
 

 

 

Optimizing The Scheduling of Classes 

Operations Research II, 21-393, Final Project Report 

Brian Brazon, Ryan Chandler, Egan McClave, Christian Schmidt 

December 19th, 2017  

 



Table of Contents 

1 Abstract         ​2 

2 Background of the Problem         ​2 

3 Technical Assumptions         ​3 

4 Data         ​4 

5 Implementation         ​6 

6 Results         ​8 

7 Potential Errors       ​10 

8 Further Improvements       ​10 

9 Conclusions       ​11 

10 References       ​11 

1 



 

 

1 Abstract 

For incoming ​and older ​students alike, navigating through the list of courses that ​are              

offered to create a ​manageable ​schedule can be an extremely daunting task ​. The process of               

scheduling becomes ​especially difficult once you consider all the abstract graduation           

requirements students ​must take in order to receive their degree​. Since students might not even               

be 100% committed to ​the education ​path they originally propose they might have to add several                

other courses in their ​schedule to diversify their options ​. In addition, not all students have an                

advisor that can guide their educational ​experience and provide insightful feedback on potential             

schedules ​. Thus, over the course of this paper we will explore how to optimize the allocation of                 

all necessary classes to graduate for a ​student aiming to earn a Bachelor of Science from the                 

Carnegie Mellon University (CMU) Mellon ​College of Science for Mathematical Sciences with            

a Concentration in Operations Research and Statistics​. This optimized model would primarily be             

minimized in terms of overall difficulty of the schedule​. The rest of the paper will describe the                 

problem at hand, our technical assumptions, ​our approach to the problem, our results, and finally               

future work that could be done ​. 

2 Background of the Problem 

The academic workload provided by CMU is known to be extremely time-consuming,            

due to the rigor of its classes ​. It is not difficult for students to find themselves overwhelmed by                  

the number of hours per week they are spending on their coursework ​. The current degree               

requirements for the Operations ​Research and Statistics concentration demand a student take a             

wide breadth of classes in addition to particular, required classes that define the concentration ​.              

The base of this degree is ​ten mathematical science courses, five statistics courses, and five               

2 



 

courses in economics, business, and computer science, an introductory ​writing course, a general             

computing course, a freshman seminar, and five ENGAGE ​courses that all CMU students must              

take​. In addition to these required courses, for students in MCS, other degree requirements              

include the following electives: five Depth; one Life Science; one Physical Sciences; one             

Mathematics, Statistics and Computer Science; one STEM based; one Cultural and Global            

Understanding; and four Humanities and Social Sciences ​. For each elective group, a list of              

approved classes is provided for a student to select his or her choices ​. Finally, three hundred                

sixty units are necessary to receive a degree​. ​To complete our project we decided to code all of                  

our work in Microsoft Excel and R.  

3 Technical Assumptions 

There were several assumptions that were made to simplify the necessary calculations            

and to simplify our model​. The first assumption was that the difficulty of any one class should be                  

considered consistent across semesters. Our next assumption was to use an average of the              

Faculty Course Evaluation (FCE) data of each class when predicting the amount of time spent on                

a class ​. We further assumed that if the amount of time spent on a class does not appear in the                    

FCE data, then the unit amount of the class will be a viable alternative. Our next assumption was                  

that we would not consider the grade requirements that are detailed in each course description               

when deciding on what classes to put in the schedule​. Probably our biggest assumption was that                

all the classes one needs to take are well documented on the course website and that our own                  

interpretation of the requirements are correct​. Our next assumption was that no classes could              

double count and meet multiple requirements ​. The next two assumptions were that we would              

assume that a student would always be able to register for their desired classes, and that all the                  

classes we suggested to take had no conflicts with one another within the week​. Finally, the last                 

few assumptions that we used were about the specific labeling of classes used for requirements ​.               

We assumed that the list of all classes offered for the History and Social Sciences requirement                

3 



 

would also meet the Cultural and Global Understanding requirement ​. We also assumed that the              

list for STEM and Free elective requirements just primarily include all the courses listed on the                

MCS website and not every class offered by CMU which is how it is currently ​.  

There were also a few simplications that needed to be made in order to make the                

calculations in such a short period of time​. Firstly, we had to not consider classes that were listed                  

as “offered intermittently” from the list of classes that could be taken in a semester​. This would                 

make each class have a designated time of the year for when it is offered and simplify the types                   

of schedules that could be created by the algorithm​. ​The next simplification was that we would                

not consider taking prerequisites classes as potential co-requisites ​. ​This would reduce the            

number of optimal schedules that could be created but it would be easier for the program to                 

handle the calculations ​. 

4 Data 

To run our algorithm we needed several pieces of data about classes offered by CMU ​.               

Specifically, we needed information on the requirement the ​classes meet (label), the number of              

units of the classes, ​the prerequisite classes that must be taken prior, the semester the classes are                 

offered, the hours per week the average ​student spends working for each class and finally the                

total number of students who filled out the course evaluation ​. Most of the required information               

had to be manually inputted into an Excel spreadsheet as there was no easy way to grab                 

information from the Mellon College of Science course catalog ​. The last two pieces of              

information were easily retrievable from the CMU FCE website ​. 

The information that was collected was presented in R as two dataframes ​. The “Courses”              

dataframe represented all the ​important information from the course catalog about the specific             

concentration ​. The “Prereq” column was coded so it could be evaluated with boolean logic and               

simple regex/string search when figuring out if the prerequisite classes have been met. The              

4 



“Time” column of the dataframe was coded so “0” would represent the class only being offered                

in the Fall Semester, “1” for classes only in ​the Spring, and “2” for classes that were offered                  

year-round ​. 

 

Figure 1: Snapshot of “Courses” dataframe 

Labels were based on choices that students are required to make​. For instance, if a class                

is required for graduation and there are no substitutions for the class, then we assign it the label                  

“REQ”​. Any requirement where students have a choice in selecting classes are called alternative              

electives ​. Alternative electives make up a large percentage of the groupings ​. For instance, there              

is a differential equations requirement that must be completed but there is a choice of 3 classes                 

students can choose from​. So we have assigned to these classes the grouping “DQ” (differential               

equations) ​. The remaining labels include: "DM" (Discrete Math), "MAT" (Matrices), "C3" (Calc            

3), "PR" (Probability), "CS" (Computer Science), "EC" (Economics), "DE" (Depth Electives),           

"LS" (Life Sciences), "PS" (Physical Sciences), "CG" (Cultural and Global Understanding),           

"MSC" (Mathematics Statistics and Computer Science) ​. 

The second data frame, “FCE”, represented key information collected from the Faculty            

Course Evaluations ​. The values in the “Difficulty” column was the average of all the hours               

students felt they spent on the coursework for the class from the previous three years ​. We also                 

included the total number of responses as a measure of accuracy of the calculated difficulty ​. ​For                

example, it might not make much sense to consider the difficulty of a class if the total number of                   

responses across three years is less than twenty as the calculated value may not be truly                

representative of the level of work done for the class ​. Within our “FCE” dataframe there are a                 

5 



 

total of 2524 classes, out of 4338 total, with less than twenty responses, and almost half of the                  

2524 classes had at most 5 responses ​. 

 

Figure 2: Snapshot of “FCE” dataframe 

5 Implementation 

We start our algorithm by ​inputting the “suggested schedule” from the Math Department             

website​. All alternative electives were listed as “XX-XXX”, which we left in as a placeholder to                

be replaced by future courses ​.  

 

Figure 3: Snapshot of “suggested schedule” prior to Part I 

Part I of our algorithm then sought to take this (incomplete) suggested schedule and flesh               

it out into a complete, feasible schedule​. All placeholder classes in the suggested schedule were               

to be matched with classes of similar labelings ​. For each alternative elective, we formed a subset                

of all courses that (a) matched the correct labeling, (b) had not yet ​been placed inside of the                  

suggested schedule, and (c) had placed all the prerequisite classes in the ​semesters prior to the                

semester of the current alternative elective placeholder ​. We then took the class from this subset               

6 



with the lowest difficulty and placed ​this course number for the placeholder course number in               

the suggested schedule​. This resulted in a low-difficulty schedule that satisfied all of the              

requirements of the major ​. 

 

Figure 4: Snapshot of “suggested schedule” after Part I 

We then sent this new schedule into Part II of our algorithm, with the goal ​of evening out                  

the difficulties between semesters ​. While the output from Part I did give us a schedule that                

would allow a student to graduate in 4 years, the main problem was ​that some semesters would                 

be vastly more difficult than other schedules ​. To help fix this, for each semester we determined                

was too difficult (in comparison to other semesters), we would try to take a ​single class out and                  

put it into an “easier” semester​. However, we had to make sure that such a change could only                  

happen if it did not violate the unit cap for a semester, and if all prerequisites continued to be                   

met​. We would then continue Part II until we reached a stable point, where we could ​no longer                  

make a change that would improve the difficulty disparities ​. Below is a simplified example              

showing a subset of a schedule before Part II and the same subset after Part II ​. ​As we can see                    

originally, Semester 3 has a far larger total difficulty in comparison to Semester 7​. Thus our                

algorithm attempts to switch classes from Semester 3 to Semester 7​. It will first choose the                

classes with the highest difficulty and attempt to switch it into the other semester (Class E goes                 

into Semester 7) ​. What it then realizes is that this invalidates the ​prerequisite requirements for               

another class in the schedule so this is an invalid move​. Then it attempts to move the next                  

7 



 

highest difficulty class into Semester 7 (Class D goes into Semester 7) ​. This is maintains the                

feasibility of the schedule and the algorithm continues to balance other semesters ​.  

 

Figure 5: Subset of simplified schedule before Part II 

 

 

Figure 6: Same subset as Figure 5, now after Part II 

 

6 Results 

Our completed algorithm provided the ​ ​following schedule, with the sum of difficulties 

followed by the total units for each semester in the parentheses: 

 

8 



Freshman Fall (32, 35) 
Calc I 

Concepts 
EUREKA 
C@CM 

Phage Genomics Research I 

Freshman Spring (46, 52) 
Interp 
15-110 
Calc II 
21-241 

Physics I for Sci Students 
ENGAGE (Service) 

Sophomore Fall (35, 39) 
Discrete Math 

21-268 
Principles of Micro 

Evolution 
ENGAGE (Arts) 

Sophomore Spring (44, 52) 
Managing Across Cultures 

Intro to ODEs 
OR I 

Intro to Accounting 
Global Histories 

Phage Genomics Research II 
ENGAGE (Wellness I) 

Junior Fall (38, 46) 
Numerical Methods 

36-225 
Principles of Macro 

Math Models for Consulting 
World Music 

ENGAGE (Wellness II) 

Junior Spring (46, 51) 

36-226 
36-410 

Operations Management 
Intermediate Micro 

Intro to Gender Studies 
PROPEL 

Senior Fall (36, 46) 
OR II 
36-401 

ENGAGE (Wellness III) 
Supply Chain Management 

Survey of Western Music History 
Stars, Galaxies, and the Universe 

Senior Spring (44, 45) 
36-402 

Intro to Math Finance 
Algebraic Structures 
Intro to Philosophy 

Engineering Stat and Quality Control 

 

This new suggested schedule is very different from the suggested schedule on the CMU              

website​. Regarding the total units distributed over the 8 different semesters, the product of the               

algorithm has distributed them more on the Spring semesters while the original suggested             

schedule has it evenly distributed at around 45 units every semester​. What this leads to is that                 

9 



 

 

some Spring semesters of the new schedule will have a slightly higher difficulty rating but every                

Fall semester of the new schedule will always be easier than originally suggested ​. Additionally,              

on the CMU website the suggested schedule does not take into account the additional courses               

required by CMU like ENGAGE or PROPEL​. ​Overall, this new suggested schedule provides an              

answer as to what classes provide the least workload ​. As an added benefit, it also has a lower                  

difficulty if we were to compare the ordering of the classes suggested by the school to our                 

completed schedule.  

7 Potential Errors 

Because of the assumptions that we’ve made and how we interpreted the problem there              

might be errors associated with our approach ​. Specifically, the schedule that we have generated              

might not be the best because information on the course catalog websites are not clear and not                 

well documented ​. For instance, not every classes listed on the course catalog has the correct               

course prerequisites ​. Additionally, we know that it might be possible to get a better schedule by                

discussing with an advisor to have some classes double count or have classes meet different               

requirements than listed ​. Also, because we ignored the idea of co-requisites there might exist a               

whole set of schedules that have the same minimum difficulty ​. Finally, our current solution to               

the problem should be considered more of a local minimum ​as we start with a feasible schedule                 

and try to develop a better schedule while staying ​ ​within the constraints of the problem ​.  

8 Further Improvements 

If there was more time to work on the project it might have been of interest to add several 

other capabilities into our algorithm ​.​ For example, extending the application of our algorithm to 

other majors not only within CMU but also across different schools ​.​ It might also be of interest 

for some students to create a suggested schedule ​ ​based on other metrics instead of doing amount 

10 



 

 

of time spent on coursework ​. ​For example, a student might want to get a schedule with the 

highest overall teaching score, which is another metric given by the FCE’s ​.​ Additionally, having 

the ability for students to interact with the program through a GUI to select courses they have 

already taken in high school or non-major classes ​ ​they want to add into their schedule ​.​ It would 

also be very important to communicate with the ​ ​school officials so they can update their 

websites to have better documentation on their classes ​.​ Finally, it would be worthwhile to 

develop a method that would determine the absolute minimum ​ ​schedule according to difficulty 

instead of our current approach ​.  

9 Conclusions 

Altogether, the final schedule this method ​produced is one that would offer ​one of the               

least, if not the least, stressful paths offered at CMU ​. If we were to able to resolve some of our                    

assumptions it would be possible to find a more ​realistic version of a feasible and minimum                

difficulty based schedule​. With some adjustments, the code used for this problem could be used               

to find similar schedules for other majors at ​possibly any college. Further focusing of the               

problem would result in an explicitly optimal ​schedule, which then in turn could be used for                

more broad applications ​.  

10 References 

http://coursecatalog ​.​web​.​cmu ​.​edu/melloncollegeofscience/#generaleducationrequirementstext 

http://coursecatalog ​.​web​.​cmu ​.​edu/melloncollegeofscience/departmentofmathematicalsciences/#c
urriculatext 

https://wwws2​.​smartevals ​.​com/reporting/SurveyResults.aspx?srfall=Y&MenuItemID=148 

11 


