ip

AN, TP
n@; 2 2(r+1)

We have that for any category, the optimal); = 4/ %

the optimal S; = ni??ilf)
the optimal T, = /\J = %
J
1 _Q; 2A(m+1)
the optimal T" = —JJ =/ "nts

Thus, the optimal T} =T —T; = 2A(r+D) Vo i‘?i 0 , which is what we want
to find, Days on Hand.

(e) Data set

We are mainly going to be using two CSV files we collected from the Walmart
Oracle Database using SQL. For this research, we limit our model to only the
warehouse in Davenport, FL. (MCO). The first CSV file records all the orders
placed by Walmart and the product and category of that product, and the second
file is similar but with back orders. For each of the two files, the file includes the
name of the product, the category the product belongs to, the date the order was

5

placed, the amount of the order, and the total price of the order. The below chart
is how a generic table would look like.

Product Category Date Amount Price_Total

A Kitchen Bed 11/11/17 37 1299
B Toys and Game 11/11/17 100 756
C Furniture 11/11/17 32 5500
D Baby 11/11/17 200 998

Although we obtained data from Walmart, Walmart asked us to not directly share
raw data, but we can share some of our results.

Problem Solution

In order for us to figure out the solution to the problem, four parameters to
complete the formula provided in the previous modeling section. First, we need
the demand for each product; then we need to figure out the ordering fee and
back ordering fee. Finally, we need to calculate the inventory cost.

i.

ii.

1il.

iv.

Demand

We obtain the demand by first calculating the total duration of days which
the product was ordered (number of days between last day an order was made
and the first day an order was made). Then we calculate the total number
of orders that were made in the duration. Finally, we divide the number of
orders by the number of days to get the average demand per day.

Ordering Fee

In order for us to figure out the ordering fee for each product, we built a
model to initialize the ordering fee to be zero, and loop through new orders
to improve the accuracy of the ordering fee. We look at the next order and
see if the current ordering fee makes sense, if it does, we stop. If it doesn’t,
we update the ordering fee and repeat the process.

Back Ordering Fee

The calculation of the back ordering fee is exactly the same as the calculation
of the ordering fee. We simply need to open the CSV file containing all the
information about back ordering, and the two files are of the same format.

Inventory Cost

Based on the data we got from the Walmart database, there is no way for us
to figure out the inventory cost mathematically, so we did a market research.
We made an educated estimation base on the data and patterns of the back

ordering. Also, we discussed with people in the industry and the flow manager
from the Walmart Davenport warehouse to make a more accurate estimation
about the inventory cost.

(Details on how to figure out the demand, ordering fee, and back ordering fee can
be found in the programming section of the appendix)

In order to simplify the model, we ran our data analysis on only four products
from four categories. We chose the top four categories with the longest Days on
Hand (DOH) so that the reduction of operation cost would be significant. Also,
we chose the one generic product from each categories for the data analysis. The
four categories are Kitchen Bed, Toys and Game, Furniture, and Baby product.

After conducting a data analysis on the CSV files by running some Python pro-
grams, we figured out the fixed order cost A is 51089 dollars, the back order cost
Pi is 7289 dollars. The demands for each of the four product from the four cate-
gories are [17.39, 104.13, 6.22, 257.7] respectively (per day). The inventory cost
I is 12 dollars per product per day, and because there are only four products,
so n = 4. With these information, we have all the parameters for our model.
After adapting the model, we found that the order quantity per period would be
[192.55, 471.2, 115, 741] for each product respectively. The back ordering amount
would be [0, 87, 0, 311] with each product respectively. The 0 means that it
is not necessary to back order those product which makes sense, because of the
nature of the category. Kitchen Bed and Furniture are all products that take a
big amount of space, and not that fluid. From this we can also derive T2, the
number of days the product goes out of stock. T2 = [N/A, 1, N/A, 1.3], and
T, the number of days between orders, [12, 4.6, 21.5, 3.1]. This data also makes
sense, because we order product with a more fluid nature more often, and bigger
product less often. Finally, we can calculate T1, the number of days the product
is on hand. T1 = [12, 3.6, 21.5, 1.8], this is also the optimized number so we can
achieve the minimum operating cost.

4. Other Analysis (concerns not addressed above)

There are a couple assumptions we made in this analysis, that are slightly different
from the real life scenario. First, in the analysis, we derived a fixed ordering cost, back
ordering cost, and inventory cost. However, due to the constraint of the model, we
couldn’t have them varied for each product. Also, based on our analysis, the demand
estimation is linear. In the future, we can do some different analysis to capture the
patterns of demands more accurately. Because of the above two reasons, the analysis
can be more accurate in the future.

5. Further Applications and Variations

Some variations and analysis we can do in the future includes, figuring out the
correlation between the size of the item and the cost of fulfillment (more sizable product

should have a bigger fulfillment cost), looking into the ordering decision and decide
between the trade of of loss of sales and overstocking (maybe it is more cost efficient to
lose some customers to avoid the high overstocking expenses), and peak season analysis.
For example, during holidays like Thanksgiving and Christmas, because of the discount
and deals, the pressure of fulfillment would increase by a huge amount. In the future,
maybe we can do a separate data analysis project to see how peak seasons would
affect the cost of fulfillment and if there are different models more suitable for peak
seasons. Finally, this model is very powerful. The same model works on some other
industries other than warehouse as well. For example, we can adapt our model to study
restaurants, transportation services, real estates and many other more industries. All
these industries have some very similar characteristics, like demand/supply, ordering
cost, inventory costs which all fit the model.

6. Summary

By optimizing in stock quantity, back ordering quantity, inventory days on hand
and some other factors, we are successfully able to reduce fulfillment cost and increase
profit base on our data analysis with Walmart’s Davenport, Florida e-commerce ful-
fillment center. We mainly used inventory model 2 and model 4 which we learned in
class, and ran some Python data analysis model on the data to figure out the optimal
quantity and days on hand for fulfillment. Through this study, we learned a lot more
about the models (2 and 4), parsing large data, and the fact that the cost of fulfillment
depends a lot on the nature of the product.

7. Appendix

numpy np
pandas pd

math
order_file = pd.read_csv("ordering.csv")
order_file = order_file.rename(index=str, columns={"Group": "Category"})

order_file = order_file.where(order_file['Category"'] 'Kitchen Bed'
order_file['Category'l] 'Toys and Game'
order_file['Category'] 'Furnature'
order_filel['Category'] 'Baby"')

products ['productl', 'product2', 'product3', 'product4']

productl = order_file.where(order_file['Product'] products[0])
product2 = order_file.where(order_filel'Product'] products[1])

product3 = order_file.where(order_file['Product'] products([2])

product4 = order_file.where(order_file['Product'] products[3])

def num_days(datel, date2):

datel[6:] CENYAGHE

datel[:2] date2[:2]:
(int(date2[3:5]) - int(datel[3:5]))

diff_month int(date2[:2]) int(datel[:2])
datel[:2] date2[:2]

num_days(datel, date2) (30%+diff_month)

diff_yr = int(date2[6:]1) - int(datell6:])
datel[6:] = date2[6:]

num_days(datel, date2) + (365xdiff_yr)

demands = []

start_datel = productl['Date'][0]
end_datel = productl['Date'] [-1]

num_daysl = num_days(start_datel, end_datel)
num_orderl = np.sum(productl['Amount'])

demands. append (num_orderl/num_days1)

start_date2 = product2['Date'][0]
end_date2 = product2['Date'] [-1]

num_days?2 num_days (start_date2, end_date2)
num_order2 = np.sum(product2['Amount'])

demands. append (num_order2/num_days?2)

start_date3 = product3['Date'][0]
end_date3 = product3['Date'][-1]

num_days3 = num_days(start_date3, end_date3)
num_order3 = np.sum(product3['Amount'])

demands.append (num_order3/num_days3)

start_date4 = product4['Date'] [0]
end_date4 product4['Date'][-1]

num_days4 = num_days(start_date4, end_date4)
num_order4 = np.sum(product4['Amount'])

demands.append(num_order4/num_days4)

def find_ordering_fee(product):
ordering_fee 0
val (product[@]['Price_Total'l-ordering_fee) /product[0]['Amount"']

index, row product.iterrows():
index 0:

new = (product[index]['Price_Total'l-ordering_fee)/product[index]['Amount"']

product [index] ['Amount'] product[index-1]['Amount']:

new < val:

val new

ordering_fee 1

product[index] ['Amount'] < product[index-1]['Amount']:

new > val:

val new

ordering_fee

ordering_fee

ordering_fee [find_ordering_fee(productl), find_ordering_fee(product2),
find_ordering_fee(product3), find_ordering_fee(product4)]

backorder_file pd.read_csv("back_ordering.csv")

backorder_file backorder_file.rename(index=str, columns={"Group": "Category"})

backorder_file = backorder_file.where(backorder_file['Category'] 'Kitchen Bed'
backorder_file['Category'l] 'Toys and Game'
backorder_file['Category'l] 'Furnature'
backorder_file['Category'] 'Baby')

back_products ['productl', 'product2', 'product3', 'product4'l]

back_productl backorder_file.where(backorder_file['Product"'] back_products([0])
back_product2 = backorder_file.where(backorder_file['Product'] back_products[1])
back_product3 = backorder_file.where(backorder_filel'Product'] back_products[2])
back_product4 backorder_file.where(backorder_file['Product"'] back_products([3])

backordering_fee [find_ordering_fee(back_productl), find_ordering_fee(back_product2),
find_ordering_fee(back_product3), find_ordering_fee(back_product4)]

sum(ordering_fee) /4
sum(backordering_fee) /4
1000

Qj math.sqrt(2+A+demand [j]+(pi+I)/4/I/pi)
Sj = math.sqrt(2+Axdemand[j]*I/4/pi/(pi+I))
T2 = Sj/demand[j]
T = Qj/demand[j]

10

