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Abstract 
 

 This paper discusses the National Basketball Association scheduling problem using the 

local search algorithm and simulated annealing in particular. Starting with the NBA 15-16 

regular season schedule, our method tests its optimality and searches for a better schedule, if 

possible, under our evaluating system. 

 

Introduction 
 

The NBA, short for the National Basketball Association, is the pre-eminent men’s 

professional basketball league in North America. Originated in 1946, the NBA currently has 30 

teams, with two conferences of three divisions. It is also the fourth profitable sports league in the 

world. We are interested in creating an efficient NBA schedule which not only ensures the 

competitive fairness, but also raises the commercial value and lowers the travel costs. Since the 

current schedule is mostly done by hand, we are also interested in using a computer program to 

check if there exist better schedules. 

 

Every year, the NBA league office establishes a regular season playing schedule of 82 

games for each team, including 41 home games and 41 away games. Each team must play 4 

games against other 4 division opponents, 4 games against 6 out-of-division conference 

opponents, 3 games against the remaining 4 conference teams, and 2 games against teams in the 

opposing conference. In our research, we take these general rules as our constraints. To ensure 

fairness, number of back-to-back games and 4-in-5s for each team are limited. To create greater 



commercial value, popular teams play each other on popular dates. In our research, we only take 

travel distance, back-to-back games, and team popularity as objectives for simplicity. 

 

We researched into several algorithms and decided to use local search. Local search is a 

heuristic method to find a solution maximizing a criterion among several candidate solutions. 

The general idea is to repeatedly make small changes to a given schedule until stop condition is 

met. To prevent cycling, we use simulated annealing, which evaluates the new schedule and 

reject with higher probability if it is a worse schedule. 

 

Current Scheduling Method 
 

Matt Winick, the vice president of scheduling and game operations for the NBA, was the 

NBA schedule maker for 30 years. Due to the complexity of the scheduling problem, most of the 

work was done by hand. The scheduling method is kept secret. However, we do know that before 

the end of the preceding regular season, all teams are asked to submit a list of at least 50 dates on 

which their home court will be available, including 4 Mondays and 4 Thursdays. Christmas eve, 

the all-star game, and the NCAA championship game are the only official breaks. Games can be 

moved to satisfy the NBA’s broadcasting partners. 

 

According to Winick, the NBA schedule is constructed to be “efficient from a 

competitive standpoint with an indirect consideration of travel costs”1. The balance between 

competitive fairness and travel costs contributes to the numerous constraints and the complexity 

of scheduling. In the 16-17 season, no team plays more than 18 back-to-back games, with a 

league average of 17.8. There are 10 teams that don’t have to play 4 games in 5 nights; no team 

plays more than one 4-in-5’s, with a league average of 0.7. Generally, each team plays 3.5 games 

in a week, and 82 games take roughly 165 days through the end of the regular season2. 

 

  
                                                
1 Winick, Matt. Telephone interview, December 12, 2007. 
2 USA Today. NBA Schedule More Player Friendly with Fewer Back-to-Back Games.  2 USA Today. NBA Schedule More Player Friendly with Fewer Back-to-Back Games.  
http://www.usatoday.com/story/sports/ 



Preliminary Research and Possible Algorithms 
 

Integer programming is often used in solving sports scheduling problems and can come 

up with optimal solutions for smaller leagues. We can use a variable 𝑥!"# that equals 1 if team x 

(the home team) is playing team y (the away team) on day t and 0 otherwise. The constraints 

used for our problem are: 

• 𝑥!"#!!! = 1 for certain i and j to ensure the conditions for each specific game in the 82 

games are met. 

• 𝑥!"#!!! = 41 for each i = 1 to n and for each j = 1 to n to ensure that a proper number 

of home and away games are played. 

• 𝑥!"#!!! ≤ 1 for each i = 1 to n, t = 1 to n to ensure that teams are not playing more than 

once for each time. 

We would also like to optimize certain values such as 𝑥!"#!!! ∗ 𝑥!!!!" = 1 which 

counts the number of back to back games, and other functions for counting 4 out of 5 games or 

travel distance. We would like to minimize the value for number of back to back games. 

 

However, the basketball scheduling program simply involves too many variables and 

constraints to be solved within a reasonable time with integer programming.  While it is 

infeasible to use pure integer programming for large problems, there are aspects which can be 

used in conjunction with other methods to obtain a solution. The optimization constraints can be 

adapted into a scoring function such as the one we use. 

 

Another method to approach scheduling is decomposition, which is usually done with 

one of two methods. In the first, the pairings that need to be played are determined for a section 

of schedule, and then a home-away pattern is calculated for the section. In the second, a home-

away pattern is first calculated, with the teams playing chosen afterward. This is a good method 

to develop a schedule that can easily be improved upon. Another way is to use a greedy 

algorithm that assigns teams to games in a schedule. 

 



A common approach to problems with a huge amount of constraints and considerations 

such as in sports scheduling is to use different methods of heuristics searches and metaheuristics. 

Because these problems cannot be solved completely optimally in a reasonable amount of time, 

we often resort to algorithms that can find solutions that are likely sub-optimal but obtainable in 

a reasonable runtime. There are many approaches to developing such algorithms, such as tabu 

search, greedy randomized searches, genetic algorithms, and many more. These methods have 

many similarities mostly have a focus on different ways to search for an optimal solution using a 

given one with methods to not get stuck in local minima. The method we primarily look at is 

simulated annealing. 

 

  



Proposed Scheduling Method 
 

Formulation of the Problem 

 
When creating the NBA schedule, we take the following objectives into consideration: 

the number of back-to-back games, the total distance each team travels, the occurrence of 

popular games on important dates, and the fairness of the schedule regarding each team. We 

assign weights to each objective and use them to calculate a score for the schedule. The weight 

assignment process translates the NBA scheduling problem into a mathematical problem of 

finding the schedule with the highest possible score. Our scheduling method follows all 

constraints of a valid NBA schedule, and works under certain assumptions. 

 

Starting with a past schedule, we use the local search algorithm and simulated annealing, 

in particular, to test the optimality of the schedule and search for a better schedule, if possible, 

under our scoring system. 

 

The Evaluator 

 

The evaluator is a function that takes in a schedule and returns a score. In other words, it 

evaluates a given schedule. The evaluation is based on three factors – travel distance, number of 

back-to-back games, and team popularity. 

 

The biggest complaint about the NBA schedule has been too many back-to-back games. 

Therefore, our most important assumption is that penalty for number of back-to-back games 

increases quadratically. Under this assumption, the number of back-to-back games has a 

significant impact on the score of a schedule. We count the number of back-to-back games for 

each team and for the whole season by iterating through the schedule. We then assign the 

quadratic penalty and add it into the total score. 

 



As for travel distance, we simply assume that the team does not return to its home city 

between two consecutive games. That is, if a team has two consecutive away games at city A and 

B, then the team travels from A to B directly. We assign the distance factor a softer weight with 

linear penalty. Similarly, we iterate through the current schedule to get the total distance for each 

team and for the whole season. Then we assign the linear penalty and add it into the total score. 

 

We simplify the calculation of fairness by considering only number of back-to-back 

games and the travel distance. Our goal is to have all teams play roughly the same number of 

back-to-back games and total distance. Since standard deviation is an indication of variation 

among a data set, we use the standard deviation of the number of back-to-back games and the 

total distance for each team as evaluation of fairness. We assign penalty for both standard 

deviations, and add it into the total score. 

 

The last factor, team popularity, is a key factor of commercial value creation. Ticket price, 

TV rating and viewership, sponsorships, and media coverage are all affected by team popularity. 

Another assumption is that there would be significantly more audience if two popular teams are 

playing on a popular date. We assume that Fridays and Christmas day are the popular dates, and 

the team popularity could be rated based on a team’s performance, fan base, and commercial 

value. 

 

We rate the 30 teams by popularity considering overall performance rating, number of 

Twitter and Facebook followers, and current value. We weight each factor according to its 

significance. For example, overall performance rating is significant for the schedule since it is 

more up-to-date, and the majority of audience is not from the fan base. Therefore, we scale up 

overall performance rating by 𝑟𝑎𝑡𝑖𝑛𝑔 + 𝑙𝑜𝑤𝑒𝑠𝑡 𝑟𝑎𝑡𝑖𝑛𝑔 ∗ 1.5. Meanwhile, since the number of 

followers on Twitter is generally less than that on Facebook, we scale up Twitter followers by 4 

times. The final popularity rating is calculated by summing up all weighted factors. The table 

below shows the top and bottom 3 teams by popularity. (See full table in Appendix) 

  



 
City Team Overall3 Overall* Twitter4 Twitter* Facebook5 Value6 Popularity 

Golden States Warriors 10.49 31.00 2.44 9.76 9.15 1.9 51.82 

Miami Heat 1.52 17.55 3.56 14.24 16.21 1.3 49.30 

Los Angeles Lakers -9.43 1.13 5.22 20.88 21.85 2.7 46.56 

Brooklyn Nets -7.61 3.86 0.68 2.72 2.79 1.7 11.07 

Phoenix Suns -6.50 5.52 0.58 2.32 1.89 1 10.73 

Philadelphia 76ers -10.18 0 0.71 2.84 1.52 0.7 5.06 

Table 1: Popularity Rating 

  

Most teams’ popularity ratings lie between 20 and 30. The 5 most popular teams are rated 

more than 40. We define the popularity score for a game as the sum of the team popularity 

ratings. Then it is fair to assume that a popular game has a score greater than 60. Under this 

assumption, we derive the method as follows: for example, a game is played on a Friday with a 

total score of K larger than 60. Then, we add 𝐾! − 60! to the raw score for popularity 

(unweighted). By squaring K, an increase in K would have an enlarged effect on the final 

popularity score. 

 

The Local Search Algorithm: Simulated Annealing 
 

After examining an array of possible approaches to the problem, we decided to apply the 

local search algorithm, in particularly simulated annealing for this problem. The simulated 

annealing algorithm will be described as applied to a combinational optimization problem. Many 

combinatorial optimization problem have been shown to be NP-hard, which means the running 

time for any algorithms currently known to guarantee an optimal solution is an exponential 

function of the size of the problem7. Simulated annealing works particularly well in our case, for 

a couple of reasons specific to the NBA scheduling problem: 

 

                                                
3 Basketball Reference. 2015-2016 NBA Team Ratings. http://www.basketball-reference.com/leagues/NBA/ 
4 Statista. Twitter Followers of NBA Teams (in 1,000s), September 2016. https://www.statista.com/statistics/240386/ 
5 Statista. Facebook Fans of NBA Teams in September 2016 (in millions).https://www.statista.com/statistics/240382/ 
6 Forbes. The Business of Basketball (2016 Ranking). http://www.forbes.com/nba-valuations/list/ 
7 Eglese, R.W. Simulated Annealing: A Tool for Operational Research. http://www.sciencedirect.com/science/ 



1) The total number of games in a season is  !" !"#$% !"#$∗ !" !"#$% 
! !"#$%/!"#$

= 1230, and the 

1230 games span 161 different game dates. The search space is impossibly large for 

finding a global optimal solution. Simulated annealing is designed for this type of 

problem as it searches for global maximum while allowing travelling to worse 

situations, thus expanding its search range to find a “better” local maxima. 

2) The simulated annealing algorithm focuses on finding neighboring viable solutions in 

the search space. This works well with the NBA scheduling problem. We note that for 

any schedule that is a feasible solution, by identifying a rule to switch games or a 

bundle of games, we can easily find a new feasible solution that is a neighbor of our 

previous solution. We experimented with two different ways of finding a new 

schedule/neighbor, which will be elaborated later. 

3) Our goal is to “find better schedules”. An NBA schedule has a wide array of metrics, 

as described above, and there is no obvious way to compare any two schedules. Thus, 

the best way to evaluate is to assign numerical scores to each schedule. The 

evaluation or scoring process is the foundation of a local search algorithm, since it 

evaluates the generated schedule on any iteration and make local decisions based on 

its improvement from the previous solution. 

4) A local search algorithm is convenient if you have a viable solution to start with. This 

is the case in our research, since we (or any official in the real world) have access to 

the schedule from previous years. In fact, these are already good viable solutions to 

the problem. This provides an easy and favorable starting point for our algorithm to 

search for neighboring maxima. 

 

A Breakdown of the Algorithm 

 

A general idea of the simulated annealing approach has been described above. A 

pseudocode algorithm is provided below:  



 
• Step 2 of the algorithm is simple: we take a working NBA schedule and feed it to our 

schedule searcher. In particular, we chose NBA’s 2015-2016 Season Regular season 

schedule as a starting point for our search.  

 

• For the first step in the REPEAT loop, our algorithm generates a random neighboring 

solution by following a switch rule as mentioned before. Specifically, we tried the 

following two different methodology:  

 

1. Switch games: We randomly find two games on different dates, and switch them if 

doing so don’t break the constraints. In particular, all constraints related to number of 

games are maintained, and we only have to check if switching the selected games 

leads to one team playing two games on the same day. This switch method maintains 

the number of games played on each date, which is important since we don’t want a 

viable solution that aggregates too many games on some dates (e.g., naively put all 

the games in week on Friday, which is a desirable dates) 

 

2. Switch dates: We randomly find two different dates, and simply switch them. This 

also maintains all the important invariants as in the first method, but its flexibility 

since it always moves a bunch games together making it hard for the algorithm to try 

to maximize the benefit of single games, or, extracting games from on date, and 

distributing them to dates that improve the schedule. 



Another key concept of the algorithm lies in the second step in the REPEAT loop, where 

we simulate the “cooling” process of this algorithm. To put simply, the condition to move to a 

new schedule cools down as the algorithm goes further. This is achieved by the denominator 𝑡!  in 

the formula, which is called a “control value sequence”. This sequence converges to zero, to 

polarize the difference of f s! − f(s), thus gradually decreasing (cooling) the probability of 

moving a worse-off solution in the long run8. 

 

Score and Statistics of Initial Schedule 
 

[Total iterations = 0, Updated iterations = 0] 

s_score = -86.8582,  

btbNum = 532,  

btbStdev = 1.8607,  

distanceSum = 815636.0000,  

distanceStdev = 7816.9061,  

tvRatingScore = 429735.7629 

christmasDayGames: set([('New Orleans', 'Miami'), ('Cleveland', 'Golden State'), ('Los 

Angeles Clippers', 'Los Angeles Lakers'), ('Chicago', 'Oklahoma City'), ('San Antonio', 

'Houston')]) 

 

The measured correspond to the metrics given in the previous section on evaluator’s 

methodology: 

 

“btbNum”: Number of back-to-back games in total  

“btbStdev”: Standard deviation of the number of back-to-back games of each team 

“distanceSum”: Total travel distance of the teams 

“distanceStdev”: Standard deviation of the travel distance among teams 

“tvRatingScore”: Score for popular games on popular dates 

“christmasDayGames”: The games scheduled on Christmas Day, namely 12/25/15 

                                                
8 In our implementation, we maintain a minimum threshold value for 𝑡!  THRESHOLD = 0.0001, given the fact that 
too small denominator makes too large exponent for e and causes arithmetic overflow in python. 



 

Here it’s worth noting that our schedule f(s) normalizes each factor into a scale of 0 to 

100, and then sums them up with respective weights that sum to 1. This helps to understand our 

schedule score on a 0-to-100 scale. The initial schedule, as given above, is assigned a score of -

86.8582. 

 

Applications and Results 
 

Through playing with the factors of each metrics in our evaluator, we tested out our 

algorithm given a few different configurations: different ways to find neighboring schedules as 

well as different allowance for worse-off positions. First, while fixing the control value sequence 

𝑡!, we ran the algorithm with two different ways to generate neighboring schedule. The results 

are illustrated below. 

 

Method A: Switch Two Games 

 

[Total Iterations = 20000, updated iterations = 517]  

s_score = -45.8878 

btbNum = 460 

btbStdev = 1.01105 

distanceSum = 546274.0000 

distanceStdev = 4412.3043 

tvRatingScore = 601925.9572 

Christmas Day Games = set([('Chicago', 'Oklahoma City'), ('Cleveland', 'Golden State'), 

('Boston', 'Miami'), ('Dallas', 'Brooklyn'), ('San Antonio', 'Los Angeles Lakers')])		

	 	



 
Figure 1: Graph for Method A Score vs. Updates Iterations 

 

Method B: Switch Two Dates 

 

[Total iterations = 19999, Updated iterations = 66] 

 s_score = -91.2688  

btbNum = 549 

btbStdev = 1.7156 

distanceSum = 730097.0000  

distanceStdev = 6960.0307 

tvRatingScore = 417638.0188 

christmasDayGames: set([('San Antonio', 'Chicago'), ('Oklahoma City', 'Atlanta'), 

('Boston', 'Miami'), ('Houston', 'Detroit'), ('Portland', 'Los Angeles Clippers'), ('Golden 

State', 'Utah'), ('Denver', 'Milwaukee'), ('Dallas', 'Sacramento')]) 



          	  
Figure 2: Method B Score vs. Updated Iterations 

 

Method C: Switch Games, Strictly Increasing Score Sequence (No simulated Annealing) 

 

[Total iterations = 19999, Updated iterations = 555] 

 s_score = -47.9032 

btbNum = 462, btbStdev = 1.0832 

distanceSum = 547030.0000 

distanceStdev = 3826.4762 

tvRatingScore = 511570.0289 

christmasDayGames:set([('San Antonio', 'Houston'), ('Cleveland', 'Golden State'), 

('Atlanta', 'Miami'), ('Oklahoma City', 'Chicago'), ('Los Angeles Clippers', 'Los Angeles 

Lakers')]) 

 

 

 

 



 

 

 

 
Figure 3: Method C Score vs. Updated Iterations 

 

 

Discussion and Reflections 
 

Performance of the Methods 

 
We first discussed the first two methods where we adopted the simulated annealing 

process. As we can see from the graph and numerical results, on both graph A and B, the search 

process displays a drop to lower scores initially (in method A, this initial drop is hard to see 

given the scale) followed by a flatter process of gradual increase. This is expected from the 

algorithm, given the initially large control value 𝑡! which allows high probability of moving to 

worse-of schedules. As 𝑡!  converges to zero, we see that the program becomes less and less 

inclined to accept a worse-of position and roughly follows the pattern of a non-decreasing 

sequence. 

 



To compare the results from two methods, we see that method A that switches two games 

produces a much more optimal result. It’s also obvious that number of actual “updated” 

iterations from method B is far smaller than that of method A. Note that while the search depth 

of both methods is 20000, the updated iterations where the search “accepts” a new schedule 

differs far from the search depth. So, a graph that plots score against iterations will look far 

flatter. We believe these distinctions is related to the flexible nature of these two methods: 

switching by games generates far more possible valid solutions and thus a far larger search space, 

while switching games by dates limits the flexibility of optimizing the utility of each game 

within that date. By contrast, switch individual games does well in putting to positions that 

generates utility (separating games to reduce back-to-back games, put particularly favorable 

games on better dates, etc.). The idea to switch games by dates sources from the notion of 

“moving bundle of games”, which attempts recognize a couple of games that are already 

“bundled” together, for instance, some team making an away-game trip that involves playing 

Houston, San Antonio and Dallas in a row. Switching dates fells short at recognizing this local 

optimality. 

 

We also ran a third method of switching game, except this time forcing searcher to reject 

all worse-off situations. In theory, this strictly gives us the local maximum of closest to the 

initialization. As the test result turns out, method A gives us a final score of -47.9032 while 

method C gives a schedule with score -45.8878. This does not display obvious difference, and 

possible explanation is the limited depth we applied. Given the fact that our evaluator is non-

trivial, we decided that 20000 iterations would be adequate depth. In theory, we should be able to 

run more iterations, or set terminate conditions requiring convergence (e.g., the average speed of 

increase falls below a threshold), and see a larger difference between the simulated annealing 

searcher and the non-increasing searcher. 

 

Weight of Metrics and Reasoning 

 

One of the major problem was to decide on an appropriate set of factor weights for the 

evaluator. This was a long process involving a lot of guessing and testing, the final set of weights 

we arrived on is as follow: 



  

 W!"!#$% = %60                                                    W!"#$%&'()$!(* = %2.5 

 W!"!#"$%& = %2.5                                                  W!"#$%&'()*+ = %5 

 W!"#$%&'()*+ = %30 

 

To account for the sharp difference between weights for standard deviation and the value 

of variables, we note that the actual values of standard deviation (btbStdev ≈ 1.9) is far smaller 

than the actual variable values (btbNum ≈ 20.0). One issue to overcome throughout our testing 

was to force the searcher to suppress the number of back-to-back games, as it’s relatively easy to 

generate a new schedule that increases the number of back-to-back. Therefore, giving btbNum 

the most weight, combined with a cubic function that further penalizes high btbNum, ended up 

working for us. Another interesting point to add is that penalizing standard deviation helps limits 

the number of total back-to-back games, since initially all teams have around teamBtbNum = 20, 

and as we evaluate the schedule again after any switch of two games, the evaluator suppresses 

any single team from becoming an outlier by increasing teamBtbNum, which helps keeping 

btbNum down. 

 

Choices for the Control Sequence 𝑡! 
 

While the only requirements on control value sequence ti is that it converges to zero, its 

initial value as well as the speed of converge changes things a lot. Here highlighted are two 

better choices that we came up with. 

 

Choice 1: y = max 0.0001, 1.2!!  starts at 1 but steeper, so algorithm initially accepts 

worse schedules easily but quickly starts to accept better schedules only. 

 

Choice 2: y = max(0.0001, 1.05
!!

2) starts at 2 but flatter, so algorithm initially accept 

worse schedules with moderate possibility and gradually decline the possibility. This approach is 

more moderate and makes the algorithm more flexible and gives wider search range. In the end, 

we decided to adopt this sequence, since this roughly mimics the cooling process we have in our 

mind.  



 
 

 

Possible Directions of Further Research 

 

Throughout our research process, one challenge we face was finding a “clever” 

way to generate new schedules that boosts the speed of our algorithm. In the end, we 

stick the randomized game-switching algorithm, which gives sufficient result. But this 

could definitely be improved by finding other switch algorithms that “consciously” looks 

to decrease back-to-back games while minimizing travel distance. One approach for this, 

as some other sports scheduling algorithms have attempted, is to identify “bundles” of 

games that work well together on subsequent days, and switch these together to a better 

position in the schedule. This identification process is tricky, but that’s one direction of 

improvement 

 

One other we could take to better understand the algorithm in this particular case, 

is to analyze the development of search process, possibly visualizing the trend of 

different factors over the course of improving total score. This could give us insight into 

what the searcher prioritizes initially, and what it favors in the long run.  
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Appendix I: Team Popularity Table 
 

City	 Team	 Overall	 Twitter	 Facebook	 Value	 Overall*	 Twitter*	 Popularity	

Golden	State	 Warriors	 10.49	 2.44	 9.15	 1.9	 31.00	 9.76	 51.81	

Miami	 Heat	 1.52	 3.56	 16.21	 1.3	 17.55	 14.24	 49.30	

Los	Angeles	 Lakers	 -9.43	 5.22	 21.85	 2.7	 1.12	 20.88	 46.55	

San	Antonio	 Spurs	 11.1	 1.58	 6.95	 1.15	 31.92	 6.32	 46.34	

Chicago	 Bulls	 -1.42	 2.87	 18.76	 2.3	 13.14	 11.48	 45.68	

Oklahoma	City	 Thunder	 7.35	 1.42	 6.69	 0.95	 26.29	 5.68	 39.61	

Cleveland	 Cavaliers	 5.9	 1.5	 7.15	 1.1	 24.12	 6	 38.37	

Boston	 Celtics	 2.81	 1.96	 8.78	 2.1	 19.48	 7.84	 38.20	

Los	Angeles	 Clippers	 4.31	 0.99	 3.84	 2	 21.73	 3.96	 31.53	

Toronto	 Raptors	 4.5	 1.23	 2.16	 0.98	 22.02	 4.92	 30.08	

New	York	 Knicks	 -3.02	 1.52	 6.1	 3	 10.74	 6.08	 25.92	

Houston	 Rockets	 0.4	 1.16	 3.81	 1.5	 15.87	 4.64	 25.82	

Atlanta	 Hawks	 3.62	 0.66	 1.59	 0.825	 20.70	 2.64	 25.75	

Dallas	 Mavericks	 0.11	 0.99	 4.52	 1.4	 15.43	 3.96	 25.31	

Indiana	 Pacers	 1.68	 0.79	 3.31	 0.84	 17.79	 3.16	 25.10	

Charlotte	 Hornets	 2.34	 0.58	 1.73	 0.75	 18.78	 2.32	 23.58	

Portland	 Trail	Blazers	 1.03	 0.63	 2.39	 0.975	 16.81	 2.52	 22.70	

Utah	 Jazz	 2.09	 0.51	 1.16	 0.875	 18.40	 2.04	 22.48	

Orlando	 Magic	 -1.8	 1.39	 2.76	 0.9	 12.57	 5.56	 21.79	

Detroit	 Pistons	 0.4	 0.58	 1.85	 0.85	 15.87	 2.32	 20.89	

Washington	 Wizards	 -0.39	 0.53	 1.52	 0.96	 14.68	 2.12	 19.28	

Memphis	 Grizzlies	 -2.22	 0.61	 1.81	 0.78	 11.94	 2.44	 16.97	

Sacramento	 Kings	 -2.33	 0.51	 1.75	 0.925	 11.77	 2.04	 16.49	

Denver	 Nuggets	 -2.94	 0.52	 1.96	 0.855	 10.86	 2.08	 15.75	

Minnesota	 Timberwolves	 -3.68	 0.51	 1.83	 0.72	 9.75	 2.04	 14.34	

New	Orleans	 Pelicans	 -3.63	 0.52	 1.63	 0.65	 9.82	 2.08	 14.18	

Milwaukee	 Bucks	 -4.37	 0.52	 1.41	 0.675	 8.71	 2.08	 12.88	

Brooklyn	 Nets	 -7.61	 0.68	 2.79	 1.7	 3.85	 2.72	 11.06	

Phoenix	 Suns	 -6.5	 0.58	 1.89	 1	 5.52	 2.32	 10.73	

Philadelphia	 76ers	 -10.18	 0.71	 1.52	 0.7	 0	 2.84	 5.06	

 

 



Appendix II: Codes 

(Github Repo link: https://github.com/kn1ghtted/393Project.git) 

 

Searcher Template Class (searcher.py): 
 

GRAPH_UPATED_ITERATIONS_ONLY	=	False	

ONLY_ACCEPT_BETTER	=	False	

	

class	searcher:	

	def	__init__(self):	

			return	

	#	given	a	schedule	file,	

	#	return	a	dictionary	type	of	the	schedule:	

	#	'mm/dd/yy'	->	set([(away1,	home1),	(away2,	home2),	...])	

	def	readSchedule(self,	filename):	

			reader	=	CsvReader(filename)	

			cal	=	reader.data			

			attributes	=	reader.attributes	

			#	change	datetime	column	to	only	datetime	

			schedule	=	MyOrderedDict()	

			for	gameEntry	in	reader.data:	

					date	=	gameEntry[DATE].split("	")[DATE]	

					epoch	=	timeUtil.dateToEpoch(date)	

					standardDate	=	timeUtil.epochToDate(epoch)	

					gameEntry[DATE]	=	standardDate	

					awayTeam	=	gameEntry[AWAY]	

					homeTeam	=	gameEntry[HOME]	

					game	=	(awayTeam,	homeTeam)	

					#	if	this	date	already	stored	

					if	standardDate	in	schedule:	

							schedule[standardDate].add(game)	



					else:	

							schedule[standardDate]	=	set([game])	

			self.schedule	=	schedule	

	

	#	return	True	if	team	not	relevant	in	games	

	def	teamNoConflict(self,	team,	games):	

			for	game	in	games:	

					if	team	in	game:	

							return	False	

			return	True	

	

	def	switchGames(self,	schedule,	date1,	date2,	game1,	game2):	

			assert(game1	in	schedule[date1])	

			assert(game2	in	schedule[date2])	

			schedule[date1].remove(game1)	

			schedule[date2].remove(game2)	

			schedule[date1].add(game2)	

			schedule[date2].add(game1)	

	def	generateNewSchedule(self):	

			pass	

	

	def	switchBack(self):	

			pass	

	#	uses	simulated	Annealing	from	page	16	of	pdf	

	def	searchSchedule(self):	

			schedule	=	self.schedule	

			scaleFactor	=	None	

			self.best	=	evaluate(schedule)["score"]	

			depth	=	0	

			update	=	0	

	



			if	(PLOT):	

					if	(GRAPH_UPATED_ITERATIONS_ONLY):	

							scorePlot	=	Plot(sys.argv[0],	"Updated	Iterations")	

					else:	

							scorePlot	=	Plot(sys.argv[0],	"Iterations")	

	

			#	choose	a	solution	s'	from	S	randomly	

			#	by	selecting	a	game	randomly	and	swithing	it	with		

			#	another	game,	making	sure	that	all	four	teams	involved	

			#	don't	have	games	on	the	same	day	

			while	(depth	<	SEARCH_DEPTH):	

					retObject	=	evaluate(schedule)	

					s_score	=	retObject["score"]	

					btbNum,	btbStdev,	distanceSum,	distanceStdev,	popularityScore	=	

retObject["btbNum"],	\	

							retObject["btbStdev"],	retObject["distanceSum"],	

retObject["distanceStdev"],	retObject["tvRatingScore"]	

					totalBtbs	=	1	

					print	("[Total	iterations	=	%d,	Updated	iterations	=	%d]\n	

s_score	=	%.04f,	btbNum	=	%d,	btbStdev	=	%.04f,	distanceSum	=	%.04f,	

distanceStdev	=	%.04f,	tvRatingScore	=	%0.04f"	%	(depth,	update,	

s_score,	btbNum,	btbStdev,	distanceSum,	distanceStdev,	

popularityScore))	

					print	("christmasDayGames:"	+	str(schedule["12/25/15"]))	

					print		

					if	(PLOT):	

							if	(GRAPH_UPATED_ITERATIONS_ONLY):	

									scorePlot.update(update,	s_score)	

	

							else:	

									scorePlot.update(depth,	s_score)	



	

					self.generateNewSchedule()	

					#	use	randomness	to	decide	with	move	to	s'	

					randNum	=	random.uniform(0.0,	1.0)	

					s1_object	=	evaluate(schedule)	

					s1_score	=	s1_object["score"]	

					if	(scaleFactor	==	None):	

							scaleFactor	=	abs(s1_score	-	s_score)	

					delta	=	s1_score	-	s_score	

					#	condition	=	min(1,	

math.exp((delta*1.0/scaleFactor)*1.0/controlValues[update]))	

					exponent	=	min(0,	

(delta*1.0/scaleFactor)*1.0/controlValues[update])	

					condition	=	math.exp(exponent)	

					#	print	"delta	=	%.04f,	randNum	=	%.04f,	condition	=	%.04f"	%	

(delta,	randNum,	condition)	

					if	(randNum	>=	condition):	

							#	switch	back	

							self.switchBack()	

					else:	

							if	(s1_score	>=	self.best):	

									self.best	=	s1_score	

							#	this	means	we	only	update	schedule	when	it's	going	in	a	

better	direction	

							else:	

									if	(ONLY_ACCEPT_BETTER):	

											self.switchBack()	

							update	+=	1	

					depth	+=	1	

 



Switch Game Method Implementation (search_switchgames.py): 
 

class	searcherSwitchGames(searcher):	

	def	switchBack(self):	

					self.switchGames(self.schedule,	self.date2,	self.date1,	

self.game1,	self.game2)	

	

	def	generateNewSchedule(self):	

			schedule	=	self.schedule	

			self.date1	=	random.choice(schedule.keys())	

			self.game1	=	random.choice(list(schedule[self.date1]))	

			self.date2	=	self.date1	

			#	choose	the	target	game	to	switch	

			#	not	on	same	day,	all	four	games	don't	have		

			#	same	day	matches	after	switch	

			date2Valid	=	False	

			while	((not	date2Valid)):	

			#	????	should	we	limit	the	range	of	difference	between	the	

			#	dates	to	switch	with?											

					self.date2	=	random.choice(schedule.keys())	

					self.game2	=	random.choice(list(schedule[self.date2]))	

					if	(self.date1	==	self.date2):	

							continue	

					else:	

							date1Games	=	copy.deepcopy(schedule[self.date1])	

							date2Games	=	copy.deepcopy(schedule[self.date2])	

							date1Games.remove(self.game1)	

							date2Games.remove(self.game2)	

							(teamA,	teamB)	=	self.game1	

							(teamC,	teamD)	=	self.game2	

							if	((self.teamNoConflict(teamA,	date2Games))	and	\	



							(self.teamNoConflict(teamB,	date2Games))	and	\	

							(self.teamNoConflict(teamC,	date1Games))	and	\	

							(self.teamNoConflict(teamD,	date1Games))):	

									date2Valid	=	True	

			#	switch	games,	move	to	s'	

			self.switchGames(schedule,	self.date1,	self.date2,	self.game1,	

self.game2)	

	

S	=	searcherSwitchGames()	

S.readSchedule("nba_games_2015-2016.txt")	

S.searchSchedule()	

 

	 	



Switch Dates Method Implementation (search_switchdates.py): 
 

class	searcherSwitchDates(searcher):	

	def	switchBack(self):	

			schedule	=	self.schedule	

			temp	=	schedule[self.date1]	

			schedule[self.date1]	=	schedule[self.date2]	

			schedule[self.date2]	=	temp	

	

	def	generateNewSchedule(self):	

			schedule	=	self.schedule	

			self.date1	=	random.choice(schedule.keys())	

			self.date2	=	self.date1	

			while	(self.date1	==	self.date2):	

			#	????	should	we	limit	the	range	of	difference	between	the	

			#	dates	to	switch	with?											

					self.date2	=	random.choice(schedule.keys())	

			#	print	self.date1,	self.date2	

			#	print	schedule[self.date1],	schedule[self.date2]	

			temp	=	schedule[self.date1]	

			schedule[self.date1]	=	schedule[self.date2]	

			schedule[self.date2]	=	temp	

			#	print	schedule[self.date1],	schedule[self.date2]	

	

S	=	searcherSwitchDates()	

S.readSchedule("nba_games_2015-2016.txt")	

S.searchSchedule()	

 

	 	



Evaluator (evaluator.py) 
 

GAME_SCORE_THRESHOLD	=	4000	

	

total	=	0	

teams	=	set()	

teamScores	=	dict()	

teamDistance	=	dict()	

#	to	be	determined	

btbOnTotal	=	-10	

btbOnTeam	=	-10	

weightBtb	=	0.3	

weightFairness	=	0.4	

weightDistance	=	0.3	

distanceReader	=	DistanceReader("distances.csv")	

distance	=	distanceReader.distanceDict	

popularityReader	=	PopularityReader("Popularity	new.csv")	

popularityDict	=	popularityReader.popularityDict	

	

def	allTeams(calDict):	

	for	date	in	calDict:	

			s	=	calDict[date]	

			for	game	in	s:	

					for	team	in	game:	

							teams.add(team)	

	

def	initialTeamSocores(calDict):	

	for	eachTeam	in	teams:	

			teamScores[eachTeam]	=	0	

			teamDistance[eachTeam]	=	(0,None)	



	

#	return	True	if	team	not	relevant	in	games	

def	inGame(team,	games):	

	for	game	in	games:	

			if	team	in	game:	

					return	True	

	return	None	

	

def	backToback(calDict,team):	

	totalPanelty	=	0	

	totalDistance	=	0	

	counter	=	0	

	for	date	in	calDict:	

			nextDate	=	nextDay(date)	

			games	=	calDict[date]	

			if	inGame(team,games):	

					if	(nextDate	in	calDict)	and	inGame(team,calDict[nextDate]):	

							counter	+=	1	

							totalPanelty	+=	btbOnTeam	

	return	(totalPanelty,counter)	

	

def	getStdDev(teamScores):	

	total	=	0	

	for	team	in	teamScores:	

			total	+=	teamScores[team]	

	mean	=	total	*	1.0	/len(teams)	

	variance	=	0	

	for	team	in	teamScores:	

			variance	+=	(teamScores[team]	-	mean)**2	

	variance	=	variance	*	1.0	/	len(teams)	



	return	math.sqrt(variance)	

	

def	popularity(calDict):	

	popularityPoint	=	0	

	for	date	in	calDict:	

			month,	day,	year	=	(int(x)	for	x	in	date.split('/'))	

			year	=	2000	+	year			

			ans	=	datetime.date(year,	month,	day)	

			weekday	=	ans.strftime("%A")	

			games	=	calDict[date]	

			if	weekday	==	"Friday":	

							for	game	in	games:	

											totalScore	=	popularityDict[game[0]]	+	

popularityDict[game[1]]	

											if	(totalScore	**	2)	>	GAME_SCORE_THRESHOLD:	

															popularityPoint	+=	(totalScore)	**	2	-	

GAME_SCORE_THRESHOLD	

			#	Christmas	day	

			if	date	==	"12/25/15":	

							for	game	in	games:	

											totalScore	=	popularityDict[game[0]]	+	

popularityDict[game[1]]	

											if	(totalScore	**	2)	>	GAME_SCORE_THRESHOLD:	

															popularityPoint	+=	CHRISTMAS_MULTIPLIER	*	(totalScore	

**	2	-	GAME_SCORE_THRESHOLD)	

	return	popularityPoint	

	

def	totalDistance(calDict,teams):	

	total	=	0	

	for	date	in	calDict:	



			games	=	calDict[date]	

			for	game	in	games:	

					homeTeam	=	game[1]	

					awayTeam	=	game[0]	

					hDistance	=	teamDistance[homeTeam][0]	

					aDistance	=	teamDistance[awayTeam][0]	

					if	(teamDistance[awayTeam][1]	==	None):	

							teamDistance[awayTeam]	=	(distance[awayTeam,homeTeam]	+	

aDistance,	homeTeam)	

					else:	

							previous	=	teamDistance[awayTeam][1]	

							teamDistance[awayTeam]	=	(distance[awayTeam,previous]	+	

aDistance,	homeTeam)	

					if	(teamDistance[homeTeam][1]	==	None):	

							teamDistance[homeTeam]	=	(hDistance,	None)	

					else:	

							previous	=	teamDistance[awayTeam][1]	

							teamDistance[homeTeam]	=	(distance[homeTeam,previous]	+	

hDistance,	homeTeam)	

	for	each	in	teamDistance:	

			total	+=	teamDistance[each][0]	

	return	total	

	

	

def	evaluate(calDict):	

	allTeams(calDict)	

	initialTeamSocores(calDict)	

	btbNum	=	0	

	distanceSum	=	totalDistance(calDict,	teams)	

	for	team	in	teamScores:	



			teamScoreDelta,	btbNumDelta	=	backToback(calDict,team)	

			teamScores[team]	+=	btbNumDelta	

			btbNum	+=	btbNumDelta	

	btbStdev	=	getStdDev(teamScores)	

	teamD	=	dict()	

	for	each	in	teamDistance:	

			teamD[each]	=	teamDistance[each][0]	

	distanceStdev	=	getStdDev(teamD)	

	popularityScore	=	popularity(calDict)	

	totalScore	=	(-	0.025)	*	btbStdev	*	50	+	(-0.6)	*	(btbNum**4)	/	

819247506.25	+	(-	0.025)	*	distanceStdev	/	80.0	+	(-	0.3)	*	

(distanceSum/8000.0)	\	

	+	(0.05)	*	popularityScore	/	3000.0	

	retObject	=	{}	

	retObject["score"]	=	totalScore	

	retObject["btbNum"]	=	btbNum	

	retObject["btbStdev"]	=	btbStdev	

	retObject["distanceSum"]	=	distanceSum	

	retObject["distanceStdev"]	=	distanceStdev	

	retObject["tvRatingScore"]	=	popularityScore	

	#	print	"popularityScore	=	",	popularityScore	

	return	retObject	

 

 

 

 

 


