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1. Introduction 

 
High Dimension Low Sample Size (HDLSS) statistical analysis is an emerging area of 

significance in multivariate analysis and machine learning, where the dimension of the data d is 

often much larger than that of its sample size n (d >> n).  In particular, classification of HDLSS 

data is especially relevant for in health sciences research, such as genetic micro-array and 

medical imaging analysis, where obtaining a correct diagnosis is often the main goal.   

 

Commonly used classification methods include statistical ones such as logistic regression 

and linear discriminant analysis, as well as machine learning-based ones such as the support 

vector machine (SVM) method.   

 

However, these methods are not immune to the curse of dimensionality.  Moreover, many 
classification methods cannot be employed when there are more variables than samples.  

Therefore before classification methods are applied, HDLSS data are often pre-processed using 

feature selection, the process of selecting a subset of variables relevant to model construction, 

thus reducing dimensionality.   

 

While this can avoid issues such as ‘overfitting’ and increases interpretability of the results, 

it can ignore interdependence between variables commonly seen in biological data.  As a result, 

there are classification methods specifically designed for HDLSS analysis.  The Distance 

Weighted Discrimination (DWD) method is one of them.  Also formulated as an optimization 

problem, it is developed based on SVM and is solvable using an interior-point method call 

Second-Order Cone Programming.   

 

The goal of this project is to try to develop a binary classifier algorithm for a HDLSS 

Parkinson’s Disease speech dataset analyzed in a 2013 research paper.  Without using any 

feature selection methods, we will test out both DWD and SVM to compare classification 

performance between a method optimized for HDLSS analysis and one that is not.  Since the 

algorithm in the original paper involves both feature selection and SVM method, we can 

investigate whether feature selection influences classification performance for this dataset.    

 

 

 

2. Problem Description 

Background 

 

      Parkinson’s disease is degenerative neurological disorder primarily characterized by the 

progressive deterioration of motor functions.  A result of losing motor control over the 

muscles producing speech such as lips and tongue, many Parkinson’s patients experience 

significant vocal impairment and speech difficulties.  Typical symptoms include reduced volume, 

monotonous voice, hoarseness and imprecise articulation. Interestingly, the degree of PD-

induced vocal deficiencies can be assessed with running speech, or sustained vowel phonations.  



The sustained vowel “ahh…” (or /a/) has been sufficient for voice assessment applications to 

assess the degree of PD vocal impairment.   

 

Lee Silverman Voice Treatment (LSVT) Companion is a computerized speech treatment 

program developed to allow Parkinson’s patients to be engaged in a treatment session 

independently.  We would like to develop an algorithm such that using data collected during 

treatment sessions, we can provide instantaneous feedback on whether the subject’s speech is 

considered “acceptable” or “unacceptable”.    

 

In total we have 126 samples obtained from 14 subjects with Parkinson’s Disease (8 

males and 6 females), who had a mean age of 65 and standard deviation of 6.5 years.  For each 

sample, we are given data on 310 dysphonia measures, speech information extracted by speech 

signal processing algorithms, and whether they are considered “acceptable” by clinician.  Note 

that only 42, or a third of the samples are considered acceptable, and the rest considered 

“unacceptable”.   
 

 

Methodology Comparison 

 

Tsanas et al. ‘s model involves selecting a ranked feature subset with the weighted 

feature selection algorithm LOGO (fit locally, think globally), then SVM with a Gaussian radial 

basis kernel as a binary classifier.  Using the top 8 selected features consistently generates a 

mean prediction accuracy rate of around 90% with 10-fold cross validation (113 samples, 13 

test cases).   

 

 In this project, we will apply SVM and DWD on the dataset without any feature 

selection, and compare their 10-fold cross validation performance with that from Tsanas et al’s 

model.  Since the algorithm in the original paper involves both feature selection and SVM 

method, it will also be interesting to see how feature selection influences classification 

performance.  We would also like to investigate how the size of the training sample affect 

HDLSS data classification performance for the two methods.   

 

 

 

3. Classification methods * 

For our proposes we will only discuss 1) binary classification and 2) linear discrimination 

methods, as linear kernels tend to be comparable to non-linear ones in high-dimensional 

settings. 

 

 Define two classes with class label +1 and -1, where +1 denotes “acceptable” and -1 as 

“unacceptable” speech samples.   Let (𝑥𝑖, 𝑦𝑖) , 𝑖 ∈ {1, … , 𝑛} be our training data set, where each 

observation 𝑥𝑖 is a vector of dimension d, and 𝑦𝑖 a class label with 𝑦𝑖 ∈ {−1, +1}.  y is then the 

n-vector of 𝑦𝑖’s.   

 



Let 𝑋 be the 𝑑 ×  𝑛 matrix with n columns of 𝑥𝑖 ’s, and 𝑌 be the 𝑛 × 𝑛 diagonal matrix 

whose diagonal components are components of 𝑦.  If we think of our data as a d-dimensional 

dataspace and 𝑥𝑖
′𝑠 as data points in the space, we want to find a separating hyperplane to keep 

data of the same class on the same side of the plane.  

 

The figure below illustrates a dataset with d=2, n = 30 with 15 points in each class, 

where our hyperplane is a line separating the two classes in a two-dimensional space.  The 

hyperplane is defined by the normal vector 𝑤 ∈ ℝ𝑑 and the position vector 𝛽 ∈ ℝ. 

 

Define the residual of an observation 𝑥𝑖 as 𝑟𝑖̅ = 𝑦𝑖(𝑥𝑖
′𝑤 + 𝛽), which is the distance of 

observation i to the hyperplane.  Note that 𝑟𝑖 is positive when it lies on the side of the plane of 

its class, and is negative when it is misclassified by the defined hyperplane.  We would like to 

choose w and beta such that all 𝑟s are positive.  As such, 𝑟 = 𝑌𝑋′𝑤 + 𝛽𝑦 in matrix notation. 

 

 

Distance Weighted Discrimination 

 

Figure 1. Toy sample illustrating Distance Weighted Discrimination1 
Class +1 data shown as red plus signs, and Class -1 data shown as blue circles. The separating hyperplane is shown as the 

thick dashed line, with the corresponding normal vector shown as the thick solid line. The residuals, 𝑟𝑖 , are the thin 

Lines.. 

  

                                                 
1 Modified from Cime, Addy M. Bolivar, J.S. Marron Comparison of Binary Discrimination Methods for High 

Dimension Low Sample Size Data. Available from 

http://www.stat.rice.edu/~jrojo/PASI/PASI2011/Dr.RojoPasi2011/prgacad/13.pdf 



 

Distance Weighted Discrimination (DWD in the rest of the text) is an optimization 

method designed to minimize the “data piling” issue with various classifiers in HDLSS statistical 

analysis.    

 

DWD aims to maximize the distance of every observation to the separating hyperplane 

by minimizing the sum of the inverse of every residual.  If our data is truly linearly separable, all 𝑟𝑖s 

are positive, and our problem can be formulated as follow: 

 

                          min
𝑟,𝑤,𝛽

  ∑
1

𝑟𝑖𝑖
                      

              

            w.r.t.      𝑟 = 𝑌𝑋′𝑤 + 𝛽𝑦 ≥ 𝑒         (hyperplane correctly separates every observation) 

                         ‖𝑤‖ ≤ 1 

 

 Often our data is not linearly separable (i.e. there does not exist a hyperplane than 

divides our data without misclassifying at least one 𝑥).  In this case we would need to modify 

the problem above because misclassified points would have negative residuals.  We would need 

to introduce an error vector 𝜉 𝜖 ℝ+
𝑛  as our slack variable, such that  𝜉𝑖 = 0 when observation 

xi lies on the proper side of the hyperplane and 𝜉𝑖 = 1 when it lies on the “wrong” side.  We 

also need to introduce a penalty factor 𝐶 > 0 that we need to define ourselves.  Our refined 

residuals are now 𝑟 = 𝑌𝑋′𝑤 + 𝛽𝑦 + 𝜉, and our new problem is now: 

  

                         min
𝑟,𝑤,𝛽,𝜉

  ∑
1

𝑟𝑖
+ 𝐶𝑒′𝜉

𝑖
             

 

             w.r.t.     𝑟̅ = 𝑌𝑋′𝑤 + 𝛽𝑦 + 𝜉 ≥ 𝑒      (penalized residuals greater or equal to 0)  

                         ‖𝑤‖ ≤ 1                                

                         𝜉 ≥ 0                                   (slack variable allows for errors) 

 

 

 Note that with DWD no data points are excluded; it takes all data into consideration 

but gives more significance to those closer to the hyperplane.  

 

 

 

 

Support Vector Machine 

 

Figure 2 shows a toy sample of SVM.  SVM only considers selected points closest to the 

hyperplane called ‘support vectors’, indicated by the black boxes in Figure 2.  Define two 

hyperplanes parallel to the separating hyperplane that intersect the support vectors, shown as 

the two black dashed lines, and define the distance between these hyperplanes as the ‘margin’ δ.  

SVM aims to maximize δ.  In the truly linearly separable case, the problem is formulated as: 

 



 

                 max  δ          
   

            w.r.t.      𝑌𝑋′𝑤 + 𝛽𝑦 ≥  𝛿𝑒    (All observations correctly separated; the closest distance to an   

                                                                   observation of another class is at least 𝛿)                                  

                        ‖𝑤‖ ≤ 1 

 

 

 This is the dual form of the optimization problem.  Note the second constraint is 

quadratic.  Since it is easier to implement quadratic problem with all linear constraints, SVM is 

often reformulate as: 

 

                        min
𝑤,𝛽

   
1

2
‖𝑤‖       

    

          w.r.t.       𝑌𝑋′𝑤 + 𝛽𝑦 ≥ 𝑒,             (hyperplane correctly separates every observation) 

 

 

 

Figure 2. Toy sample illustrating the Support Vector Machine Method.  The separating hyperplane is shown as the thick 

dashed green line, the margin as the thin dashed black line. The support vectors are highlighted with black boxes 

 
 



 

Details can be found in Marron’s paper.  We can modify it for the non-linearly separable 

case as:  

                  min
𝑤,𝛽,𝜉

   
1

2
‖𝑤‖ + 𝐶𝑒′𝜉         

 

           w.r.t.  𝑟̅ = 𝑌𝑋′𝑤 + 𝛽𝑦 + 𝜉 ≥ 𝑒,   
                    𝜉 ≥ 0     
 

 

 

 

4. Mathematical Model (Problem formulation) 

To determine classification performance, we need to randomly select a subset of our data 

as our training sample (size 𝑛𝑡𝑟) and the rest as our testing sample (size 𝑛𝑡𝑠𝑡). We will fit our 

model on the training data, predict responses to our test data, and compare our predicted 

responses to the real responses. 

 

Remember that the both methods require some tuning parameter 𝐶 to start.  Since 

there is no fix way of choosing 𝐶, for each iteration we will try out 10 values of 𝐶 via 10-fold 

cross validation with our training data, and choose the one with the highest accuracy rate. We 

define 𝐶 =  [2−5, 2−
17

5  , … , 22]. 
 

 

Notation 

 

4.1 General Inputs 

• 𝑑:  Number of features/dysphonia measures:  𝑑 = 310 

• 𝑛:  Number of total speech samples: 𝑛 = 126 

o 𝑛𝑡𝑟:  Number of samples in the training set, where 𝑛𝑡𝑟 ϵ {10,20 … ,110,113} 

o 𝑛𝑡𝑠𝑡 :  Number of samples in the testing set, where 𝑛𝑡𝑠𝑡 =  𝑛 −  𝑛𝑡𝑟 

• 𝑋𝑖,𝑗 :  The value of the 𝑖𝑡ℎ feature for of the 𝑗𝑡ℎ sample, where 𝑋 ∈ ℝ𝑑×𝑛  

• 𝐶∗:  The penalty factor for misclassification chosen through 10-fold cross validation, 

where 𝐶∗ ϵ [2−5, 2−
17

5  , … , 22].  
• 𝜉𝑗 :  Indicator of whether the 𝑗𝑡ℎ sample is misclassified,  𝜉𝑗 ϵ {0,1} 

 

4.2 Input Constraints 

 

• Positivity:  𝑛, 𝑛𝑡𝑟 , 𝑛𝑡𝑠𝑡 , 𝑑, 𝐶∗ > 0   

• Residuals are properly penalized: 𝑟̅ = 𝑌𝑋′𝑤 + 𝛽𝑦 + 𝜉 ≥ 𝑒   

• (For DWD only) The separating hyperplane lies between the two classes in every 

dimension: ‖𝑤‖ ≤ 1 



4.3 Response variable  

 

• 𝑦𝑖 : Indicator variable for which class the 𝑖𝑡ℎ observation is assigned to for some 𝑖 ∈
{1, … , 𝑛}, such that: 

      𝑦𝑖 ≔ {
  +1       if "acceptable"; a clinician would allow persisting in speech treatment              

−1      if "unacceptable"; a clinician would not allow persisting in speech treatment 
 

 

Define 𝑌 ∈ ℝ𝑛×𝑛  such that  𝑌𝑖,𝑗 ≔ {
   𝑦𝑖        if i=j             

0       otherwise 
 

 

 

 

5. Analysis  

5.1  Data Pre-Processing 

 

The original response variable 𝑌 with 𝑦𝑖 ∈  {1, 2} for the two classes has been 

transformed such that 𝑦𝑖 ∈  {−1, 1} as defined in section 4 for clarity.   All data are then 

normalized to have a range from -1 to 1 using min-max normalization, with mins and max 

obtained from the training data to prevent our results be dominated by measures with wider 

ranges of possible values.  

 

 Another problem is that only 42, or about a third of our data are considered 

“acceptable”.  This means it is possible that our randomly selected 𝑋𝑡𝑟 contains only data from 

one class when size of the training sample is small (e.g. 𝑛𝑡𝑟 = 10), which makes classification 

impossible.  To prevent this issue, the we developed a “random” data sampler that would 

regenerate samples when either class represent less than 25% of the training sample.  This 

ensures the performance when using smaller training sample sizes is not due to a skewed ratio.  

 

 

5.2 Algorithm 

  

The algorithm is as follow: 

1. “Random” selection. Randomly select sample of size 𝑛𝑡𝑟 as our training data 𝑋𝑡𝑟, and 

rest as our testing data 𝑋𝑡𝑠𝑡.  Divide 𝑌 into 𝑌𝑡𝑟 and 𝑌𝑡𝑠𝑡 accordingly. 

a. Note that for our case 𝑛𝑡𝑠𝑡 = 𝑛 − 𝑛𝑡𝑟 = 126 − 𝑛𝑡𝑟.   

b. To prevent our selected sample to only contain   

2. Normalization.  Apply min-max normalization to both 𝑋𝑡𝑟 and 𝑋𝑡𝑠𝑡 using the mins and 

maxs of each feature in 𝑋𝑡𝑟 to obtain 𝑋𝑡𝑟
𝑁  and 𝑋𝑡𝑠𝑡

𝑁 . 

3. Fit model using DWD.  

a. Use DWD method to fit a model 𝑀𝐷𝑊𝐷 with 𝑋𝑡𝑟
𝑁 , 𝑌𝑡𝑟 and each of the 10 values 

of 𝐶 we initialized.   

b. Using 10-fold cross validation, choose the 𝐶∗ with the highest accuracy rate.  

c. Predict responses to 𝑋𝑡𝑠𝑡 using 𝑀 and 𝐶∗, obtain predicted response 𝑌𝑡𝑠𝑡
′  . 



d. Calculate accuracy rate by comparing 𝑌𝑡𝑠𝑡
′  and 𝑌𝑡𝑠𝑡 . 

4. Fit model using SVM.  Repeat Step 3, but use SVM instead when fitting the model.  

5. Repeat Steps 1 to 4 for100 times. 

6. Calculate mean classification performance and standard error of the mean for each value 

of 𝑛𝑡𝑟. 

 

 

6. Results 

 

Using the algorithm detailed in section 5.2, we calculated the mean prediction accuracy 

rate and its standard error for each sample size to test our classifier performance as detailed in 

the table and graph below.  Error bars indicates standard error of the mean  

 

Figure 3.  Comparison of prediction accuracy rate between DWD and SVM

 
 

 

When the training sample is very small (𝑛𝑡𝑠𝑡 ≤ 30) there is no noticeable difference in 

performance between DWD and SVM.  With accuracy rates of around 69% at 10 samples and 

around 75% at 20 samples, both methods did surprisingly well with a very small training data 

set.   

Interestingly, when sample size exceeds 40 classification performance of SVM is not 

affected by further increases in sample size, plateauing around 80%.   In contrast, the 

performance of DWD continues to improve as number of training points grow, reaching 

89.25% at 110 samples.  DWD outperforms SVM significantly at larger sample sizes, with a 

7.67% difference at 90 samples.  Overall, DWD has a superior performance  

 



Table 1. Classification Performance of DWD and SVM  

# of 

Samples 

DWD SVM 
Accuracy Rate (%) SE Accuracy Rate (%) SE 

10 69.74 0.883 69.22 0.846 

20 74.92 0.852 75.44 0.524 

30 78.66 0.64 78.25 0.552 

40 80.85 0.574 79.19 0.467 

50 82.92 0.541 80.55 0.352 

60 84.15 0.496 80.77 0.488 

70 85.11 0.524 81.2 0.457 

80 86.37 0.499 80.96 0.452 

90 88.31 0.526 80.64 0.494 

100 88.19 0.609 80.88 0.677 

110 89.25 0.8 81.38 0.87 

113 88.62 0.864 82 0.883 

 

 

7. Discussion 

 

Even though our algorithm doesn’t involve feature selection or other dimensionality 

reduction methods, our DWD model achieved an accuracy rate of 88.62% using 10-fold cross 

validation, comparable to the 90% obtained by Tsanas et al.’s two-step model (feature selection, 

then SVM for classification).   

 

Considering that our DWD model does not involve a feature selection process, we can 

assume that it is easier to implement and more computationally efficient than Tsanas’ model.  

However, models with less features are much more interpretable, and thus contains more 
useful information.  By reducing the number of features considered, Tsanas’ model highlights 

the 8 major features that distinguish ‘acceptable’ and ‘unacceptable’ sustained vowel phonations, 

a result that can be potentially be clinically-useful.  With 300+ features, our DWD model 

cannot give us any information on individual features and their contributions to our prediction.   
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