

National Basketball Association
Scheduling Simulation

21-393 Final Project, Fall 2016
Shengqi Chai, Yutong Li, Liyunshu Qian, Ming Yang

Department of Mathematics
Carnegie Mellon University

Pittsburgh, PA 15213

Table of Contents

I. Abstract

II. Background and Problem Description

III. Solution

IV. Results

V. Conclusion

VI. Reference

Page 1 of 12

I. Abstract

Sport scheduling is a complex task in the presence of a myriad of conflicting
requirements and preferences. In this work, our primary goal is to find a feasible and
approximately optimal schedule in terms of travel distance for the 30 teams in National
Basketball Association. We focus on the schedule for the regular season, which usually spans
over a 5-month duration. Existing approaches to build a schedule from scratch tends to suffer
from substantial runtime overhead. In particular, it is computationally infeasible to solve the
problem directly using linear programming and constraint programming due to the complicate
formats and rules for NBA scheduling. Thus for the sake of simplification, we adopted
assumptions so that integer programming is applicable. Additionally, we approached the problem
using divide and conquer to reduce computational complexity. Apart from Operations Research
techniques, methods from Machine Learning and Data Collection are also exploited in finding
the solution. Our approach yields reliable schedules in a reasonable runtime, and the algorithm
should be applicable, with slight modifications, to any scheduling problems in single-round robin
or double-round robin fashion.

II. Problem Background

National Basketball Association is the preeminent men’s professional basketball league
in North America, and is widely considered as one of the best basketball leagues in the world. It
now consists of 30 teams, with 29 teams from the United States and 1 team from Canada. The
NBA and its teams earned in excess of $5 billion in revenue in 2015, with a large portion coming
from television networks broadcasting the games and from gates receipts ​1​.

In an official NBA schedule, each team plays 82 games each season, including four

games each against its four in-division opponents (16 games), four games each against six
out-of-division opponents (24 games), three games each against the remaining four
out-of-division opponents (12 games) and two games each against the 15 teams in the opposite
conference (30 games). The four out-of-division opponents that are played three times each are
determined by a five-year rotation.

In addition to this set of hard constraints, NBA schedule needs to be fair to every team.

For example, instances of back-to-back games should be reduced to all-time lows, and either too
many or too few consecutive home or away games in any period is not preferred. The schedule
also needs to account for a range of soft constraints, such as arena availability, broadcasting
preference, and holiday conflicts. In essence, scheduling can have heavy impact on revenues.
Television networks generally require that ‘high-quality’ games to be spread out in the season
and take place on special dates. Having certain rivals with high commercial values, such as

Page 2 of 12

Celtics vs. Lakers or Cavaliers vs. Warriors, play on Thanksgiving Day or Christmas usually
brings a substantial amount of extra profit. Furthermore, in consideration of individual team’s
income from ticket sales and television deals, there should be a reasonable number of home
games on weekends for each team throughout the season.

Professional approaches to NBA scheduling is confidential due to its extremely high

value to the league as well as all the parties affiliated. In fact, the schedule was produced
manually until recent years. In the next section, we will explain our approach to the problem,
which produces a schedule that is fair to every team and meanwhile satisfies as many constraints
as possible.

III. Solution

1. Assumptions and Simplification

Our main objective function is to minimize the total travel distance of all teams, while
maintaining fairness by ensuring that each team will travel similar distances during the season
(e.g. we don’t want some teams to travel 100,000 miles a season while having other teams
traveling only 50,000 miles). Meanwhile, we require the schedule to minimize back-to-back
games and break up consecutive home/away games. Other constraints such as broadcast
requirement or game preference on specific nights are treated as softer constraints that will be
exploited once we have an initial schedule that optimizes our primary objective function.

The official NBA schedule is not symmetric due to the fact that certain teams play

against each other 3 times per season. This can be a real technical difficulty in constructing the
schedule especially in terms of computational complexity. Thus we make assumptions for
simplification that each team plays 4 games each against its in-division opponents (16 games)
and 2 games each against all other opponents (50 games), which total up to 66 games. Under this
assumption, the NBA schedule can be considered as a double-round robin tournament. In other
words, the second half of the schedule is an approximate mirror of the first half (if the Cavaliers
plays the Warriors at home in the first half of the season, then it should play an away game
against the Warriors in the Second half).

Additionally, constructing an initial feasible schedule with 30 teams is computationally

infeasible, as it gives billions of candidates to choose from. Thus, we use divide and conquer to
construct our schedule. In particular, we treat each division as a single team and produce feasible
minimal distance schedule of divisions. We then complete the schedule with specific teams
based on our division schedules. This approach will greatly reduce our computational complexity
so that the schedule can be produced with our algorithm in a relatively short amount of time.

Page 3 of 12

2. Data Collection

Python web-crawlers are created to retrieve information about the location of NBA teams

and distances between all pair of teams from Google Map. We also scrape location coordinates
of all teams in a division, and use the average coordinate to generate distance across divisions ​2​.

3. Approach

3.0 Preliminary

The general idea of our approach is divide and conquer. In particular, we first treat each

of the six NBA divisions as a single team and construct a feasible schedule for division games.
We then expand the schedule by filling in specific teams for cross-division and in-division
games, and perform multiple optimality checks before finalizing the schedule. Before explaining
the detailed approaches to reach our final schedule, we will first define several terms that we will
use throughout the solution.

● Pattern Bits​ are used to denote the position of a certain team in a certain time

slot. Particularly, ‘H’ means that the team plays at home in that time slot and ‘A’
means that the team plays away games in the time slot. Furthermore, we have an
‘I’ bit, which is only defined when we treat division as team. It means that
in-division games are played (teams within that division play against each other)
in that time slot.

● Patterns​ are sequences of pattern bits. Patterns of divisions should contain pattern
bits ‘H’, ‘A’ and ‘I’ while patterns of single team should only have ‘H’ and ‘A’ as
pattern bits. The length of patterns is the number of available time slot in the
schedule.

● Pattern sets​ are sets of feasible patterns. The cardinality of pattern sets equals to
the number of teams.

With these definitions and constructions, we can now proceed on explaining our detailed

solution.

Page 4 of 12

3.1 Step One -- Finding the optimal map for divisions

3.1.1 Find feasible patterns and pattern sets

We use letter ‘A’ through ‘F’ to represent the six NBA divisions. Our goal is to find the
optimal map between letters and the actual divisions. (i.e A maps to Pacific Division, B maps to
Central Division, and so on). To accomplish this, we first generate all feasible patterns for
division A through F. For each feasible pattern, the following conditions are required to be met.

● It contains five ‘H’ bits (because it plays with five other divisions exactly once
each at home), and five ‘A’ bits (because it plays with five other divisions exactly
once each away). In addition, the pattern should contain four ‘I’ bits because
teams within a division plays with other teams four times per season. However,
the ‘I’ bits will only be inserted after we find feasible time tables for the
corresponding pattern sets.

● Without the ‘I’ bits, first half of the pattern should be exact mirror of second half
of the pattern.

● The pattern does not contain at most two consecutive ‘H’ or ‘A’ bits. These
consecutive bits must be broken up by the four ‘I’ bits inserted later.

Note that if division E is playing division B at home, this means all five teams in division

E and all five teams in division B play five games in a row using simple rotation. (Figure 1).
Thus we cannot have two ‘H’ or ‘A’ bits next to each other, as it represents 10 consecutive
home/away games, which exceeds the hard limit. With these constraints, there are a total of 12
feasible patterns without ‘I’ bits.

Round 1 --- B1@E1, B2@E2, B3@E3, B4@E4, B5@E5
Round 2 --- B1@E2, B2@E3, B3@E4, B4@E5, B5@E1
Round 3 --- B1@E3, B2@E4, B3@E5, B4@E1, B5@E2
Round 4 --- B1@E4, B2@E5, B3@E1, B4@E2, B5@E3
Round 5 --- B1@E5, B2@E1, B3@E2, B4@E3, B5@E4

Figure 1: We see that every team in division E plays with every team in division B

exactly once, with teams in E playing home, teams in B playing away

Next, we match the feasible divisions patterns together to create pattern sets. The pattern
set should have cardinality of 6 because there are 6 divisions in total and each pattern represents
one division. There are constraints in constructing pattern sets as well. In particular, at any time
slot i (the i​th​ bit in all patterns), the pattern set should have equal number of ‘H’s and ‘A’s. That

Page 5 of 12

is, whenever a team is playing at home, there should be a team that’s playing away as its
opponent. Besides, we in general prefer pattern sets in which patterns are lexicographic different
in many places. This usually provides more flexibility for assigning games in future steps.
However, the strong assumption of mirroring already significantly reduced the size of the pattern
space. It turns out that all patterns differing in at least one places is sufficient. (If there are
patterns in the same pattern set that differs in no place, the divisions represented by these
patterns cannot play against each other in any time slot, which is undesirable) . With these
constraints, we generated 22 different feasible pattern sets. Figure 2 illustrates a sample feasible
pattern set.

Team A: HAAHHAHHAA
Team B: HAAHAAHHAH
Team C: HAHAHAHAHA
Team D: AHAHAHAHAH
Team E: AHHAAHAAHH
Team F: AHHAHHAAHA

Figure 2: Sample feasible pattern set

3.1.2 Find feasible time tables

We then match division letters (A-F) with patterns in the pattern sets to produce feasible

timetables. We only need to construct the timetable for the first half of the pattern sets. The
second half, with mirroring, should be the same except that roles of ‘H’s and ‘A’s are swapped.
The algorithm generating the time tables is constructed based on Integer Programming.
Specifically, we let ​x​ ijk​ ​ be 1 if division ​i ​ plays against division ​j​ at time ​k​ , and 0 otherwise​.​ Note
that ​x​ ijk ​ is only defined when the ​k​ th pattern bits of division ​i​ and ​j​ are complementary - i.e one of
them is ‘H’ and the other is ‘A’. In addition, in each time slot, each division only plays one
game, and all 15 cross-division game (single-round) need to played by the end of the first half of
the schedule. The constraints are summarized below in mathematical equations. Since we have
not yet assigned specific divisions to letters, we do not care about the objective function as long
as it generates feasible solution sets of ​x​ ijk​ .

Minimize ∑​(​i,j,k​) xijk
Subject to ∑​,k​ = 1 for all ​i​ , ​j​ {‘A’, ‘B’, ‘C’, ‘D’, ‘E’, ‘F’}, ​i​ ≠ ​j​ ,xijk ∈
 k​ = 1,...,5
 ∑​,j​ = 1 + ∑​,j​ ≤ 1 for all ​i​ {‘A’, ‘B’, ‘C’, ‘D’, ‘E’, ‘F’},xijk xjik ∈
 ​k​ = 1,...,5

Page 6 of 12

The 22 feasible pattern sets generate 30 feasible time tables. The pattern bits representing
home/away status are now replaced with divisions letters ‘A’- ‘F’ to indicate where the games
are played in the time slot. For instance, if division ‘F’ plays at home against division ‘A’ in time
slot 3, the 3​rd​ bit of the patterns in the set representing division ‘A’ and ‘F’ will both be replaced
by ‘F’. The ‘I’ bits representing in-division games are now to be inserted. Specifically, for each
pattern in the pattern set, if there are two consecutive home/away games, a new time slot is
added in between, and ‘I’ is assigned to the time slot. In any patterns, there exist at most 4 sets of
two consecutive home/away games due to our constraints of feasible patterns. Therefore,
assigning four ‘I’ bits guarantees to break up the all consecutive home/away games in any
patterns. Usually more than four time slots need to be added for a pattern set as a whole because
the breakpoints for each pattern in the pattern set do not necessarily overlap. After inserting ‘I’s
necessary for breaking up consecutive games, we can assign the remaining ‘I’s arbitrarily to the
newly added time slots. The unassigned new time slots are filled with ‘X’ bit, denoting a bye slot
for certain teams. With ‘I’ bits inserted, there are 162 total feasible timetables including both
cross-division and in-division games. Again, the time slot in the timetable is a period during
which all games in these matchups will be completed, rather than a specific day. Figure 3 shows
a sample feasible time table with in-division games inserted.

Team A: AFIEAIAXDAIACIB
Team B: BDICBXAIEBIBFIB
Team C: CEICAICXFCIBCID
Team D: ADIFDICXDBIDEID
Team E: BEIEDIFXECIAEIE
Team F: CFIFBXFIFAIDFIE

Figure 3: Sample feasible pattern set

3.1.3 Produce optimal time schedule for actual divisions

The final step is to select the optimal timetable with divisions ‘A’ - ‘F’ matched to actual

divisions (Southwest, Northeast, etc.) from all available timetables. For each of the 162 feasible
timetable, we iterate through all possible 720 (6!) maps from ‘A’ - ‘F’ to actual divisions to find
the division schedule with minimum total traveling distance as well as similar traveling distances
for each team. Among the minimums, we then return the one timetable that minimizes travelling
distance. This is the optimal division schedule. At this point, we have completed our first step,
and what’s left is to break up the divisions into single teams find an optimal schedule of team
matchups for each division.

Page 7 of 12

3.2 Step Two -- Finding the optimal map for teams

Each division contains 5 teams, each labeled with subscription ‘1’ to ‘5’ respectively. For
example, teams in division A would have label ‘A​1​’ to ‘A​5​’. We construct pattern for each team
in the division. Initially, the pattern for each team is the same pattern for the entire division.
Then, we expand the ‘H’ and ‘A’ pattern bits to single game matchups. Each of these pattern bits
can be expanded into 5 single games because each team in the division plays every team on the
opposite division exactly once.

Next, we expand ‘I’ pattern bits, which represent in-division games. A dummy team

labeled as ‘6’ is added for each division. Any team matched with team ‘6’ has a bye status in
in-division team matchups. Each ‘I’ bit represents four games in total, which takes the similar
format of single round robin tournament. We use team distance data collected previously to
determine the matchup and order of these games, and eventually replace ‘I’ bit in each team
pattern with places that the team plays at. For example, in a certain ‘I’ bit if team 1 plays team 2
at home and then plays team 5 away, then the I bit in the pattern for team 1 becomes “15”. After
we perform these procedures on every division, we will have a total of 30 patterns in total with
each representing a specific team. We then match teams ‘1’- ‘5’ in each division to specific
teams by minimizing the total travel distance in similar fashion as step one. At this point, we
have an initial schedule of 66 games for each team.

Finally, we have timetables for each specific team with divisions ‘A’- ‘F’ already fixed.

Using the algorithm implemented before for division assignment solution (see 3.1.3), we
enumerate all possible assignments of specific teams and find the minimum travel distance
according to the timetables we have. Now we get a full time schedule with local minimum travel
distance and we can start to put dates for each game in the schedule.

3.3 Step Three --- Match games to calendar

At this point, we can match games with calendar and produce a final schedule. We
enforce general constraints like no Tuesday and Thursday games, more valuable match-ups at
weekends and holidays etc. Eventually we check that no team is playing excessive amount of
back-to-back games in final schedule. Note that the simplification of reducing from 82 games per
team throughout the season to 66 games has crucial effects on number of back-to-back games, as
clearly there is more flexibility. There are about 160 game days in the regular season. As a result,
it is possible fit 66 games per team to completely eliminate back-to-back games from the
schedule.

Page 8 of 12

IV. Results

Team Name Total Distance (km) Team Name Total Distance (km)

ATL 36069 IND 35016

WSH 38564 SAS 37960

ORL 42206 MEM 34153

CHA 42354 HOU 40191

MIA 45399 DAL 40868

OKC 43001 NOP 38958

POR 51246 BOS 41698

DEN 44168 TOR 34861

UTA 49892 BKN 39270

MIN 50149 NYK 41855

MIL 34806 PHI 39254

CLE 32526 GSW 45286

CHI 35886 PHX 38286

DET 39531 LAC 43964

SAC 46919 LAL 43686

Table 1: the total travel distance for each team

The travel distances for each team during the regular seasons is shown in Table 1. On

examination, teams in middle U.S (e.g CLE, CHI, MEM) tends to have relatively small travel
distances. Teams like Portland Trail ​(​POR) and Minnesota Timberwolves (MIN) have large
travel distances because their location is relatively far to other teams in the conference. Overall,
the travel distance for all teams appear to be fairly balanced.

The Complete schedule can be found in the Excel file as an attachment to the paper. In

the final schedule, the length of the season is 19 weeks, during which each team will play 66

Page 9 of 12

games as specified before. Game days are Mondays, Wednesdays, Fridays, Saturdays and
Sundays. Note that Saturdays and Sundays usually have less game than weekdays. This is done
intentionally so that teams playing on Saturday will have a rest day on Sunday and vice versa. In
this way, we can guarantee that no teams in the schedule will be playing three consecutive games
in any three days. Furthermore, this allocation is more desirable to broadcast networks as well
because in weekends there will be fewer games at each time slot, which leads to less
broadcasting conflicts. Thus, more need of all audiences can be satisfied and more values can be
generated to the networks. Additionally, in the final days of the season number of games per day
is limited as well because teams will be fighting for their playoff seats and thus these games
usually have more values than mid-season games.

V. Conclusion

We do not account for potential violation of TV broadcasting or arena availability
constraints in our project, as these detailed information are unobtainable. Once those constraints
become available, we can use integer and constraint programming to implement these constraints
and produce a schedule that satisfies these constraints. Possible future study direction includes
how to efficiently inserting the remaining 16 games such that the structure of official NBA
schedule can be maintained without breaking the least travelling distance property of the
schedule.

Page 10 of 12

Reference

1. National Basketball Association, Wikipedia, retrived from
“​ https://en.wikipedia.org/wiki/National_Basketball_Association​ ”

2. , ‘NBA Teams.’ Map of NBA Teams, retrieved from
“​ http://www.sportmapworld.com/map/basketball/north-america/nba/​ ”

3. Scheduling a Major College Basketball Association, July 1997, George L. Nemhauser,
Michael A. Trick. Retrieved from “http://mat.gsia.cmu.edu/trick/acc.pdf”

Page 11 of 12

https://en.wikipedia.org/wiki/National_Basketball_Association
http://www.sportmapworld.com/map/basketball/north-america/nba/

