
The National Basketball Association Scheduling Problem
Course Project, 21-393 Operations Research II

Renee Chen, Teddy Ding, Emily Hu, Alyssa Wang

Professor David Offner

December 16, 2016

Abstract

 This paper discusses the National Basketball Association scheduling problem using the

local search algorithm and simulated annealing in particular. Starting with the NBA 15-16

regular season schedule, our method tests its optimality and searches for a better schedule, if

possible, under our evaluating system.

Introduction

The NBA, short for the National Basketball Association, is the pre-eminent men’s

professional basketball league in North America. Originated in 1946, the NBA currently has 30

teams, with two conferences of three divisions. It is also the fourth profitable sports league in the

world. We are interested in creating an efficient NBA schedule which not only ensures the

competitive fairness, but also raises the commercial value and lowers the travel costs. Since the

current schedule is mostly done by hand, we are also interested in using a computer program to

check if there exist better schedules.

Every year, the NBA league office establishes a regular season playing schedule of 82

games for each team, including 41 home games and 41 away games. Each team must play 4

games against other 4 division opponents, 4 games against 6 out-of-division conference

opponents, 3 games against the remaining 4 conference teams, and 2 games against teams in the

opposing conference. In our research, we take these general rules as our constraints. To ensure

fairness, number of back-to-back games and 4-in-5s for each team are limited. To create greater

commercial value, popular teams play each other on popular dates. In our research, we only take

travel distance, back-to-back games, and team popularity as objectives for simplicity.

We researched into several algorithms and decided to use local search. Local search is a

heuristic method to find a solution maximizing a criterion among several candidate solutions.

The general idea is to repeatedly make small changes to a given schedule until stop condition is

met. To prevent cycling, we use simulated annealing, which evaluates the new schedule and

reject with higher probability if it is a worse schedule.

Current Scheduling Method

Matt Winick, the vice president of scheduling and game operations for the NBA, was the

NBA schedule maker for 30 years. Due to the complexity of the scheduling problem, most of the

work was done by hand. The scheduling method is kept secret. However, we do know that before

the end of the preceding regular season, all teams are asked to submit a list of at least 50 dates on

which their home court will be available, including 4 Mondays and 4 Thursdays. Christmas eve,

the all-star game, and the NCAA championship game are the only official breaks. Games can be

moved to satisfy the NBA’s broadcasting partners.

According to Winick, the NBA schedule is constructed to be “efficient from a

competitive standpoint with an indirect consideration of travel costs”1. The balance between

competitive fairness and travel costs contributes to the numerous constraints and the complexity

of scheduling. In the 16-17 season, no team plays more than 18 back-to-back games, with a

league average of 17.8. There are 10 teams that don’t have to play 4 games in 5 nights; no team

plays more than one 4-in-5’s, with a league average of 0.7. Generally, each team plays 3.5 games

in a week, and 82 games take roughly 165 days through the end of the regular season2.

1 Winick, Matt. Telephone interview, December 12, 2007.
2 USA Today. NBA Schedule More Player Friendly with Fewer Back-to-Back Games. 2 USA Today. NBA Schedule More Player Friendly with Fewer Back-to-Back Games.
http://www.usatoday.com/story/sports/

Preliminary Research and Possible Algorithms

Integer programming is often used in solving sports scheduling problems and can come

up with optimal solutions for smaller leagues. We can use a variable 𝑥!"# that equals 1 if team x

(the home team) is playing team y (the away team) on day t and 0 otherwise. The constraints

used for our problem are:

• 𝑥!"#!!! = 1 for certain i and j to ensure the conditions for each specific game in the 82

games are met.

• 𝑥!"#!!! = 41 for each i = 1 to n and for each j = 1 to n to ensure that a proper number

of home and away games are played.

• 𝑥!"#!!! ≤ 1 for each i = 1 to n, t = 1 to n to ensure that teams are not playing more than

once for each time.

We would also like to optimize certain values such as 𝑥!"#!!! ∗ 𝑥!!!!" = 1 which

counts the number of back to back games, and other functions for counting 4 out of 5 games or

travel distance. We would like to minimize the value for number of back to back games.

However, the basketball scheduling program simply involves too many variables and

constraints to be solved within a reasonable time with integer programming. While it is

infeasible to use pure integer programming for large problems, there are aspects which can be

used in conjunction with other methods to obtain a solution. The optimization constraints can be

adapted into a scoring function such as the one we use.

Another method to approach scheduling is decomposition, which is usually done with

one of two methods. In the first, the pairings that need to be played are determined for a section

of schedule, and then a home-away pattern is calculated for the section. In the second, a home-

away pattern is first calculated, with the teams playing chosen afterward. This is a good method

to develop a schedule that can easily be improved upon. Another way is to use a greedy

algorithm that assigns teams to games in a schedule.

A common approach to problems with a huge amount of constraints and considerations

such as in sports scheduling is to use different methods of heuristics searches and metaheuristics.

Because these problems cannot be solved completely optimally in a reasonable amount of time,

we often resort to algorithms that can find solutions that are likely sub-optimal but obtainable in

a reasonable runtime. There are many approaches to developing such algorithms, such as tabu

search, greedy randomized searches, genetic algorithms, and many more. These methods have

many similarities mostly have a focus on different ways to search for an optimal solution using a

given one with methods to not get stuck in local minima. The method we primarily look at is

simulated annealing.

Proposed Scheduling Method

Formulation of the Problem

When creating the NBA schedule, we take the following objectives into consideration:

the number of back-to-back games, the total distance each team travels, the occurrence of

popular games on important dates, and the fairness of the schedule regarding each team. We

assign weights to each objective and use them to calculate a score for the schedule. The weight

assignment process translates the NBA scheduling problem into a mathematical problem of

finding the schedule with the highest possible score. Our scheduling method follows all

constraints of a valid NBA schedule, and works under certain assumptions.

Starting with a past schedule, we use the local search algorithm and simulated annealing,

in particular, to test the optimality of the schedule and search for a better schedule, if possible,

under our scoring system.

The Evaluator

The evaluator is a function that takes in a schedule and returns a score. In other words, it

evaluates a given schedule. The evaluation is based on three factors – travel distance, number of

back-to-back games, and team popularity.

The biggest complaint about the NBA schedule has been too many back-to-back games.

Therefore, our most important assumption is that penalty for number of back-to-back games

increases quadratically. Under this assumption, the number of back-to-back games has a

significant impact on the score of a schedule. We count the number of back-to-back games for

each team and for the whole season by iterating through the schedule. We then assign the

quadratic penalty and add it into the total score.

As for travel distance, we simply assume that the team does not return to its home city

between two consecutive games. That is, if a team has two consecutive away games at city A and

B, then the team travels from A to B directly. We assign the distance factor a softer weight with

linear penalty. Similarly, we iterate through the current schedule to get the total distance for each

team and for the whole season. Then we assign the linear penalty and add it into the total score.

We simplify the calculation of fairness by considering only number of back-to-back

games and the travel distance. Our goal is to have all teams play roughly the same number of

back-to-back games and total distance. Since standard deviation is an indication of variation

among a data set, we use the standard deviation of the number of back-to-back games and the

total distance for each team as evaluation of fairness. We assign penalty for both standard

deviations, and add it into the total score.

The last factor, team popularity, is a key factor of commercial value creation. Ticket price,

TV rating and viewership, sponsorships, and media coverage are all affected by team popularity.

Another assumption is that there would be significantly more audience if two popular teams are

playing on a popular date. We assume that Fridays and Christmas day are the popular dates, and

the team popularity could be rated based on a team’s performance, fan base, and commercial

value.

We rate the 30 teams by popularity considering overall performance rating, number of

Twitter and Facebook followers, and current value. We weight each factor according to its

significance. For example, overall performance rating is significant for the schedule since it is

more up-to-date, and the majority of audience is not from the fan base. Therefore, we scale up

overall performance rating by 𝑟𝑎𝑡𝑖𝑛𝑔 + 𝑙𝑜𝑤𝑒𝑠𝑡 𝑟𝑎𝑡𝑖𝑛𝑔 ∗ 1.5. Meanwhile, since the number of

followers on Twitter is generally less than that on Facebook, we scale up Twitter followers by 4

times. The final popularity rating is calculated by summing up all weighted factors. The table

below shows the top and bottom 3 teams by popularity. (See full table in Appendix)

City Team Overall3 Overall* Twitter4 Twitter* Facebook5 Value6 Popularity

Golden States Warriors 10.49 31.00 2.44 9.76 9.15 1.9 51.82

Miami Heat 1.52 17.55 3.56 14.24 16.21 1.3 49.30

Los Angeles Lakers -9.43 1.13 5.22 20.88 21.85 2.7 46.56

Brooklyn Nets -7.61 3.86 0.68 2.72 2.79 1.7 11.07

Phoenix Suns -6.50 5.52 0.58 2.32 1.89 1 10.73

Philadelphia 76ers -10.18 0 0.71 2.84 1.52 0.7 5.06

Table 1: Popularity Rating

Most teams’ popularity ratings lie between 20 and 30. The 5 most popular teams are rated

more than 40. We define the popularity score for a game as the sum of the team popularity

ratings. Then it is fair to assume that a popular game has a score greater than 60. Under this

assumption, we derive the method as follows: for example, a game is played on a Friday with a

total score of K larger than 60. Then, we add 𝐾! − 60! to the raw score for popularity

(unweighted). By squaring K, an increase in K would have an enlarged effect on the final

popularity score.

The Local Search Algorithm: Simulated Annealing

After examining an array of possible approaches to the problem, we decided to apply the

local search algorithm, in particularly simulated annealing for this problem. The simulated

annealing algorithm will be described as applied to a combinational optimization problem. Many

combinatorial optimization problem have been shown to be NP-hard, which means the running

time for any algorithms currently known to guarantee an optimal solution is an exponential

function of the size of the problem7. Simulated annealing works particularly well in our case, for

a couple of reasons specific to the NBA scheduling problem:

3 Basketball Reference. 2015-2016 NBA Team Ratings. http://www.basketball-reference.com/leagues/NBA/
4 Statista. Twitter Followers of NBA Teams (in 1,000s), September 2016. https://www.statista.com/statistics/240386/
5 Statista. Facebook Fans of NBA Teams in September 2016 (in millions).https://www.statista.com/statistics/240382/
6 Forbes. The Business of Basketball (2016 Ranking). http://www.forbes.com/nba-valuations/list/
7 Eglese, R.W. Simulated Annealing: A Tool for Operational Research. http://www.sciencedirect.com/science/

1) The total number of games in a season is !" !"#$% !"#$∗ !" !"#$%
! !"#$%/!"#$

= 1230, and the

1230 games span 161 different game dates. The search space is impossibly large for

finding a global optimal solution. Simulated annealing is designed for this type of

problem as it searches for global maximum while allowing travelling to worse

situations, thus expanding its search range to find a “better” local maxima.

2) The simulated annealing algorithm focuses on finding neighboring viable solutions in

the search space. This works well with the NBA scheduling problem. We note that for

any schedule that is a feasible solution, by identifying a rule to switch games or a

bundle of games, we can easily find a new feasible solution that is a neighbor of our

previous solution. We experimented with two different ways of finding a new

schedule/neighbor, which will be elaborated later.

3) Our goal is to “find better schedules”. An NBA schedule has a wide array of metrics,

as described above, and there is no obvious way to compare any two schedules. Thus,

the best way to evaluate is to assign numerical scores to each schedule. The

evaluation or scoring process is the foundation of a local search algorithm, since it

evaluates the generated schedule on any iteration and make local decisions based on

its improvement from the previous solution.

4) A local search algorithm is convenient if you have a viable solution to start with. This

is the case in our research, since we (or any official in the real world) have access to

the schedule from previous years. In fact, these are already good viable solutions to

the problem. This provides an easy and favorable starting point for our algorithm to

search for neighboring maxima.

A Breakdown of the Algorithm

A general idea of the simulated annealing approach has been described above. A

pseudocode algorithm is provided below:

• Step 2 of the algorithm is simple: we take a working NBA schedule and feed it to our

schedule searcher. In particular, we chose NBA’s 2015-2016 Season Regular season

schedule as a starting point for our search.

• For the first step in the REPEAT loop, our algorithm generates a random neighboring

solution by following a switch rule as mentioned before. Specifically, we tried the

following two different methodology:

1. Switch games: We randomly find two games on different dates, and switch them if

doing so don’t break the constraints. In particular, all constraints related to number of

games are maintained, and we only have to check if switching the selected games

leads to one team playing two games on the same day. This switch method maintains

the number of games played on each date, which is important since we don’t want a

viable solution that aggregates too many games on some dates (e.g., naively put all

the games in week on Friday, which is a desirable dates)

2. Switch dates: We randomly find two different dates, and simply switch them. This

also maintains all the important invariants as in the first method, but its flexibility

since it always moves a bunch games together making it hard for the algorithm to try

to maximize the benefit of single games, or, extracting games from on date, and

distributing them to dates that improve the schedule.

Another key concept of the algorithm lies in the second step in the REPEAT loop, where

we simulate the “cooling” process of this algorithm. To put simply, the condition to move to a

new schedule cools down as the algorithm goes further. This is achieved by the denominator 𝑡! in

the formula, which is called a “control value sequence”. This sequence converges to zero, to

polarize the difference of f s! − f(s), thus gradually decreasing (cooling) the probability of

moving a worse-off solution in the long run8.

Score and Statistics of Initial Schedule

[Total iterations = 0, Updated iterations = 0]

s_score = -86.8582,

btbNum = 532,

btbStdev = 1.8607,

distanceSum = 815636.0000,

distanceStdev = 7816.9061,

tvRatingScore = 429735.7629

christmasDayGames: set([('New Orleans', 'Miami'), ('Cleveland', 'Golden State'), ('Los

Angeles Clippers', 'Los Angeles Lakers'), ('Chicago', 'Oklahoma City'), ('San Antonio',

'Houston')])

The measured correspond to the metrics given in the previous section on evaluator’s

methodology:

“btbNum”: Number of back-to-back games in total

“btbStdev”: Standard deviation of the number of back-to-back games of each team

“distanceSum”: Total travel distance of the teams

“distanceStdev”: Standard deviation of the travel distance among teams

“tvRatingScore”: Score for popular games on popular dates

“christmasDayGames”: The games scheduled on Christmas Day, namely 12/25/15

8 In our implementation, we maintain a minimum threshold value for 𝑡! THRESHOLD = 0.0001, given the fact that
too small denominator makes too large exponent for e and causes arithmetic overflow in python.

Here it’s worth noting that our schedule f(s) normalizes each factor into a scale of 0 to

100, and then sums them up with respective weights that sum to 1. This helps to understand our

schedule score on a 0-to-100 scale. The initial schedule, as given above, is assigned a score of -

86.8582.

Applications and Results

Through playing with the factors of each metrics in our evaluator, we tested out our

algorithm given a few different configurations: different ways to find neighboring schedules as

well as different allowance for worse-off positions. First, while fixing the control value sequence

𝑡!, we ran the algorithm with two different ways to generate neighboring schedule. The results

are illustrated below.

Method A: Switch Two Games

[Total Iterations = 20000, updated iterations = 517]

s_score = -45.8878

btbNum = 460

btbStdev = 1.01105

distanceSum = 546274.0000

distanceStdev = 4412.3043

tvRatingScore = 601925.9572

Christmas Day Games = set([('Chicago', 'Oklahoma City'), ('Cleveland', 'Golden State'),

('Boston', 'Miami'), ('Dallas', 'Brooklyn'), ('San Antonio', 'Los Angeles Lakers')])		

	 	

Figure 1: Graph for Method A Score vs. Updates Iterations

Method B: Switch Two Dates

[Total iterations = 19999, Updated iterations = 66]

 s_score = -91.2688

btbNum = 549

btbStdev = 1.7156

distanceSum = 730097.0000

distanceStdev = 6960.0307

tvRatingScore = 417638.0188

christmasDayGames: set([('San Antonio', 'Chicago'), ('Oklahoma City', 'Atlanta'),

('Boston', 'Miami'), ('Houston', 'Detroit'), ('Portland', 'Los Angeles Clippers'), ('Golden

State', 'Utah'), ('Denver', 'Milwaukee'), ('Dallas', 'Sacramento')])

 	
Figure 2: Method B Score vs. Updated Iterations

Method C: Switch Games, Strictly Increasing Score Sequence (No simulated Annealing)

[Total iterations = 19999, Updated iterations = 555]

 s_score = -47.9032

btbNum = 462, btbStdev = 1.0832

distanceSum = 547030.0000

distanceStdev = 3826.4762

tvRatingScore = 511570.0289

christmasDayGames:set([('San Antonio', 'Houston'), ('Cleveland', 'Golden State'),

('Atlanta', 'Miami'), ('Oklahoma City', 'Chicago'), ('Los Angeles Clippers', 'Los Angeles

Lakers')])

Figure 3: Method C Score vs. Updated Iterations

Discussion and Reflections

Performance of the Methods

We first discussed the first two methods where we adopted the simulated annealing

process. As we can see from the graph and numerical results, on both graph A and B, the search

process displays a drop to lower scores initially (in method A, this initial drop is hard to see

given the scale) followed by a flatter process of gradual increase. This is expected from the

algorithm, given the initially large control value 𝑡! which allows high probability of moving to

worse-of schedules. As 𝑡! converges to zero, we see that the program becomes less and less

inclined to accept a worse-of position and roughly follows the pattern of a non-decreasing

sequence.

To compare the results from two methods, we see that method A that switches two games

produces a much more optimal result. It’s also obvious that number of actual “updated”

iterations from method B is far smaller than that of method A. Note that while the search depth

of both methods is 20000, the updated iterations where the search “accepts” a new schedule

differs far from the search depth. So, a graph that plots score against iterations will look far

flatter. We believe these distinctions is related to the flexible nature of these two methods:

switching by games generates far more possible valid solutions and thus a far larger search space,

while switching games by dates limits the flexibility of optimizing the utility of each game

within that date. By contrast, switch individual games does well in putting to positions that

generates utility (separating games to reduce back-to-back games, put particularly favorable

games on better dates, etc.). The idea to switch games by dates sources from the notion of

“moving bundle of games”, which attempts recognize a couple of games that are already

“bundled” together, for instance, some team making an away-game trip that involves playing

Houston, San Antonio and Dallas in a row. Switching dates fells short at recognizing this local

optimality.

We also ran a third method of switching game, except this time forcing searcher to reject

all worse-off situations. In theory, this strictly gives us the local maximum of closest to the

initialization. As the test result turns out, method A gives us a final score of -47.9032 while

method C gives a schedule with score -45.8878. This does not display obvious difference, and

possible explanation is the limited depth we applied. Given the fact that our evaluator is non-

trivial, we decided that 20000 iterations would be adequate depth. In theory, we should be able to

run more iterations, or set terminate conditions requiring convergence (e.g., the average speed of

increase falls below a threshold), and see a larger difference between the simulated annealing

searcher and the non-increasing searcher.

Weight of Metrics and Reasoning

One of the major problem was to decide on an appropriate set of factor weights for the

evaluator. This was a long process involving a lot of guessing and testing, the final set of weights

we arrived on is as follow:

 W!"!#$% = %60 W!"#$%&'()$!(* = %2.5

 W!"!#"$%& = %2.5 W!"#$%&'()*+ = %5

 W!"#$%&'()*+ = %30

To account for the sharp difference between weights for standard deviation and the value

of variables, we note that the actual values of standard deviation (btbStdev ≈ 1.9) is far smaller

than the actual variable values (btbNum ≈ 20.0). One issue to overcome throughout our testing

was to force the searcher to suppress the number of back-to-back games, as it’s relatively easy to

generate a new schedule that increases the number of back-to-back. Therefore, giving btbNum

the most weight, combined with a cubic function that further penalizes high btbNum, ended up

working for us. Another interesting point to add is that penalizing standard deviation helps limits

the number of total back-to-back games, since initially all teams have around teamBtbNum = 20,

and as we evaluate the schedule again after any switch of two games, the evaluator suppresses

any single team from becoming an outlier by increasing teamBtbNum, which helps keeping

btbNum down.

Choices for the Control Sequence 𝑡!

While the only requirements on control value sequence ti is that it converges to zero, its

initial value as well as the speed of converge changes things a lot. Here highlighted are two

better choices that we came up with.

Choice 1: y = max 0.0001, 1.2!! starts at 1 but steeper, so algorithm initially accepts

worse schedules easily but quickly starts to accept better schedules only.

Choice 2: y = max(0.0001, 1.05
!!

2) starts at 2 but flatter, so algorithm initially accept

worse schedules with moderate possibility and gradually decline the possibility. This approach is

more moderate and makes the algorithm more flexible and gives wider search range. In the end,

we decided to adopt this sequence, since this roughly mimics the cooling process we have in our

mind.

Possible Directions of Further Research

Throughout our research process, one challenge we face was finding a “clever”

way to generate new schedules that boosts the speed of our algorithm. In the end, we

stick the randomized game-switching algorithm, which gives sufficient result. But this

could definitely be improved by finding other switch algorithms that “consciously” looks

to decrease back-to-back games while minimizing travel distance. One approach for this,

as some other sports scheduling algorithms have attempted, is to identify “bundles” of

games that work well together on subsequent days, and switch these together to a better

position in the schedule. This identification process is tricky, but that’s one direction of

improvement

One other we could take to better understand the algorithm in this particular case,

is to analyze the development of search process, possibly visualizing the trend of

different factors over the course of improving total score. This could give us insight into

what the searcher prioritizes initially, and what it favors in the long run.

Acknowledgements

We thank Professor Offner who provided insights and expertise that greatly assisted the

research.

Bibliography

Basketball Reference. 2015-2016 NBA Team Ratings. http://www.basketball-reference.com/

leagues/NBA_2016_ratings.html

Eglese, R.W. Simulated Annealing: A Tool for Operational Research. http://www.sciencedirect.

com/science/article/pii/037722179090001R

Forbes. The Business of Basketball. http://www.forbes.com/nba-valuations/list/#tab:overall

Nieberg, Tim. “Metaheuristics in Scheduling, Local Search and Genetic Algorithms”.

Statista. Twitter Followers of NBA Teams (in 1,000s), September 2016. https://www.statista.com/

statistics/240386/twitter-followers-of-national-basketball-association-teams/

Statista. Facebook Fans of NBA Teams in September 2016 (in millions). https://www.statista.

com/statistics/240382/facebook-fans-of-national-basketball-association-teams/

USA Today. NBA Schedule More Player Friendly with Fewer Back-to-Back Games. http://

www.usatoday.com/story/sports/news/1075796-nba-limits-back-to-backs-4-in-5s-on-

2016-17-schedule

Winick, Matt. Telephone interview, December 12, 2007.

Appendix I: Team Popularity Table

City	 Team	 Overall	 Twitter	 Facebook	 Value	 Overall*	 Twitter*	 Popularity	

Golden	State	 Warriors	 10.49	 2.44	 9.15	 1.9	 31.00	 9.76	 51.81	

Miami	 Heat	 1.52	 3.56	 16.21	 1.3	 17.55	 14.24	 49.30	

Los	Angeles	 Lakers	 -9.43	 5.22	 21.85	 2.7	 1.12	 20.88	 46.55	

San	Antonio	 Spurs	 11.1	 1.58	 6.95	 1.15	 31.92	 6.32	 46.34	

Chicago	 Bulls	 -1.42	 2.87	 18.76	 2.3	 13.14	 11.48	 45.68	

Oklahoma	City	 Thunder	 7.35	 1.42	 6.69	 0.95	 26.29	 5.68	 39.61	

Cleveland	 Cavaliers	 5.9	 1.5	 7.15	 1.1	 24.12	 6	 38.37	

Boston	 Celtics	 2.81	 1.96	 8.78	 2.1	 19.48	 7.84	 38.20	

Los	Angeles	 Clippers	 4.31	 0.99	 3.84	 2	 21.73	 3.96	 31.53	

Toronto	 Raptors	 4.5	 1.23	 2.16	 0.98	 22.02	 4.92	 30.08	

New	York	 Knicks	 -3.02	 1.52	 6.1	 3	 10.74	 6.08	 25.92	

Houston	 Rockets	 0.4	 1.16	 3.81	 1.5	 15.87	 4.64	 25.82	

Atlanta	 Hawks	 3.62	 0.66	 1.59	 0.825	 20.70	 2.64	 25.75	

Dallas	 Mavericks	 0.11	 0.99	 4.52	 1.4	 15.43	 3.96	 25.31	

Indiana	 Pacers	 1.68	 0.79	 3.31	 0.84	 17.79	 3.16	 25.10	

Charlotte	 Hornets	 2.34	 0.58	 1.73	 0.75	 18.78	 2.32	 23.58	

Portland	 Trail	Blazers	 1.03	 0.63	 2.39	 0.975	 16.81	 2.52	 22.70	

Utah	 Jazz	 2.09	 0.51	 1.16	 0.875	 18.40	 2.04	 22.48	

Orlando	 Magic	 -1.8	 1.39	 2.76	 0.9	 12.57	 5.56	 21.79	

Detroit	 Pistons	 0.4	 0.58	 1.85	 0.85	 15.87	 2.32	 20.89	

Washington	 Wizards	 -0.39	 0.53	 1.52	 0.96	 14.68	 2.12	 19.28	

Memphis	 Grizzlies	 -2.22	 0.61	 1.81	 0.78	 11.94	 2.44	 16.97	

Sacramento	 Kings	 -2.33	 0.51	 1.75	 0.925	 11.77	 2.04	 16.49	

Denver	 Nuggets	 -2.94	 0.52	 1.96	 0.855	 10.86	 2.08	 15.75	

Minnesota	 Timberwolves	 -3.68	 0.51	 1.83	 0.72	 9.75	 2.04	 14.34	

New	Orleans	 Pelicans	 -3.63	 0.52	 1.63	 0.65	 9.82	 2.08	 14.18	

Milwaukee	 Bucks	 -4.37	 0.52	 1.41	 0.675	 8.71	 2.08	 12.88	

Brooklyn	 Nets	 -7.61	 0.68	 2.79	 1.7	 3.85	 2.72	 11.06	

Phoenix	 Suns	 -6.5	 0.58	 1.89	 1	 5.52	 2.32	 10.73	

Philadelphia	 76ers	 -10.18	 0.71	 1.52	 0.7	 0	 2.84	 5.06	

Appendix II: Codes

(Github Repo link: https://github.com/kn1ghtted/393Project.git)

Searcher Template Class (searcher.py):

GRAPH_UPATED_ITERATIONS_ONLY	=	False	

ONLY_ACCEPT_BETTER	=	False	

	

class	searcher:	

	def	__init__(self):	

			return	

	#	given	a	schedule	file,	

	#	return	a	dictionary	type	of	the	schedule:	

	#	'mm/dd/yy'	->	set([(away1,	home1),	(away2,	home2),	...])	

	def	readSchedule(self,	filename):	

			reader	=	CsvReader(filename)	

			cal	=	reader.data			

			attributes	=	reader.attributes	

			#	change	datetime	column	to	only	datetime	

			schedule	=	MyOrderedDict()	

			for	gameEntry	in	reader.data:	

					date	=	gameEntry[DATE].split("	")[DATE]	

					epoch	=	timeUtil.dateToEpoch(date)	

					standardDate	=	timeUtil.epochToDate(epoch)	

					gameEntry[DATE]	=	standardDate	

					awayTeam	=	gameEntry[AWAY]	

					homeTeam	=	gameEntry[HOME]	

					game	=	(awayTeam,	homeTeam)	

					#	if	this	date	already	stored	

					if	standardDate	in	schedule:	

							schedule[standardDate].add(game)	

					else:	

							schedule[standardDate]	=	set([game])	

			self.schedule	=	schedule	

	

	#	return	True	if	team	not	relevant	in	games	

	def	teamNoConflict(self,	team,	games):	

			for	game	in	games:	

					if	team	in	game:	

							return	False	

			return	True	

	

	def	switchGames(self,	schedule,	date1,	date2,	game1,	game2):	

			assert(game1	in	schedule[date1])	

			assert(game2	in	schedule[date2])	

			schedule[date1].remove(game1)	

			schedule[date2].remove(game2)	

			schedule[date1].add(game2)	

			schedule[date2].add(game1)	

	def	generateNewSchedule(self):	

			pass	

	

	def	switchBack(self):	

			pass	

	#	uses	simulated	Annealing	from	page	16	of	pdf	

	def	searchSchedule(self):	

			schedule	=	self.schedule	

			scaleFactor	=	None	

			self.best	=	evaluate(schedule)["score"]	

			depth	=	0	

			update	=	0	

	

			if	(PLOT):	

					if	(GRAPH_UPATED_ITERATIONS_ONLY):	

							scorePlot	=	Plot(sys.argv[0],	"Updated	Iterations")	

					else:	

							scorePlot	=	Plot(sys.argv[0],	"Iterations")	

	

			#	choose	a	solution	s'	from	S	randomly	

			#	by	selecting	a	game	randomly	and	swithing	it	with		

			#	another	game,	making	sure	that	all	four	teams	involved	

			#	don't	have	games	on	the	same	day	

			while	(depth	<	SEARCH_DEPTH):	

					retObject	=	evaluate(schedule)	

					s_score	=	retObject["score"]	

					btbNum,	btbStdev,	distanceSum,	distanceStdev,	popularityScore	=	

retObject["btbNum"],	\	

							retObject["btbStdev"],	retObject["distanceSum"],	

retObject["distanceStdev"],	retObject["tvRatingScore"]	

					totalBtbs	=	1	

					print	("[Total	iterations	=	%d,	Updated	iterations	=	%d]\n	

s_score	=	%.04f,	btbNum	=	%d,	btbStdev	=	%.04f,	distanceSum	=	%.04f,	

distanceStdev	=	%.04f,	tvRatingScore	=	%0.04f"	%	(depth,	update,	

s_score,	btbNum,	btbStdev,	distanceSum,	distanceStdev,	

popularityScore))	

					print	("christmasDayGames:"	+	str(schedule["12/25/15"]))	

					print		

					if	(PLOT):	

							if	(GRAPH_UPATED_ITERATIONS_ONLY):	

									scorePlot.update(update,	s_score)	

	

							else:	

									scorePlot.update(depth,	s_score)	

	

					self.generateNewSchedule()	

					#	use	randomness	to	decide	with	move	to	s'	

					randNum	=	random.uniform(0.0,	1.0)	

					s1_object	=	evaluate(schedule)	

					s1_score	=	s1_object["score"]	

					if	(scaleFactor	==	None):	

							scaleFactor	=	abs(s1_score	-	s_score)	

					delta	=	s1_score	-	s_score	

					#	condition	=	min(1,	

math.exp((delta*1.0/scaleFactor)*1.0/controlValues[update]))	

					exponent	=	min(0,	

(delta*1.0/scaleFactor)*1.0/controlValues[update])	

					condition	=	math.exp(exponent)	

					#	print	"delta	=	%.04f,	randNum	=	%.04f,	condition	=	%.04f"	%	

(delta,	randNum,	condition)	

					if	(randNum	>=	condition):	

							#	switch	back	

							self.switchBack()	

					else:	

							if	(s1_score	>=	self.best):	

									self.best	=	s1_score	

							#	this	means	we	only	update	schedule	when	it's	going	in	a	

better	direction	

							else:	

									if	(ONLY_ACCEPT_BETTER):	

											self.switchBack()	

							update	+=	1	

					depth	+=	1	

Switch Game Method Implementation (search_switchgames.py):

class	searcherSwitchGames(searcher):	

	def	switchBack(self):	

					self.switchGames(self.schedule,	self.date2,	self.date1,	

self.game1,	self.game2)	

	

	def	generateNewSchedule(self):	

			schedule	=	self.schedule	

			self.date1	=	random.choice(schedule.keys())	

			self.game1	=	random.choice(list(schedule[self.date1]))	

			self.date2	=	self.date1	

			#	choose	the	target	game	to	switch	

			#	not	on	same	day,	all	four	games	don't	have		

			#	same	day	matches	after	switch	

			date2Valid	=	False	

			while	((not	date2Valid)):	

			#	????	should	we	limit	the	range	of	difference	between	the	

			#	dates	to	switch	with?											

					self.date2	=	random.choice(schedule.keys())	

					self.game2	=	random.choice(list(schedule[self.date2]))	

					if	(self.date1	==	self.date2):	

							continue	

					else:	

							date1Games	=	copy.deepcopy(schedule[self.date1])	

							date2Games	=	copy.deepcopy(schedule[self.date2])	

							date1Games.remove(self.game1)	

							date2Games.remove(self.game2)	

							(teamA,	teamB)	=	self.game1	

							(teamC,	teamD)	=	self.game2	

							if	((self.teamNoConflict(teamA,	date2Games))	and	\	

							(self.teamNoConflict(teamB,	date2Games))	and	\	

							(self.teamNoConflict(teamC,	date1Games))	and	\	

							(self.teamNoConflict(teamD,	date1Games))):	

									date2Valid	=	True	

			#	switch	games,	move	to	s'	

			self.switchGames(schedule,	self.date1,	self.date2,	self.game1,	

self.game2)	

	

S	=	searcherSwitchGames()	

S.readSchedule("nba_games_2015-2016.txt")	

S.searchSchedule()	

	 	

Switch Dates Method Implementation (search_switchdates.py):

class	searcherSwitchDates(searcher):	

	def	switchBack(self):	

			schedule	=	self.schedule	

			temp	=	schedule[self.date1]	

			schedule[self.date1]	=	schedule[self.date2]	

			schedule[self.date2]	=	temp	

	

	def	generateNewSchedule(self):	

			schedule	=	self.schedule	

			self.date1	=	random.choice(schedule.keys())	

			self.date2	=	self.date1	

			while	(self.date1	==	self.date2):	

			#	????	should	we	limit	the	range	of	difference	between	the	

			#	dates	to	switch	with?											

					self.date2	=	random.choice(schedule.keys())	

			#	print	self.date1,	self.date2	

			#	print	schedule[self.date1],	schedule[self.date2]	

			temp	=	schedule[self.date1]	

			schedule[self.date1]	=	schedule[self.date2]	

			schedule[self.date2]	=	temp	

			#	print	schedule[self.date1],	schedule[self.date2]	

	

S	=	searcherSwitchDates()	

S.readSchedule("nba_games_2015-2016.txt")	

S.searchSchedule()	

	 	

Evaluator (evaluator.py)

GAME_SCORE_THRESHOLD	=	4000	

	

total	=	0	

teams	=	set()	

teamScores	=	dict()	

teamDistance	=	dict()	

#	to	be	determined	

btbOnTotal	=	-10	

btbOnTeam	=	-10	

weightBtb	=	0.3	

weightFairness	=	0.4	

weightDistance	=	0.3	

distanceReader	=	DistanceReader("distances.csv")	

distance	=	distanceReader.distanceDict	

popularityReader	=	PopularityReader("Popularity	new.csv")	

popularityDict	=	popularityReader.popularityDict	

	

def	allTeams(calDict):	

	for	date	in	calDict:	

			s	=	calDict[date]	

			for	game	in	s:	

					for	team	in	game:	

							teams.add(team)	

	

def	initialTeamSocores(calDict):	

	for	eachTeam	in	teams:	

			teamScores[eachTeam]	=	0	

			teamDistance[eachTeam]	=	(0,None)	

	

#	return	True	if	team	not	relevant	in	games	

def	inGame(team,	games):	

	for	game	in	games:	

			if	team	in	game:	

					return	True	

	return	None	

	

def	backToback(calDict,team):	

	totalPanelty	=	0	

	totalDistance	=	0	

	counter	=	0	

	for	date	in	calDict:	

			nextDate	=	nextDay(date)	

			games	=	calDict[date]	

			if	inGame(team,games):	

					if	(nextDate	in	calDict)	and	inGame(team,calDict[nextDate]):	

							counter	+=	1	

							totalPanelty	+=	btbOnTeam	

	return	(totalPanelty,counter)	

	

def	getStdDev(teamScores):	

	total	=	0	

	for	team	in	teamScores:	

			total	+=	teamScores[team]	

	mean	=	total	*	1.0	/len(teams)	

	variance	=	0	

	for	team	in	teamScores:	

			variance	+=	(teamScores[team]	-	mean)**2	

	variance	=	variance	*	1.0	/	len(teams)	

	return	math.sqrt(variance)	

	

def	popularity(calDict):	

	popularityPoint	=	0	

	for	date	in	calDict:	

			month,	day,	year	=	(int(x)	for	x	in	date.split('/'))	

			year	=	2000	+	year			

			ans	=	datetime.date(year,	month,	day)	

			weekday	=	ans.strftime("%A")	

			games	=	calDict[date]	

			if	weekday	==	"Friday":	

							for	game	in	games:	

											totalScore	=	popularityDict[game[0]]	+	

popularityDict[game[1]]	

											if	(totalScore	**	2)	>	GAME_SCORE_THRESHOLD:	

															popularityPoint	+=	(totalScore)	**	2	-	

GAME_SCORE_THRESHOLD	

			#	Christmas	day	

			if	date	==	"12/25/15":	

							for	game	in	games:	

											totalScore	=	popularityDict[game[0]]	+	

popularityDict[game[1]]	

											if	(totalScore	**	2)	>	GAME_SCORE_THRESHOLD:	

															popularityPoint	+=	CHRISTMAS_MULTIPLIER	*	(totalScore	

**	2	-	GAME_SCORE_THRESHOLD)	

	return	popularityPoint	

	

def	totalDistance(calDict,teams):	

	total	=	0	

	for	date	in	calDict:	

			games	=	calDict[date]	

			for	game	in	games:	

					homeTeam	=	game[1]	

					awayTeam	=	game[0]	

					hDistance	=	teamDistance[homeTeam][0]	

					aDistance	=	teamDistance[awayTeam][0]	

					if	(teamDistance[awayTeam][1]	==	None):	

							teamDistance[awayTeam]	=	(distance[awayTeam,homeTeam]	+	

aDistance,	homeTeam)	

					else:	

							previous	=	teamDistance[awayTeam][1]	

							teamDistance[awayTeam]	=	(distance[awayTeam,previous]	+	

aDistance,	homeTeam)	

					if	(teamDistance[homeTeam][1]	==	None):	

							teamDistance[homeTeam]	=	(hDistance,	None)	

					else:	

							previous	=	teamDistance[awayTeam][1]	

							teamDistance[homeTeam]	=	(distance[homeTeam,previous]	+	

hDistance,	homeTeam)	

	for	each	in	teamDistance:	

			total	+=	teamDistance[each][0]	

	return	total	

	

	

def	evaluate(calDict):	

	allTeams(calDict)	

	initialTeamSocores(calDict)	

	btbNum	=	0	

	distanceSum	=	totalDistance(calDict,	teams)	

	for	team	in	teamScores:	

			teamScoreDelta,	btbNumDelta	=	backToback(calDict,team)	

			teamScores[team]	+=	btbNumDelta	

			btbNum	+=	btbNumDelta	

	btbStdev	=	getStdDev(teamScores)	

	teamD	=	dict()	

	for	each	in	teamDistance:	

			teamD[each]	=	teamDistance[each][0]	

	distanceStdev	=	getStdDev(teamD)	

	popularityScore	=	popularity(calDict)	

	totalScore	=	(-	0.025)	*	btbStdev	*	50	+	(-0.6)	*	(btbNum**4)	/	

819247506.25	+	(-	0.025)	*	distanceStdev	/	80.0	+	(-	0.3)	*	

(distanceSum/8000.0)	\	

	+	(0.05)	*	popularityScore	/	3000.0	

	retObject	=	{}	

	retObject["score"]	=	totalScore	

	retObject["btbNum"]	=	btbNum	

	retObject["btbStdev"]	=	btbStdev	

	retObject["distanceSum"]	=	distanceSum	

	retObject["distanceStdev"]	=	distanceStdev	

	retObject["tvRatingScore"]	=	popularityScore	

	#	print	"popularityScore	=	",	popularityScore	

	return	retObject	

