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I. Abstract 
 

Sport scheduling is a complex task in the presence of a myriad of conflicting 
requirements and preferences. In this work, our primary goal is to find a feasible and 
approximately optimal schedule in terms of travel distance for the 30 teams in National 
Basketball Association. We focus on the schedule for the regular season, which usually spans 
over a 5-month duration. Existing approaches to build a schedule from scratch tends to suffer 
from substantial runtime overhead. In particular, it is computationally infeasible to solve the 
problem directly using linear programming and constraint programming due to the complicate 
formats and rules for NBA scheduling. Thus for the sake of simplification, we adopted 
assumptions so that integer programming is applicable. Additionally, we approached the problem 
using divide and conquer to reduce computational complexity. Apart from Operations Research 
techniques, methods from Machine Learning and Data Collection are also exploited in finding 
the solution. Our approach yields reliable schedules in a reasonable runtime, and the algorithm 
should be applicable, with slight modifications, to any scheduling problems in single-round robin 
or double-round robin fashion.  
 
II. Problem Background 
 

National Basketball Association is the preeminent men’s professional basketball league 
in North America, and is widely considered as one of the best basketball leagues in the world. It 
now consists of 30 teams, with 29 teams from the United States and 1 team from Canada. The 
NBA and its teams earned in excess of $5 billion in revenue in 2015, with a large portion coming 
from television networks broadcasting the games and from gates receipts ​1​.  

 
In an official NBA schedule, each team plays 82 games each season, including four 

games each against its four in-division opponents (16 games), four games each against six 
out-of-division opponents (24 games), three games each against the remaining four 
out-of-division opponents (12 games) and two games each against the 15 teams in the opposite 
conference (30 games). The four out-of-division opponents that are played three times each are 
determined by a five-year rotation.  

 
In addition to this set of hard constraints, NBA schedule needs to be fair to every team. 

For example, instances of back-to-back games should be reduced to all-time lows, and either too 
many or too few consecutive home or away games in any period is not preferred. The schedule 
also needs to account for a range of soft constraints, such as arena availability, broadcasting 
preference, and holiday conflicts. In essence, scheduling can have heavy impact on revenues. 
Television networks generally require that ‘high-quality’ games to be spread out in the season 
and take place on special dates. Having certain rivals with high commercial values, such as 
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Celtics vs. Lakers or Cavaliers vs. Warriors, play on Thanksgiving Day or Christmas usually 
brings a substantial amount of extra profit. Furthermore, in consideration of individual team’s 
income from ticket sales and television deals, there should be a reasonable number of home 
games on weekends for each team throughout the season.  

 
Professional approaches to NBA scheduling is confidential due to its extremely high 

value to the league as well as all the parties affiliated. In fact, the schedule was produced 
manually until recent years. In the next section, we will explain our approach to the problem, 
which produces a schedule that is fair to every team and meanwhile satisfies as many constraints 
as possible. 
 
III. Solution 
 

1. Assumptions and Simplification 
 

Our main objective function is to minimize the total travel distance of all teams, while 
maintaining fairness by ensuring that each team will travel similar distances during the season 
(e.g. we don’t want some teams to travel 100,000 miles a season while having other teams 
traveling only 50,000 miles). Meanwhile, we require the schedule to minimize back-to-back 
games and break up consecutive home/away games. Other constraints such as broadcast 
requirement or game preference on specific nights are treated as softer constraints that will be 
exploited once we have an initial schedule that optimizes our primary objective function. 

 
The official NBA schedule is not symmetric due to the fact that certain teams play 

against each other 3 times per season. This can be a real technical difficulty in constructing the 
schedule especially in terms of computational complexity. Thus we make assumptions for 
simplification that each team plays 4 games each against its in-division opponents (16 games) 
and 2 games each against all other opponents (50 games), which total up to 66 games. Under this 
assumption, the NBA schedule can be considered as a double-round robin tournament. In other 
words, the second half of the schedule is an approximate mirror of the first half (if the Cavaliers 
plays the Warriors at home in the first half of the season, then it should play an away game 
against the Warriors in the Second half). 

 
Additionally, constructing an initial feasible schedule with 30 teams is computationally 

infeasible, as it gives billions of candidates to choose from. Thus, we use divide and conquer to 
construct our schedule. In particular, we treat each division as a single team and produce feasible 
minimal distance schedule of divisions. We then complete the schedule with specific teams 
based on our division schedules. This approach will greatly reduce our computational complexity 
so that the schedule can be produced with our algorithm in a relatively short amount of time. 
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2. Data Collection 

 
Python web-crawlers are created to retrieve information about the location of NBA teams 

and distances between all pair of teams from Google Map. We also scrape location coordinates 
of all teams in a division, and use the average coordinate to generate distance across divisions ​2​.  
 

3. Approach  
 
3.0 Preliminary 

 
The general idea of our approach is divide and conquer. In particular, we first treat each 

of the six NBA divisions as a single team and construct a feasible schedule for division games. 
We then expand the schedule by filling in specific teams for cross-division and in-division 
games, and perform multiple optimality checks before finalizing the schedule. Before explaining 
the detailed approaches to reach our final schedule, we will first define several terms that we will 
use throughout the solution.  

 
● Pattern Bits​ are used to denote the position of a certain team in a certain time 

slot. Particularly, ‘H’ means that the team plays at home in that time slot and ‘A’ 
means that the team plays away games in the time slot. Furthermore, we have an 
‘I’ bit, which is only defined when we treat division as team. It means that 
in-division games are played (teams within that division play against each other) 
in that time slot.  

● Patterns​ are sequences of pattern bits. Patterns of divisions should contain pattern 
bits ‘H’, ‘A’ and ‘I’ while patterns of single team should only have ‘H’ and ‘A’ as 
pattern bits. The length of patterns is the number of available time slot in the 
schedule.  

● Pattern sets​ are sets of feasible patterns. The cardinality of pattern sets equals to 
the number of teams.  

 
With these definitions and constructions, we can now proceed on explaining our detailed 

solution.  
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3.1 Step One -- Finding the optimal map for divisions 
 

3.1.1 Find feasible patterns and pattern sets 
 

We use letter ‘A’ through ‘F’ to represent the six NBA divisions. Our goal is to find the 
optimal map between letters and the actual divisions. (i.e A maps to Pacific Division, B maps to 
Central Division, and so on). To accomplish this, we first generate all feasible patterns for 
division A through F. For each feasible pattern, the following conditions are required to be met.  
 

● It contains five ‘H’ bits (because it plays with five other divisions exactly once 
each at home), and five ‘A’ bits (because it plays with five other divisions exactly 
once each away). In addition, the pattern should contain four ‘I’ bits because 
teams within a division plays with other teams four times per season. However, 
the ‘I’ bits will only be inserted after we find feasible time tables for the 
corresponding pattern sets.  

● Without the ‘I’ bits,  first half of the pattern should be exact mirror of second half 
of the pattern.  

● The pattern does not contain at most two consecutive ‘H’ or ‘A’ bits. These 
consecutive bits must be broken up by the four ‘I’ bits inserted later.  

 
Note that if division E is playing division B at home, this means all five teams in division 

E and all five teams in division B play five games in a row using simple rotation. (Figure 1). 
Thus we cannot have two ‘H’ or ‘A’ bits next to each other, as it represents 10 consecutive 
home/away games, which exceeds the hard limit. With these constraints, there are a total of 12 
feasible patterns without ‘I’ bits.  
 

Round 1 --- B1@E1, B2@E2, B3@E3, B4@E4, B5@E5 
Round 2 --- B1@E2, B2@E3, B3@E4, B4@E5, B5@E1 
Round 3 --- B1@E3, B2@E4, B3@E5, B4@E1, B5@E2 
Round 4 --- B1@E4, B2@E5, B3@E1, B4@E2, B5@E3 
Round 5 --- B1@E5, B2@E1, B3@E2, B4@E3, B5@E4 

 
Figure 1: We see that every team in division E plays with every team in division B 

exactly once, with teams in E playing home, teams in B playing away 
 

Next, we match the feasible divisions patterns together to create pattern sets. The pattern 
set should have cardinality of 6 because there are 6 divisions in total and each pattern represents 
one division. There are constraints in constructing pattern sets as well. In particular, at any time 
slot i (the i​th​ bit in all patterns), the pattern set should have equal number of ‘H’s and ‘A’s. That 
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is, whenever a team is playing at home, there should be a team that’s playing away as its 
opponent. Besides, we in general prefer pattern sets in which patterns are lexicographic different 
in many places. This usually provides more flexibility for assigning games in future steps. 
However, the strong assumption of mirroring already significantly reduced the size of the pattern 
space. It turns out that all patterns differing in at least one places is sufficient. (If there are 
patterns in the same pattern set that differs in no place, the divisions represented by these 
patterns cannot play against each other in any time slot, which is undesirable) . With these 
constraints, we generated 22 different feasible pattern sets. Figure 2 illustrates a sample feasible 
pattern set.  

 
Team A: HAAHHAHHAA 
Team B: HAAHAAHHAH 
Team C: HAHAHAHAHA 
Team D: AHAHAHAHAH 
Team E: AHHAAHAAHH 
Team F: AHHAHHAAHA 

 
Figure 2: Sample feasible pattern set  

 
3.1.2 Find feasible time tables 
 
We then match division letters (A-F) with patterns in the pattern sets to produce feasible 

timetables. We only need to construct the timetable for the first half of the pattern sets. The 
second half, with mirroring, should be the same except that roles of ‘H’s and ‘A’s  are swapped. 
The algorithm generating the time tables is constructed based on Integer Programming. 
Specifically, we let ​x​ ijk​  ​ be 1 if division ​i ​ plays against division ​j​  at time ​k​ , and 0 otherwise​.​  Note 
that ​x​ ijk  ​ is only defined when the ​k​ th pattern bits of division ​i​  and ​j​  are complementary - i.e one of 
them is ‘H’ and the other is ‘A’. In addition, in each time slot, each division only plays one 
game, and all 15 cross-division game (single-round) need to played by the end of the first half of 
the schedule. The constraints are summarized below in mathematical equations. Since we have 
not yet assigned specific divisions to letters, we do not care about the objective function as long 
as it generates feasible solution sets of ​x​ ijk​ .  

Minimize         ∑​(​i,j,k​ ) xijk  
Subject to        ∑​,k​  = 1  for all ​i​ , ​j​   {‘A’, ‘B’, ‘C’, ‘D’, ‘E’, ‘F’}, ​i​  ≠ ​j​ ,xijk ∈   
                                                     k​  = 1,...,5 
                         ∑​,j​  = 1  + ∑​,j​  ≤ 1        for all ​i​   {‘A’, ‘B’, ‘C’, ‘D’, ‘E’, ‘F’},xijk xjik ∈   
                                                                                 ​k​  = 1,...,5 
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The 22 feasible pattern sets generate 30 feasible time tables. The pattern bits representing 
home/away status are now replaced with divisions letters ‘A’- ‘F’ to indicate where the games 
are played in the time slot. For instance, if division ‘F’ plays at home against division ‘A’ in time 
slot 3, the 3​rd​ bit of the patterns in the set representing division ‘A’ and ‘F’ will both be replaced 
by ‘F’. The ‘I’ bits representing in-division games are now to be inserted. Specifically, for each 
pattern in the pattern set, if there are two consecutive home/away games, a new time slot is 
added in between, and ‘I’ is assigned to the time slot. In any patterns, there exist at most 4 sets of 
two consecutive home/away games due to our constraints of feasible patterns. Therefore, 
assigning four ‘I’ bits guarantees to break up the all consecutive home/away games in any 
patterns. Usually more than four time slots need to be added for a pattern set as a whole because 
the breakpoints for each pattern in the pattern set do not necessarily overlap. After inserting ‘I’s 
necessary for breaking up consecutive games, we can assign the remaining ‘I’s arbitrarily to the 
newly added time slots. The unassigned new time slots are filled with ‘X’ bit, denoting a bye slot 
for certain teams. With ‘I’ bits inserted, there are 162 total feasible timetables including both 
cross-division and in-division games. Again, the time slot in the timetable is a period during 
which all games in these matchups will be completed, rather than a specific day. Figure 3 shows 
a sample feasible time table with in-division games inserted.  
 

Team A: AFIEAIAXDAIACIB 
Team B: BDICBXAIEBIBFIB 
Team C: CEICAICXFCIBCID 
Team D: ADIFDICXDBIDEID 
Team E: BEIEDIFXECIAEIE 
Team F: CFIFBXFIFAIDFIE 

 
Figure 3: Sample feasible pattern set 

 
3.1.3 Produce optimal time schedule for actual divisions 
 
The final step is to select the optimal timetable with divisions ‘A’ - ‘F’ matched to actual 

divisions (Southwest, Northeast, etc.) from all available timetables. For each of the 162 feasible 
timetable, we iterate through all possible 720 (6!) maps from ‘A’ - ‘F’ to actual divisions to find 
the division schedule with minimum total traveling distance as well as similar traveling distances 
for each team. Among the minimums, we then return the one timetable that minimizes travelling 
distance. This is the optimal division schedule. At this point, we have completed our first step, 
and what’s left is to break up the divisions into single teams find an optimal schedule of team 
matchups for each division. 
 
  

Page 7 of 12 



 
 

3.2 Step Two -- Finding the optimal map for teams 
 

Each division contains 5 teams, each labeled with subscription ‘1’ to ‘5’ respectively. For 
example, teams in division A would have label ‘A​1​’ to ‘A​5​’. We construct pattern for each team 
in the division. Initially, the pattern for each team is the same pattern for the entire division. 
Then, we expand the ‘H’ and ‘A’ pattern bits to single game matchups. Each of these pattern bits 
can be expanded into 5 single games because each team in the division plays every team on the 
opposite division exactly once. 

 
Next, we expand ‘I’ pattern bits, which represent in-division games. A dummy team 

labeled as ‘6’ is added for each division. Any team matched with team ‘6’ has a bye status in 
in-division team matchups. Each ‘I’ bit represents four games in total, which takes the similar 
format of single round robin tournament. We use team distance data collected previously to 
determine the matchup and order of these games, and eventually replace ‘I’ bit in each team 
pattern with places that the team plays at. For example, in a certain ‘I’ bit if team 1 plays team 2 
at home and then plays team 5 away, then the I bit in the pattern for team 1 becomes “15”. After 
we perform these procedures on every division, we will have a total of 30 patterns in total with 
each representing a specific team. We then match teams ‘1’- ‘5’ in each division to specific 
teams by minimizing the total travel distance in similar fashion as step one. At this point, we 
have an initial schedule of 66 games for each team. 

 
Finally, we have timetables for each specific team with divisions ‘A’- ‘F’ already fixed. 

Using the algorithm implemented before for division assignment solution (see 3.1.3), we 
enumerate all possible assignments of specific teams and find the minimum travel distance 
according to the timetables we have. Now we get a full time schedule with local minimum travel 
distance and we can start to put dates for each game in the schedule. 
 
3.3 Step Three --- Match games to calendar 
 

At this point, we can match games with calendar and produce a final schedule. We 
enforce general constraints like no Tuesday and Thursday games, more valuable match-ups at 
weekends and holidays etc. Eventually we check that no team is playing excessive amount of 
back-to-back games in final schedule. Note that the simplification of reducing from 82 games per 
team throughout the season to 66 games has crucial effects on number of back-to-back games, as 
clearly there is more flexibility. There are about 160 game days in the regular season. As a result, 
it is possible fit 66 games per team to completely eliminate back-to-back games from the 
schedule.  
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IV. Results  
 

 

Team Name Total Distance (km) Team Name Total Distance (km) 

ATL 36069 IND  35016 

WSH 38564 SAS 37960 

ORL 42206 MEM 34153 

CHA 42354 HOU 40191 

MIA 45399 DAL 40868 

OKC 43001 NOP 38958 

POR 51246 BOS 41698 

DEN 44168 TOR 34861 

UTA 49892 BKN 39270 

MIN 50149 NYK 41855 

MIL 34806 PHI 39254 

CLE 32526 GSW 45286 

CHI 35886 PHX 38286 

DET 39531 LAC 43964 

SAC 46919 LAL 43686 

 
Table 1: the total travel distance for each team  

 
The travel distances for each team during the regular seasons is shown in Table 1. On 

examination, teams in middle U.S (e.g CLE, CHI, MEM) tends to have relatively small travel 
distances. Teams like Portland Trail ​(​POR) and Minnesota Timberwolves (MIN) have large 
travel distances because their location is relatively far to other teams in the conference. Overall, 
the travel distance for all teams appear to be fairly balanced.  

 
The Complete schedule can be found in the Excel file as an attachment to the paper. In 

the final schedule, the length of the season is 19 weeks, during which each team will play 66 
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games as specified before. Game days are Mondays, Wednesdays, Fridays, Saturdays and 
Sundays. Note that Saturdays and Sundays usually have less game than weekdays. This is done 
intentionally so that teams playing on Saturday will have a rest day on Sunday and vice versa. In 
this way, we can guarantee that no teams in the schedule will be playing three consecutive games 
in any three days. Furthermore, this allocation is more desirable to broadcast networks as well 
because in weekends there will be fewer games at each time slot, which leads to less 
broadcasting conflicts. Thus, more need of all audiences can be satisfied and  more values can be 
generated to the networks. Additionally, in the final days of the season number of games per day 
is limited as well because teams will be fighting for their playoff seats and thus these games 
usually have more values than mid-season games.  
 
V. Conclusion 
 

We do not account for potential violation of TV broadcasting or arena availability 
constraints in our project, as these detailed information are unobtainable. Once those constraints 
become available, we can use integer and constraint programming to implement these constraints 
and produce a schedule that satisfies these constraints. Possible future study direction includes 
how to efficiently inserting the remaining 16 games such that the structure of official NBA 
schedule can be maintained without breaking the least travelling distance property of the 
schedule.  
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