
Cooking Time Optimization on Given Machine Constraints and

Order Constraints

Chi Fang, Guoyi Jiang, Moqing Shi, Ling Xu, Lanxi Zhang

December 17, 2016

2 1 ABSTRACT

1 Abstract

In this project we investigate the problem of how food orders from restaurant customers

should be processed and completed in particular kitchen settings in an optimal way. Our

goal is to minimize the total preparation time for food orders (from when orders come in

to when they are completed) in a realistic kitchen scenario. We explore this problem with

assumptions and constraints with which we can apply Integer Programming techniques and

create cooking guidelines for chefs by makeing sense of our program output. Real life scenario

that we try to duplicate in our program is that the number of kitchen appliances is limited and

the ordering of how each job of each dish should be cooked is pre-determined. We formulate

and conquer the problem with two approaches: the Integer Programming Approach and the

Graph Approach. As a result, the Integer Programming approach guarantees an optimal

solution with respect to given constraints but sacrifices runtime. In contrast, the Graph

approach is easier to set up but becomes costly under large number of tasks and does not

guarantee optimality. In conclusion, the Integer Programming approach is robust even with

complex problems. Based on our minimum time solution, we also try to reduce the number

of chefs needed in the kitchen setting. The result can be used for restaurant owners for

considerations over time and cost. We further extend our Integer Programming approach to

solving other real life scheduling problems.

2 PROBLEM INTRODUCTION 3

2 Problem Introduction

Eating plays a major part in our everyday life. Busy people sometimes find it hard to

manage time for this activity, so they hope either to eat at restaurants that don’t keep them

waiting for too long or to be instructed about how to cook efficiently at home. Either way,

the construction of a procedure guidance that satisfies all operational rules and equipments

availability in a kitchen setting, while at the same time completes dishes as quickly as possibly

is very much needed. In most restaurants, this task is left to experienced chefs to determine.

This worked in the past, but now with more orders coming in everyday and the need to

cut operational costs, some restaurants are seeking for an operational research approach to

solve this problem. With these demands in mind, and in light of the progress achieved in

restaurant industry, we hope to work on the cooking scheduling problem in order to develop

an automated program for constructing efficient procedure guidances.

Formally, the cooking scheduling problem is defined as the process of assigning each

kitchen equipment a specific job in a specific time period that completes orders from cus-

tomers as quickly as possible. The basic goal of a cooking scheduling problem is to minimize

the total time used to cook, subject to kitchen resource constraints and task requirements.

Some resource constraints include kitchen equipment setting, manpower; and some task

requirements include job priority within a dish, dish delivery time, etc.

For our project, we discuss two different approaches to solve this cooking scheduling

problem. One method of finding an optimal solution is to set up linear constraints to

formulate an integer programming problem; the other is a graph approach. We will explain

more in the following sections.

4 3 INTEGER PROGRAMMING APPROACH

3 Integer Programming Approach

3.1 Problem Formulation

3.1.1 Assumption

To reduce the complexity of a real-life problem, we have the following assumptions:

1. We have unlimited number of chefs with equal ability to do all jobs

2. We use natural numbers to represent all the time we need to do jobs (including the

starting time and duration of each job)

3. We ignore the time taken in between different jobs

3.1.2 Problem Settings

Our objective is to schedule each job to each machine in a way that minimizes the

longest running operation.

The basic idea of our integer programming model is as follows.

• We are given recipes for n ∈ N dishes respectively. Each recipe corresponds to only

one dish and specifies how many jobs that dish requires.

• Since different dishes have different number of jobs to be completed, we define j ∈ N

to be the maximal number of jobs among all dishes.

Mathematically, we let j = max
1≤i≤n

{number of jobs in dishi}.

For example, when given two dishes with 5 jobs in dish1 and 7 jobs in dish2, we define

j = max
1≤i≤2

{5, 7} = 7.

• For representation purposes, we let di,j denote the jth of jobs of dish i. So we have

{di,1, di,2, · · · · · · , di,j} for each i ∈ [n].

• We let m ∈ N denote m types of machines in our kitchen setting. Each machine is

assigned with a distinct functionality which is mapped to a limited types of jobs.

For example, a pan can only be used to fry.

• We let ti,j denote the duration of job di,j. Each job di,j must be processed continuously

on its corresponding machine during time ti,j

3 INTEGER PROGRAMMING APPROACH 5

• We let Ti,j denote the starting time of job di,j. Consequently, the end time of job di,j

can be represented as Ti,j + ti,j.

• We let Cmi
denote the capacity of machine mi. The number of jobs each machine mi

can handle at one time is restricted to its capacity Cmi
jobs at a time.

For example, if Cpan = 2, then there are two pans in the kitchen so at most two different

jobs that require a pan can be processed at the same time.

6 3 INTEGER PROGRAMMING APPROACH

3.1.3 Formulation

The Integer Programming model uses variables in the form of xi,j,m,t. Each index of

the variable indicates an attribute The value of each variable is a binary 0/1 value. When

a variable xi,j,m,t is equal to 1, it represents that the job di,j is being operated on machine

m at time t. All variables can be visualized in a matrix with i× j rows and m× t columns

and the first non-zero variable in each row is the starting time Ti,j of the job. Therefore, the

completion time for each job is Ti,j + ti,j as ti,j is the duration (processing time needed) for

job di,j.

Here we take a look at an example:

Figure 1: Visualization of all 0/1 variables in an i× j, m× t matrix.

In Figure 1, since the variable x3,9,3,7 is the first non-zero variable in that row, we know

that the starting time for job 9 of dish 3 is the 7th minute.

Our objective then defined to minimize the maximum completion time Tmax,

min Tmax (1)

where Tmax = max(Ti,j + ti,j) for all i and j ∈ [n].

3 INTEGER PROGRAMMING APPROACH 7

Based on such formulation in the Integer Programming model we are able to specify

constraints in the model, which we will discuss in the next section.

To name a few, for priority constraint, if job di,j1 happens before job di,j2 , we require

the starting time of job di,j2 to be larger than the completion time of job di,j1 :

Ti,j2 > max{Ti,j1}+ ti,j1 (2)

And for machine capacity constraint, the number of jobs being operated on each machine m

should be less than or equal to the capacity Cm at any time:

∑
i

∑
j

xi,j,m,t ≤ Cm for all t (3)

3.2 Constraints and Objective Function

Note that there is no such representation for the starting time of each job Ti,j in

any linear form, so we try to find the corresponding linear version of the original objective

function and constraints without the presence of Ti,j.

We try to find the minimum time needed to complete all dishes. We take the sum of

completing each step sequentially to be the upper bound, and use binary search to find the

first optiomal solution. That is, we run the integer programming solver using a fixed total

completion time at each iteration. If the time provided were too short, any scheduling would

be ”undefined” or infeasible; on the other hand, if the upper bound gives plenty of time,

we find the middle point between upper bound and lower bound and try to find an optimal

solution within half of the previous range. Thus, the minimum completion time that we are

looking for becomes the time at which the first optimal solution come into place.

All constraints formulated using the 0/1 variables are shown as follows:

1. Machine Assignment Constraint

2. Completeness Constraint

3. Machine Capacity Constraint

4. Continuity Constraint

5. Priority Constraint

8 3 INTEGER PROGRAMMING APPROACH

3.2.1 Machine Assignment Constraint

If job di,j is assigned to machine m:∑
t

xi,j,m,t = ti,j for that particular m (4)

3.2.2 Completeness Constraint

Although the relatively local Machine Assignment Constraints have already ensured

that all jobs would be operated and completed by certain machines, we still need the global

Completeness Constraints to prevent a job that has already been finished from being pro-

cessed by another one at a second time:∑
t

xi,j,m,t = ti,j for all i, j and m (5)

3.2.3 Machine Capacity Constraint

Same as equation (3).

3.2.4 Continuity Constraint

In order to make sure that each job is being processed on the assigned machine con-

tinuously, we require:

|xi,j,m,t1 · t1 − xi,j,m,t2 · t2| ≤ ti,j if both xi,j,m,t1 and xi,j,m,t2 = 1 (6)

for each job di,j and its corresponding machines m

However, as mentioned before, in order to be fit into the integer programming model, we

need to convert the constraint into a linear form. Thus, we split the absolute value into

two parts and using a penalty constant M (which should be very large compared to ti,j, i.e.

10000) to limit the power of this constraint only to the case where both xi,j,m,t1 and xi,j,m,t2

equal to 1:

xi,j,m,t2 · t2 − xi,j,m,t1 · t1 ≥ −ti,j −M · xi,j,m,t1 −M · xi,j,m,t2 (7)

and

xi,j,m,t2 · t2 − xi,j,m,t1 · t1 ≤ ti,j + M · xi,j,m,t1 + M · xi,j,m,t2 (8)

for t2 − t1 ≥ ti,j and for each job di,j and its corresponding machines m

3 INTEGER PROGRAMMING APPROACH 9

3.3 Priority Constraint

Since we cannot use the starting time Ti,j1 of job di,j1 and the completion time of job

di,j2 for comparison, we used the midpoint between the starting and ending time for each

job instead: ∑
m

∑
t

xi,j2,m,t · t
ti,j2

−
∑
m

∑
t

xi,j2,m,t · t
ti,j1

≥ ti,j1 + ti,j2
2

(9)

3.4 Case Study

In order to demonstrate the capabilities of the proposed model for the solution of a

real-life cooking scheduling example, we choose an order with three simple dishes. The first

dish is salad, the second dish is steak and the third dish is egg tarts.

We also specify the available kitchen appliances. We have 1 fry pan, 2 sinks, 1 mi-

crowave, 2 cutting boards, 2 boiling pots, 1 oven and 2 bowls in the kitchen setting. The

pan can be used to fry; the sink can be used to wash; the microwave can be used to heat

or defrost things; the cutting board can be used to cut meats or vegetables; the pot can be

used to stew food or boil liquids; the oven can be used to bake; and the bowl is versatile as

it can be used for resting hot food, seasoning, etc.

Note that in the third dish, baking crust and boiling milk and sugar share the same

priority. This means that if we have more than one chef, we can do these two jobs in the

kitchen in parallel, which reduces the total time.

In the following page, Table 1 specifies our kitchen settings and cooking priorities. In

section 3.5 we provide computational results from the optimization process of our model.

10 3 INTEGER PROGRAMMING APPROACH

Table 1: Case Study Example Specification

Time Priority Machine

Dish1: Salad

Wash vegetables 1 min 1st sink

Chop vegetables 1 min 2nd cutting board

Season vegetables 1 min 3rd bowl

Mix vegetables 1 min 4th bowl

Dish2: Steak

Defrost Steak 5 mins 1st microwave

Season Steak 1 min 2nd bowl

Rest Steak 10 mins 3rd bowl

Fry Steak 5 mins 4th pan

Decorate Steak 2 mins 5th cutting board

Chop Steak 1 min 6th cutting board

Dish3: Egg Tart

Mix pie crust 3 mins 1st bowl

Bake crust 10 mins 2nd oven

Boil milk and sugar 5mins 2nd pot

Bake again 5 mins 3rd oven

Rest to cool 2 mins 4th bowl

3 INTEGER PROGRAMMING APPROACH 11

3.5 Computational Results

Status: Optimal

Guidance for dish 1 is the following:

->Wash on sink from time 2 to 3

->Chop on cutting board from time 3 to 4

->Season on bowl from time 4 to 5

->Mix on bowl from time 5 to 6

Guidance for dish 2 is the following:

->Defrost on microwave oven from time 0 to 5

->Season on bowl from time 5 to 6

->Rest on bowl from time 6 to 16

->Fry on pan from time 16 to 21

->Decorate on cutting board from time 21 to 23

->Chop on cutting board from time 23 to 24

Guidance for dish 3 is the following:

->Mix on bowl from time 1 to 4

->Bake on oven from time 4 to 14

->Boil on pot from time 5 to 10

->Bake on oven from time 16 to 21

->Rest on bowl from time 22 to 24

12 4 GRAPH APPROACH

4 Graph Approach

4.1 Graph Setup

To think about the same problem with a different approach, we can consider this same

problem in a graph approach. The main goal for the problem is that we have to finish some

amount of tasks, and we can draw the parallel between finishing these tasks with visiting

nodes in a graph. Therefore, we can set up the nodes in the graph to be the different tasks

we need to finish. For each node, we would have to give the nodes some weight to represent

the amount of time it takes for us to fully visit the node (in parallel to finishing the task).

And the objective for this graph problem would be to finish visiting all the nodes in the

shortest amount of time possible. Notice that this graph problem would be different to a lot

of the other problems in the sense that multiple nodes can be visited at the same time. And

to represent the constraint that job i needs to be done before job j, we can use a directed

edge going from node i into node j to represent that node i has to be visited before node j.

And to impose the constraint with limited machines, we can just specify that some of the

nodes cannot be visited at the same time.

For example, if we look at the salad and egg tart recipe from the previous example

we used for integer programming approach, and to connect the two dishes, we specify that

salad has to be done before the egg tart, we get the following graph:

wash1(1, s) chop1(1, cb) season1(1, b) mix1(1, b)

mix3(3, b)

bake3a(10, o)

boil3(5, p)

bake3b(5, o) rest3(2, b)

4 GRAPH APPROACH 13

As shown above, each of the job for each dish is a node in the graph, for example, wash

1 means the step to wash the vegetable in dish 1 (salad). Since there are two baking steps,

we can represent the one that needs to be done first as bake3a (first baking step in dish 3,

egg tart). The edges in the graph would represent the order constraint, for example there

exists an edge going from wash1 to chop 1 because in the salad recipe, the vegetables need

to be washed before chopped. And there exists an edge going from mix1 to rest3 because we

want dish 1 to be done before dish 3. Moreover, we can label the node with the weight of

the node, which represent how long it takes to finish the node or how long it needs to stay

in the node (the number in the parenthesis). And we can label each node with the machine

it uses (the character in the parenthesis). And our goal to solve this graph would be to visit

every node with the shortest amount of time.

4.2 Graph Solution : Heuristics

4.2.1 Solution

To solve this graph problem from the beginning nodes to the end node by steps, we

need to keep track of two sets at each step: (1) a Working set to keep track of which are

the nodes that we are working on, and (2) a Done set to keep track of the nodes we have

already visited.

We also need to keep track of the time we are at the end of each step. We can divide

every step into two sub steps. For sub-step 1, we try to solve the nodes in the working set.

To do so, we find the node in the working set that has the smallest weights and put it into

the done set, at the same time reduce all the other working nodes’ weight by this smallest

weight. For sub-step 2, we try to add more nodes into our working set. To do so, we look at

all the remaining nodes in the graph (that are not in working or done set), and add them to

the working set if it satisfies 2 conditions:

• Condition 1: all of its previous nodes (define: i is a previous node of j, if there exists

an edge from node i to node j) are in the done set or it does not have a previous node.

• Condition 2 : if it uses machine m, the number of nodes in the working set using

machine m is less than the number of m we own subtracted by 1.

Notice that condition 1 takes care of the Priority constraint, and condition 2 takes care of

14 4 GRAPH APPROACH

the Machine Capacity constraint.

Finally at the end of the step, we increase our current time by the smallest weight.

And we stop this process if and only if all nodes are in the done set.

To solve the above example, we start with set W (the working set, initially empty), set

D (the done set, initially empty) and T (time) = 0. Since not all the nodes are in the done

set. We start with the the first iteration of steps. For sub-step 1, we cannot do anything

since it is empty. For sub-step 2, we can move mix3 and wash1 into the working set since

they do not have previous nodes and they use different machine. So at end of the iteration,

we have W = {mix3, wash1}, D = ∅ and T = 0, and the weights of nodes stay the same.

For the second iteration of the steps, in sub-step 1, we can see that wash1 has weight

1. Therefore, we can add it to the done set. Now, for sub-step 2, we can add chop1 into the

working set because all its previous nodes are in the done set, and again chop1 and mix3 use

different machines. Finally we have to add 1 to T. Therefore at the end of iteration 2, we

have W = {mix3, chop1}, D = {wash1}, and T = 1, and the graph becomes the following

(weight for wash1 becomes 0 and weight for mix3 becomes 2).

wash1(0, s) chop1(1, cb) season1(1, b) mix1(1, b)

mix3(2, b)

bake3a(10, o)

boil3(5, p)

bake3b(5, o) rest3(2, b)

4 GRAPH APPROACH 15

Table 2: Heuristic process

iteration Working set Done set Time

0 {} {} 0

1 {mix3, wash1} {} 0

2 {mix3, chop1} {wash1} 1

3 {mix3, season1} {wash1,chop1} 2

4 {boil3, bake3a, mix1} {mix3,wash1,chop1,season1} 3

5 {boil3, bake3a} {mix3,wash1,chop1,season1, mix1} 4

6 {bake3a} {mix3,boil3,wash1,chop1,season1,mix1} 8

7 {bake3b} {mix3,boil3,bake3a,wash1,chop1,season1,mix1} 13

8 {rest3} {mix3,boil3,bake3a,bake3b,wash1,chop1,season1,mix1} 18

9 {} {mix3,boil3,bake3a,bake3b,rest3,wash1,chop1,season1,mix1} 20

The entire solving steps are shown in the above table.

4.2.2 Future Improvements

The heuristics can be turned into an algorithm that always produces the optimal solu-

tion using dynamic programming. So if we start to solve from the end node, potentially, we

can always get the optimal solution by making the correct decision at every node. However,

for the purpose of this paper, we want to focus on a simple heuristic that’s easy to set up

and solve.

16 5 DISCUSSION

5 Discussion

5.1 Integer Programming Approach

5.1.1 Limited Number of Chefs Scenario

We first start to solve the problem by assuming we have unlimited number of chefs in

the kitchen. However, in real life scenarios, restaurants don’t always have the money to hire

so many chefs. Therefore, we try to find a way to increase total time needed for completing

all dishes, so that we can reduce the number of chefs needed.

As a result, we find out that we only need 1 chef to finish all dishes in our previous

example while increasing 4 minutes in total time. Such result can be used for future ap-

plication. Restaurant owners can use this program to see how much sacrifice will we make

in total completion time in order to reduce the number of chefs needed in the kitchen as a

reference to their business decisions.

5.1.2 Extended Real-world Application: Rio City Cleaning

We extend our model to solve a real-world problem. Consider the post-Olympic period

of this year’s Rio Olympics. After the event, a huge amount of trash was left in stadiums to

be cleaned. From statistics there was totally 488 tons of trash left at site during the event.

The daily cleaning process is extremely costly so we want to minimize the total cleaning

period when finishing up all the trash.

We formulate the problem in a similar way. We collect building capacities and areas

of 6 main stadiums: Basketball gymnasium, natatorium, tennis court, football stadium and

etc. The cleaning tasks of each stadium include (1) garbage collecting, (2) seat cleaning, (3)

garbage sorting and (4) garbage recyling. Their priorities and designated process locations

are assigned for each task. For example, the basketball gymnasium can contain 16, 000

audience and the golf court can contain 20, 000. The total number of workers is fixed and

we also limit the total number of workers working indoors and outdoors, respectively.

From statistics we assume that there can be at most 1000 workers working in stadiums

and 1000 workers in sewage factory. Our result shows that the entire cleaning process can be

finished in 14 days. This is of course an ”lite” version of the real-world problem. Changing

the number of workers and increasing the number of stadiums will let us approximate an

5 DISCUSSION 17

theoretically correct solution for this city cleaning problem.

5.1.3 General Advantages and Disadvantages

• Advantages: Our integer programming approach guarantees an optimal solution, and

can give a clear and humanized cooking step instruction.

• Disadvantages:

1. There are often multiple optimal solutions for the constraints given. For example,

multiple solutions occur when jobs for certain dishes have no priority over one

another so they can be done interchangeably. They can also occur when processing

a ”slow” job takes a long time (e.g. 30 minutes) while processing a ”quick” job

can be done fast (e.g 2 minutes). Thus the fast job can be arranged in parallel:

either at the start, in between, or at the end of that slow job as long as all other

constraints are satisfied. However, the Pulp package for Python that we use for

solving our integer programming model only provides one solution.

2. Runtime: The running time is slow because of the large number of constraints

assigned for the model. For example, the number of Machine Capacity Constraints

is m × t, which is quadratic; the number of Continuity Constraint is
∑t

k=2

(
t
k

)
,

which is exponential; the number of Priority Constraint is at most j × (j − 1)/2,

which is about j2 depending on the value j.

Also, for the binary search process in our example (referring back to section 3.2), it

takes about 4 minutes to complete. But for t = 24, which is the optimal solution,

it only takes about 20 seconds.

5.2 Graph Approach

• Advantages: The advantage of this heuristics is that it’s much easier to set up and

much easier to solve comparing to the integer programming approach. The above

example was solved by hand.

• Disadvantages: The disadvantage of this heuristics is that it does not always give the

optimal solution. Most time as above, it gives a very good solution or sometimes

the optimal solution itself. However, other times, it can perform really badly. The

18 5 DISCUSSION

performance of this algorithm depends on the order we look at nodes when we add

them to our working set. For example, consider the following simple example, assuming

we only have one pan and one bowl,

boil1(1, p) rest1(60, b)

boil2(60, p)

When we are performing the first iteration, if we look at boil1 first, we would add boil1

into our working set first. Then when we look at boil2, we cannot add boil2 to our

working set because there is only one p. If we follow this first iteration, then T = 61.

However, if we look at boil2 first, and add boil2 to our working set, we would have to

wait to perform boil1 , then rest1. In this second case T = 121, which is much worse

than the optimal solution.

6 CONCLUSION 19

6 Conclusion

This paper presents two ways to solve the cooking scheduling problem with multiple

dishes involved. We verified the accuracy of the estimated cooking time and the effectiveness

of our algorithm through the simulation using three dishes, based on the assumption that

we have unlimited numbers of chefs. We then try to reduce the number of chefs needed by

increasing the total completion time. Such result can be used as a reference for restaurant

decision making.

Future research may adopt a genetic algorithm to seek for equivalent optimal solutions

given the solution we get from the Pulp solver. Moreover, we can apply our approach to

other general industrial scheduling problems as we have shown in the Rio city cleaning

example. For example, the industrial production line for automobile involves mainly 4 types

of jobs: producing all components for the car, assembling components, assembling the car,

and decorating the inside and outside of the car. We may consider different types of jobs

in the similar way as different dishes. We also have different kinds of machines in the car

factory which can be formulated in the same way as different kinds of machines in kitchen.

We gather information about how many steps we have in each type of jobs, which machine

and how much time each step needs. Finally we check the priority of each steps. With these

information, we can apply this car production problem to our model and hence optimize the

process.

20 7 APPENDIX

7 Appendix

7.1 Python Code: Integer Programming Approach

1 from pulp import *

2 import sys

3 import time

4

5 def readcsv(filename):
6 data = []

7 for line in open(filename,’r’).readlines():
8 line = line.strip("\r\n")
9 mylist = line.split(’,’)

10 while ’’ in mylist:

11 mylist.remove(’’)
12 data.append(mylist)
13 return data

14

15 def writeFile(filename, contents, mode="wt"):
16 # wt = "write text"

17 with open(filename, mode) as fout:

18 fout.write(contents)
19

20 def addConstraint(j1,j2,prob, j,m,T,t,var):
21 j1-=1
22 j2-=1
23 jt1=T[j1//j][j1%j]
24 jt2=T[j2//j][j2%j]
25 at1=[]
26 at2=[]
27 for col in range(m*t):
28 at1=at1+[(var[j1*m*t+col],-(col%t+1)/float(jt1))]
29 at2=at2+[(var[j2*m*t+col],(col%t+1)/float(jt2))]
30 prob+= LpAffineExpression(at2+at1) >= (jt1+jt2)/2.0
31

32 def maxChef(i,j,m,t,var):
33 cheflist = []

34 for time in range(t):
35 chef = 0

36 for Machine in range(m):
37 if (Machine ==3) or (Machine ==5) or (Machine ==6):
38 cost = 0

39 else:
40 cost = 1

41 for row in range(i*j):
42 chef+=int(var[row*m*t+(Machine-1)*t+time].varValue)*cost
43 cheflist.append(chef)
44 if cheflist!=[]:
45 return max(cheflist)
46 else:

7 APPENDIX 21

47 return

48

49 def LP(i,j,m,T,c,assign,orderc, t, fo,Flag,ChefMax=0):
50 #print(i,j,m)
51 #initialize the problem

52 prob=LpProblem("temp", LpMinimize)
53

54 #dummy objective function
55 prob+=t
56 #initialize the variable name matrix,dim-i*j, m*t

57 var_name=[]
58 for dish_num in range(i):
59 for job in range(j):
60 tmp=[]
61 for mach in range(m):
62 tmp=tmp+[’x%d%d%d%d’%(dish num+1, job+1, mach+1, mt+1) for mt in range(t)]
63 var_name=var_name+[tmp]
64 #constraints for all 0-1 variables, dim-1, i*j*m*t

65 var=[]
66 for row in range(i*j):
67 var = var + [LpVariable(var_name[row][col], lowBound=0, upBound=1, cat=’Integer’) \

68 for col in range(m*t)]

69

70 #machine capacity constraint

71 for col in range(m*t):
72 prob+= lpSum([var[row*m*t+col]] for row in range(i*j)) <= c[col//t]

73

74 M=10000
75 #continuous contraint

76 for row in range(i*j):
77 dt= T[row//j][row%j]
78 if dt>1:

79 for mach in range(m):
80 for length in range(dt, t):
81 for st in range(t-length):
82 sp=row*m*t+mach*t+st
83 ep=sp+length
84 prob+= var[ep]*(ep)-var[sp]*(sp)+1 <= dt+M*(1-var[ep])+M*(1-var[sp])
85 prob+= var[ep]*(ep)-var[sp]*(sp)+1 >= -dt-M*(1-var[ep])-M*(1-var[sp])
86

87 #each job is assigned to a specific machine, according to

88 for row in range(i*j):
89 pos= assign[row//j][row%j]
90 if pos>0:

91 prob+=lpSum(var[row*m*t+(pos-1)*t+col] for col in range(t)) == T[row//j][row%j]
92

93 #orderc

94 for row in range(i*j):
95 for col in range(row+1,i*j):
96 if orderc[row][col]>0:

97 addConstraint(row+1,col+1,prob, j,m,T,t,var)

22 7 APPENDIX

98

99 #each job gets finished once

100 for row in range(i*j):
101 prob+= lpSum([var[row*m*t+col] for col in range(m*t)]) == T[row//j][row%j]
102

103 if Flag:

104 for time in range(t):
105 chef = 0

106 varlist = []

107 for Machine in range(m):
108 if (Machine ==3) or (Machine ==5) or (Machine ==6):
109 cost = 0

110 else:
111 cost = 1

112 # print("cost is ",cost)
113 for row in range(i*j):
114 varlist+=[cost*var[row*m*t+(Machine-1)*t+time]]
115 # print("chef num is:",chef)
116 # print("chef constraint",lpSum(varlist))
117 prob+= lpSum(varlist) < ChefMax

118

119 #prob.writeLP("broke.lp")
120

121 prob.solve()
122

123 # Print the status of the solved LP

124 # print("Status:", LpStatus[prob.status])
125 #writeFile(fo, LpStatus[prob.status]+’\n’)
126

127 output=""
128 for row in range(i*j):
129 for col in range(m*t):
130 currVal = var[row*m*t+col].varValue

131 #print type(currVal), type(currValStr)
132 output=output+str(int(currVal))+’\t’
133 #output+=’\n’
134 #writeFile(fo, output, α’)
135 state = LpStatus[prob.status]

136 return state, output, maxChef(i,j,m,t,var)
137

138 def LPsolver(fn, fs):
139 simpleExData = readcsv(fn)
140

141 nrow = len(simpleExData)
142 if nrow == 0:

143 #print "Workstation Setup And Recipe are Empty!"

144 sys.exit("Workstation Setup And Recipe are Empty!")
145 elif nrow == 1:

146 #print "Recipe Is Empty and WorkStation Setup Is inimcomplete!"

147 sys.exit("Recipe Is Empty and WorkStation Setup Is inimcomplete!")
148 elif nrow == 2:

7 APPENDIX 23

149 #print "Recipe Is Empty!"

150 sys.exit("Recipe Is Empty!")
151 elif not(nrow%3 == 0):
152 #print "False Recipe!"

153 sys.exit("False Recipe!")
154 else:
155 pass

156

157

158 stepDic = {}

159 for line in open(fs, "r"):
160 line = line.strip("\r\n")
161 if line == "fry":

162 stepDic["fry"] = 1

163 elif line == "wash":

164 stepDic["wash"] = 2

165 elif line == "defrost":

166 stepDic["defrost"] = 3

167 elif line =="season":
168 stepDic["season"] = 7

169 elif line =="stew":
170 stepDic["stew"] = 5

171 elif line =="decorate":
172 stepDic["decorate"] = 4

173 elif line =="bake":
174 stepDic["bake"] = 6

175 elif line =="chop":
176 stepDic["chop"] = 4

177 elif line =="mix":
178 stepDic["mix"] = 7

179 elif line == "boil":

180 stepDic["boil"]=5
181 elif line == "rest":

182 stepDic["rest"]= 7

183

184 #number of machines

185 machine=len(simpleExData[0])
186 m = machine

187

188 kitchenDic = {}

189 for i in range(machine):
190 kitchenDic[i+1]=simpleExData[0][i]
191 # print(kitchenDic)
192

193 #number of dish

194 dish = len(simpleExData)//3-1
195 i = dish

196 # print("dish:",i)
197

198 #number of steps for each dish

199 jobs = 0

24 7 APPENDIX

200 for jn in range(dish):
201 if len(simpleExData[jn*3+3])>jobs:
202 jobs = len(simpleExData[jn*3+3])
203

204

205 #time for each job

206 Time=[]
207 for jm in range(dish):
208 timelist = []

209 for ti in range(jobs):
210 if ti>=len(simpleExData[jm*3+4]):
211 timelist.append(0)
212 else:
213 timelist.append(int(simpleExData[jm*3+4][ti]))
214 Time.append(timelist)
215 # print("time for each job",Time)
216 T = Time

217

218 #machine capacity

219 capacity = []

220 for index in range(len(simpleExData[0])):
221 capacity.append(int(simpleExData[1][index]))
222 # print("machine capacity",capacity)
223 c = capacity

224

225 #

226 assign = []

227 for a in range(dish):
228 asslist = []

229 for b in range(jobs):
230 if b>=len(simpleExData[a*3+3]):
231 asslist.append(0)
232 else:
233 asslist.append(stepDic[simpleExData[a*3+3][b]])
234 assign.append(asslist)
235 # print(assign)
236

237 order = []

238 for jm in range(dish):
239 rowOrder = []

240 for ti in range(jobs):
241 if ti>=len(simpleExData[jm*3+5]):
242 rowOrder.append(0)
243 else:
244 rowOrder.append(int(simpleExData[jm*3+5][ti]))
245 order.append(rowOrder)
246 #order matrix, dim-ij*ij

247 orderMatrix = []

248 for j in range(len(order)):
249 for x in range(len(order[0])):
250 comp = order[j][x]

7 APPENDIX 25

251 xthrow = []

252 for k in range(len(order)):
253 for y in range(len(order[0])):
254 if j==k:
255

256 if order[k][y]==0:
257 xthrow.append(0)
258 elif order[j][x] ==0:
259 xthrow.append(0)
260 elif comp<order[k][y]:

261 xthrow.append(1)
262 else:
263 xthrow.append(0)
264 else:
265 xthrow.append(0)
266 orderMatrix.append(xthrow)
267 orderc = orderMatrix

268 j=jobs
269 # print("number of jobs:",j)
270 return (i,j,m,T,c,assign,orderc,simpleExData,kitchenDic)
271

272 def outputG(simpleExData, m, t, jobs, output,kitchenDic,fo):
273 ##output guidance

274 nrow=len(simpleExData)
275 for i in range(3, nrow, 3):
276 new="\nGuidance for dish "+str(i//3)+" is the following: "

277 writeFile(fo,new+’\n’,α’)
278 #print("\nGuidance for dish", i//3, "is the following: ")
279 jobLen = len(simpleExData[i])
280 jobList = simpleExData[i]

281 index = i//3

282 # print index

283 for j in range(jobLen):
284 for k in range(0, m):
285 # print "this is j:", j

286 # print "this is k:", k

287 linenum = (index-1)*jobs + j

288 linelen = 2*m*t

289 # print "this is linenum:", linenum

290 # print "this is linelen:", linelen

291 id1 = linenum*linelen

292 id2 = (linenum+1)*linelen
293 # print "this is id1, id2:", id1, id2

294 suboutput = output[id1:id2]

295 templist = []

296 templist1 = []

297 for mi in range(m):
298 id3 = mi*t*2

299 id4 = (mi+1)*t*2
300 subjob = suboutput[id3:id4]

301 templist2 = []

26 7 APPENDIX

302 tempstr = subjob.replace("\t", "")
303 for istr in tempstr:

304 templist2.append(int(istr))
305

306 templist1.append(sum(templist2))
307 templist2_rev = templist2[::-1]

308

309 for i in templist2:

310 if i == 1:

311 templist.append(templist2.index(i))
312 break

313 for i in templist2_rev:

314 if i == 1:

315 templist.append((len(templist2) - (templist2_rev.index(i))))
316 break

317

318 #templist.append(sum(templist2))
319 #print templist

320 if templist1[k] == 0:

321 continue

322 else:
323 new= "→"+str.capitalize(str(jobList[j]))+’ on\t’+\

324 kitchenDic[k+1]+" from time "+str(templist[0])+\
325 " to "+str(templist[1])
326 writeFile(fo,new+’\n’,α’)
327 #print("→", str.capitalize(str(jobList[j])), "on", kitchenDic[k+1], "from time", templist[0], "to", templist[1])
328 (i,j,m,T,c,assign,orderc,simple,kitchenDic)=LPsolver(’final.csv’, ’step.txt’)
329 maxt=0
330 for dish in range(len(T)):
331 maxt=maxt+sum(T[dish])
332

333 def binarys(fn,fo,fs,lower, upper):
334 flag = False

335 (i,j,m,T,c,assign,orderc,simple,kitchenDic)=LPsolver(fn,fs)
336 if lower>=(upper-1):
337 finalStat,outputFinal,finalChef=LP(i,j,m,T,c,assign,orderc,upper,fo,flag)
338 writeFile(fo,’Status: Optimal\n’)
339 outputG(simple,m,t,j,outputFinal,kitchenDic,fo)
340 return (upper,finalChef)
341 statUpper,outputUpper,upperChef=LP(i,j,m,T,c,assign,orderc,upper,fo,flag)
342 statLower,outputLower,lowerChef=LP(i,j,m,T,c,assign,orderc,lower,fo,flag)
343 print(statUpper,upper)
344

345 mid=int(round(lower+(upper-lower)/2.0))
346 statMidd,outputMidd,midChef = LP(i,j,m,T,c,assign,orderc,mid,fo,flag)
347 if statMidd=="Optimal":
348 return binarys(fn,fo,fs,lower, mid)
349 else:
350 return binarys(fn,fo,fs,mid, upper)
351

352 def linears(fn,fo,fs,lower, upper,ChefMax):

7 APPENDIX 27

353 (i,j,m,T,c,assign,orderc,simple,kitchenDic)=LPsolver(fn,fs)
354 flag = True

355 minimal = lower

356 while minimal<=upper:
357 print("minimal is :", minimal)
358 status,output,chef=LP(i,j,m,T,c,assign,orderc,minimal,fo,flag,ChefMax)
359 if status=="Optimal":
360 return minimal

361 else:
362 minimal+=1
363 return lower

364

365

366 minT = 0

367 start=time.time()
368 (minT,chefNum)=binarys(’final.csv’, ’result.txt’,"step.txt",0,24)
369 finalTime = linears(’final.csv’, ’result.txt’,"step.txt",minT,maxt,chefNum)
370 print("We need at least %d chefs.” %chefNum)
371

372 end=time.time()
373 print("Number of Chef:",chefNum)
374 print("Finished calculation in %d seconds.” %(end−start))
375 print("\n\nAll dishes are prepared and served in", minT, "minutes")

