
A Comparison of Approaches to the Nurse Scheduling Problem

Operations Research II Group 4
Yijing Chen, Andrew Liu, Elizabeth Sciannella, Alice Zhang

December 2016

1 Introduction

We were initially interested in the optimization of hospital functioning. Hospitals are often crowded
and unable to optimally serve patients, thus nurses and doctors often have to work undesirable
shifts. These less-than-ideal working conditions may, in part, contribute to a high nurse turnover
rate, which can potentially impact the average hospital’s profits by $300,000 per year [1]. One way
to improve hospital functioning is to find more optimal schedules of the nurses’ shifts.

Typically, a hospital staff member is assigned the task of scheduling the nurses’ shifts by hand, or
nurses schedule their own shifts, also by hand. The hospital staff may need to frequently create new
schedules to account for holidays, changes in nurses’ availability, or changes in nurses’ preferences.
This process is time-consuming to do manually because the Nurse Scheduling Problem (NSP) is NP-
hard; there are many thousands of possible schedules, and the staff members may even be unable to
determine whether or not there exists a solution at all. An operations research approach to nurse
scheduling would allow hospitals to make better use of these staff members’ time. A computer-
generated schedule may also better satisfy nurses’ preferences and more efficiently utilize hospital
resources.

Hospitals and other industries are already taking steps toward using computers to improve the
scheduling process. The market for scheduling programs has been growing over the past few years.
Some of these programs use Knapsack Solving and Tabu Search, e.g. Computer Aided Rostering
Environment (CARE) [2], while other programs are collaborative schedulers that ask the nurses
to sign onto the program and determine their shifts along with all the other staff members of the
hospital department (e.g. NURSEGRID) [3].

These programs apply operations research ideas to the NSP with the goals of minimizing the
creation time of the schedules and improving schedules for the nursing staff and the hospital overall.
With these goals in mind, in this project, we aim to evaluate two brute-force approaches to the NSP,
Integer Programming and Knapsack, and a heuristic approach, Tabu Search, by comparing their
run times and proximity to optimality. We found that for problems with varying numbers of nurses,
Tabu Search could find near-optimal solutions reasonably quickly, while the brute-force approaches
were already inconveniently slow for problems with around 20 nurses.

1

1.1 Example Nurse Scheduling Problem

Suppose a small hospital is open 9 AM to 6 PM every day and requires the following number of
nurses for every hour of operation:

Hour 9 AM 10 AM 11 AM 12 PM 1 PM 2 PM 3 PM 4 PM 5 PM 6 PM
Required 2 2 2 2 3 3 3 3 2 2

and the following nurses are available on staff, with required hours:

Nurse Minimum Hours Maximum Hours Hourly Wage
Nurses 1 6 8 20
Nurses 2 6 8 30
Nurses 3 6 8 35
Nurses 4 6 10 50

One possible solution that minimizes cost can be represented as follows, where a “1” indicates
that the nurse is on shift:

Hour 9 AM 10 AM 11 AM 12 PM 1 PM 2 PM 3 PM 4 PM 5 PM 6 PM
Nurse 1 1 1 1 1 1 1 1 1
Nurse 2 1 1 1 1 1 1
Nurse 3 1 1 1 1 1 1
Nurse 4 1 1 1 1 1 1

A simple model like this can be hand-computed in little time, but in a real-world example, hos-
pitals are large and have a large number of nurses, and it takes significantly more effort to determine
a feasible solution, let alone an optimal solution.

2 Methods

The NSP can be formulated as an assignment problem, where the aim is to find a minimal-cost
assignment of nurses to shifts, given hard and soft constraints. Hard constraints are constraints that
must be met in order for the solution to be considered feasible. In contrast, soft constraints are
not required for feasibility, but are associated with a penalty incurred to the solution. Because soft
constraints are merely incorporated into the objective function in the form of a “cost,” we largely
ignore soft constraints, and instead focus on hard constraints. In the formulation of our model,
we also make the assumption that nurses are interchangeable with one another. In most hospitals,
nurses’ job requirements are typically the same throughout a department, and in the case that a
nurse in unavailable, the hospital is set up so that there are other nurses who can take over. So, we
believe this is a reasonable assumption.

The hard constraints we focus on are:

1. The hospital requires a certain number of nurses to be on shift for each hour

2. Each nurse must work more than a given minimum number of hours and less than a given
maximum number of hours per day

3. No nurse can cover more than one shift at a time

2

Some definitions:

• A shift is a block of time that represents a minimal period of work for a nurse. For example,
in a setup with three work periods, the shifts may be from 9 AM - 5 PM, 5PM - 1 AM, and 1
AM - 9PM. In our setup, we assumed that nurse scheduling was very flexible, so we consider
a shift to be a 1-hour block, for each hour in a day. (For simplicity, we schedule one day, but
our algorithm/code can easily be scaled to schedule a longer time frame.)

• A pattern is a vector that represents a proposed work schedule for a single nurse. A pattern
has one component for each shift; the ith component of the pattern vector is 1 if the pattern
schedules the nurse to work shift i, and 0 otherwise.

2.1 Equations

Given n nurses, let N1, ..., Nn represent the nurses from 1 to n.

Given m shifts, let R be a vector of length m representing requirements such that R1, ..., Rm repre-
sent the required nurses per shift.

Given ki patterns for nurse Ni:

• Let pi1, ..., pik represent the feasible patterns for that nurse, such that each pij is a vector of
length m.

• Let ci1, ..., cik represent the penalty associated with the corresponding pattern.

Then our system can be expressed as follows:
Optimize

n∑
i=1

k∑
j=1

cijpij

such that
n∑

i=1

k∑
j=1

pij = R

k∑
j=1

pij = 1

pij is integral

Thus, this formulation incorporates the hard constraints outlined on the previous page. Hard con-
straint (1.) is represented by the first constraint in this system, hard constraint (2.) is satisfied
because only feasible patterns pij are considered for each nurse, and hard constraint (3.) is repre-
sented by the second constraint in this system.

3

2.2 Algorithms

2.2.1 Integer Programming

The model can directly represent a mixed-integer programming problem, with pij being the prob-
lem’s indicator variables. Once the model has been formulated, it can be submitted into a linear
programming solver and solved to optimality.

2.2.2 Knapsack

The model can also be formulated as a Multiple-Choice Knapsack Problem, where the knapsack
represents the requirements, and it can be “filled” by selecting one pattern from each nurse. The
model can then be solved to optimality using dynamic programming like the 0-1 Knapsack Problem.

2.2.3 Tabu Search

Instead of optimizing, Tabu Search can be used as a “satisficing” method for determining solutions.
That is, in exchange for not solving to optimality, Tabu Search finds decent solutions much more
quickly than a to-optimality method for larger-scale problems.

Tabu Search is an incremental search algorithm, using the same concept as Local Neighborhood
Search to find feasible solutions. Given an initial solution, the algorithm looks for solutions that
differ only by a single value, and evaluates whether or not these solutions are an improvement upon
the original. The search then accepts the best solution out of these neighboring solutions and repeats
the process.

The primary drawback of standard incremental search algorithms is their tendency to get stuck
at local optima; a local neighborhood search cannot identify better solutions if they exist beyond
its line of sight. In contrast, Tabu Search is resilient to this near-sightedness. If a search iteration
finds a solution at a local optimum, the Tabu Search algorithm is permitted to continue searching
beyond the local optimum by using a list of allowed and disallowed options (called tabus).
Pseudocode:

Create a tabu list T.

Formulate an initial solution S.

While the stopping criterion has not been reached:

If S is a local optimum:

Add S to T.

Collect the neighboring solutions of S acceptable to T.

Set S to be the best solution out of the collected solutions.

Return S.

Tabu Search comes with several shortcomings, however. For instance, Tabu Search requires
an initial solution. It is not hard to determine that a system has a feasible solution, but it can
be impractical to find an initial feasible solution. Some utilizations of Tabu Search either have a
randomized algorithm to determine an initial feasible solution or start Tabu Search using a known
initial feasible solution. However, when these options are impractical or impossible, we can start
from an infeasible solution. If Tabu Search is given a well-defined heuristic, it can find a feasible
solution regardless.

The heuristic itself can be problematic. The penalty defined in optimization algorithms must be
considered as part of the heuristic in Tabu Search, and an alternative heuristic must be used if a
pattern is infeasible. The heuristic must carefully weigh the penalty of feasible solutions so as not
to accept infeasible solutions that would otherwise produce a low penalty. In our implementation,
we reward infeasible patterns if they are close to a feasible solution, and we ensure that the best
infeasible pattern is worse than the worst feasible solution.

4

2.3 Code

We used the Java programming language to implement solutions to the Nurse Scheduling Problem,
using the following interfaces to represent our data:

public interface Pattern extends I t e r a b l e <Integer> {
St r ing UNIT = ”Hour” ;
int SIZE = 24 ; // Can be changed ; 24 here r ep r e s en t s hours per day
int get (int index) ;
void s e t (int index , int value) ;

void add (Pattern addend) ;
Pattern p lus (Pattern addend) ;
void subt rac t (Pattern subtrahend) ;
Pattern minus (Pattern subtrahend) ;

}

public interface Nurse {
boolean hasFeas ib l e (Pattern pattern) ;
double getPenalty (Pattern pattern) ;
public I t e r a b l e <Pattern> pat t e rns () ;

}

public interface So lve r {
Map<Nurse , Pattern> s o l v e (Lis t<Nurse> nurses , Pattern requi rements) ;

}

Extending the definition of “pattern” given earlier, here we define a Pattern as a vector-like data
structure to represent an allocation of nurses to shifts. Each index of the Pattern represents a shift,
and the value at each index represents the number of nurses working that shift. A Pattern can
be used to represent either an individual nurse or the total nurse requirement. For a Pattern that
represents an individual nurse’s feasible pattern, we expect that pattern to have values of only 1 or
0, but for a Pattern representing the requirement R, we expect the Pattern to have many nonzero
entries.

We define a Nurse as a data structure that operates on Pattern instances. Given a particular
Pattern, the Nurse can identify whether the Pattern is feasible for itself and/or what penalty the
Pattern has. In addition, the Nurse can generate all of the Patterns feasible for itself, which the
brute-force solvers use. In our implementation, we have types of Nurses that determine a Pattern’s
feasibility if the Pattern:

• is a single interval of time (e.g., “1 PM - 6 PM,” but not “1 PM - 3 PM, 4 PM - 6 PM”)

• sums to a particular value (quota)

• is in an certain Set of Patterns (in the real world, these will depend on what hours a nurse
can work)

By using this interface, we can create Nurse instances that satisfy arbitrary constraints that can be
used to solve the model.

Then, we can define a Solver as a data structure that operates on a List of Nurse instances and
a Pattern representing requirements, which solves the problem. We implemented a LinearSolver,
KnapsackSolver, and TabuSolver, matching the approaches to the problem as described above.

5

3 Results

The algorithm implementation was executed in Eclipse version Neon using single-threaded versions
of the algorithms on a computer running Windows 10 with an Intel Core i5-3230M processor. We
ran the algorithms on several cases with varying numbers of nurses: 4 nurses as a simple test for
correctness, and 20 nurses as a standard-difficulty NSP problem. We ran the Integer Programming
and Knapsack algorithms to completion 10 times per problem, using the mean of the time taken per
algorithm. Meanwhile, Tabu Search was run using a stopping criterion of 30 seconds of run time.

We found that for the four-nurse case, both the Integer Programming and Knapsack methods
generated the optimal solution in less than one second. The Tabu Search algorithm returned a
suboptimal solution, although the solution was only slightly worse than the optimal one. However,
in the twenty-nurse case, the Knapsack method failed to finish within an hour, while the Integer
Programming method took approximately 10 minutes on average. The Tabu Search again returned
a slightly suboptimal solution.

These results are summarized in the figures below:

Case: Four Nurses
Method Value attained Time taken

Integer Programming 850 (optimal) 0.90sec
Knapsack 850 (optimal) 0.35sec

Tabu Search 880 [30 sec]

Case: Twenty Nurses
Method Value attained Time taken

Integer Programming 4670 (optimal) 585.1sec
Knapsack Did not finish Did not finish

Tabu Search 4945 [30 sec]

We further tested the Integer Programming method to see how the run times grew with the
number of nurses, and the results follow:

4 6 8 10 12 14 16 18 20
0

200

400

600

Number of Nurses

M
ea

n
R

u
n

T
im

e
(s

ec
on

d
s)

Run Times for Integer Programming

It is not surprising that for larger cases (i.e., more nurses), the Tabu Search method is the only
method among the three that can consistently produce near-optimal solutions in a reasonably short

6

amount of time. Each n nurse has potentially 2m patterns, so the asymptotic complexity of brute-
force algorithms (Integer Programming and Knapsack) is O(2mn). In other words, the problem
becomes exponentially longer to process with each new nurse. However, this is not to say that the
other methods should be disregarded. In small cases with few nurses, using the Integer Programming
or Knapsack methods may yield better solutions more quickly than Tabu Search. In addition, some
facilities may opt to choose a slower method if the method can present a better solution than a
faster method can.

4 Discussion

We learned that the best algorithm to use may depend on the staff size of the hospital—smaller staff
sizes would benefit from utilizing the integer programming method, whereas larger staff sizes would
benefit from utilizing the Tabu Search method. The integer programming method will produce an
optimal solution, however, the long run times would be disadvantageous for large hospitals. Using
the Tabu Search method for a short amount of time may not produce the optimal solution, but it is
still reasonable compared to the long run-time of the integer programming algorithm.

We have only run our code with the hard constraints that the pattern must be an interval with a
length between a given minimum and maximum. However, there are many other hard constraints we
could easily incorporate into our code framework by adding more specifications for which Patterns

are feasible and infeasible for each Nurse. For example, we could incorporate times during the day
when certain nurses would be unavailable to work. If we scheduled over a longer period of time, we
could also add the constraint that a nurse cannot work a night shift followed by a morning shift, for
example, since this would lead to the nurse being overworked. Hard constraints such as these could
be easily incorporated into our code. There are also some logistical changes we could make to adapt
to how different hospitals’ scheduling works. This may include incorporating an optional hour-long
break to the nurses’ shifts. Or, we could add a classification of nurses by their type and/or seniority
at the hospital, with different requirements for different classes of nurses. Finally, we could also take
greater consideration of soft constraints, such as how to determine how much penalty to assign for
violations of different nurse preferences.

In the future, this project could be extended to include the testing of other incremental al-
gorithms, such as the genetic algorithm, another common algorithm used to approach the Nurse
Scheduling Problem. In particular, it may be interesting to compare a genetic algorithm with Tabu
Search for large (50+ nurse) problems because for significantly large problems, Tabu Search may fail
to find a global optima. Tabu Search does a fair job of keeping solutions away from local optima,
but with the sheer size of the Nurse Scheduling Problem’s domain and the limits to the length of
the Tabu List, it is still possible to cycle through a set of solutions without improving, since the
algorithm accepts poorer solutions at local optima. However, it might be possible to avoid this issue
by developing a better set of conditions for the Tabu List. So, that may be an area in which to
improve our Tabu Search code for larger problems. We may also look into finding an initial feasible
solution non-incrementally for Tabu Search.

In summary, this project tested the effectiveness of Integer Programming, Knapsack, and Tabu
Search in optimally scheduling nurses. We found that the nurse staff size is a heavy factor in
determining which algorithm is best to use to solve for a schedule. With an increasing nurse staff
size, Tabu Search will provide a near optimal solution in a reasonable time frame. Looking forward,
we designed our code to be highly adaptable to solving many variations of the Nurse Scheduling
Problem.

7

5 Acknowledgements

We were kindly sent a data set from Jen Brunner, a Health Care Operations Professor at Universität
Augsburg, who co-wrote a paper on Physician Scheduling with Jonathan F. Bard and Rainer Kolisch
in 2009 titled “Flexible Shift Scheduling of Physicians.” They were happy to share the data that
they used, which came from a German hospital [5].

References

[1] Hunt, Steven. “Nursing Turnover: Costs, Causes, & Solutions.” SuccessFactors, Inc. 2009.
https://www.nmlegis.gov/lcs/handouts/LHHS%20081312%20NursingTurnover.pdf.

[2] “Care - Computer Aided Rostering Environment.” goweralg.co.uk. Accessed November 22, 2016.
http://www.goweralg.co.uk/care/caredb.htm.

[3] “NurseGrid - Nurse Scheduling, Staffing, and Communication Tools” nursegrid.com. Accessed
November 22, 2016.

[4] Dowsland, Kathryn Anne, and Jonathan Mark Thompson. “Solving a nurse scheduling problem
with knapsacks, networks and tabu search.” Journal of the Operational Research Society 51, no.
7 (2000): 825-833.

[5] Brunner, Jens O., Jonathan F. Bard, and Rainer Kolisch. “Flexible shift scheduling of physi-
cians.” Health Care Management Science 12, no. 3 (2009): 285-305.

[6] Curtois, Tim. “Shift Scheduling Benchmark Instances.” Nottingham.ac.uk. Accessed November
18, 2016. http://www.cs.nott.ac.uk/ psztc/NRP/.

[7] Augustine, Elizabeth, Morgan Faer, Andreas Kavountzis, and Remma Patel. “A Brief Study of
the Nurse Scheduling Problem (NSP).” (2009).

[8] Gondane, Mudra S., and D. R. Zanwar. ”‘Staff Scheduling in Health Care Systems.” IOSR
Journal of Mechanical and Civil Engineering 1 (2012): 28-40.

[9] Shure, Loren. “Generating an Optimal Employee Work Schedule Us-
ing Integer Linear Programming”. MATLAB Central Blogs. 2016.
https://blogs.mathworks.com/loren/2016/01/06/generating-an-optimal-employee-work-
schedule-using-integer-linear-programming/.

8

