
1

Operations Research Final Project

Optimal Businessman’s

travelling problem

Hongyang Yu
Daniel Lu

Special Thanks to Professor Alan Frieze

2

Table of Contents

Introduction……3

Problem Set-up………………………………………………………………………………………………………4-6

Dijkstra’s Algorithm & Implementation………………………………………………………...…………7-8

Bisection Method……………………………………………………………………………………………………….9

Results & Discussion…………………………………………………………………………………………...10-11

Further Improvement………………………………………………………………………………………………12

Conclusion………....13

Appendix………14-20

3

Introduction

Inspired by the shortest path problem from lectures, we found it interesting to

explore this idea and apply it to daily use. The shortest path problem is the problem of

finding a path between two vertices in a graph such that sum of the weights of its

constituent edges is minimized. In the original problem, the weights represent the

distance between the vertices, and we aim to minimize the total length of the path.

However, this simplified version, despite significant in theory, doesn’t cooperate well

with the real world problems. In reality, many other factors have to be considered

besides the distance, for instance lodging cost, dining cost, total time travelled, etc. For a

businessman on errand to travel from London to Shanghai, he could be asked to

minimize the total cost of staying the night in a city, as well as the total distance (which

is equivalent to total time, assuming no lay off time). Thus, we incorporate the extra

constraints into the weights between the vertices. Since we have both the distance and

costs non-negative, the arc length in the graph with cities as vertices are also non-

negative, and therefore we are safe to apply Dijkstra’s algorithm.

4

Problem Set-Up

In this project, we pick in total 30 cities and collect the travelling distances

among each other. Moreover to accommodate the extra costs, we combine the lodging

cost and dining cost and use the same hotel, same date, and same currency to

standardize the problem. (We finalize by picking the date 12/25/2013 in Hilton hotel,

all costs are in U.S dollar, and the combined costs is calculated by hotel cost × 1.5)

Figure 1 shows the city names, the corresponding code names, and the combined costs.

Figure 2 shows the airline distances among the cities, in hundreds of miles.

Azores
AZ $72

Baghdad
BD $32

Berlin
BN $107

Bombay
BY $139

Buenos Aires
BS $209

Cairo
CO $125

Cape town
CN $372

Chicago
CH $95

Guam
GM $140

Honolulu
HU $229

Istanbul
IL $204

Juneau
JU $109

London
LN $387

Manila
MA $60

Melbourne
ME $240

Mexico City
MY $142

Montreal
ML $122

Moscow
MW $183

New Orleans
NS $119

New York
NY $169

Panama City
PY $119

Paris
PS $305

Rio de Janeiro
RO $229

Rome
RE $339

San Francisco
SF $199

Santiago
SO $159

Seattle
SE $119

Shanghai
SI $377

Sydney
SY $239

Tokyo
TO $291

Figure 1

5

Figure 2

In this problem, we have a connected directed graph𝐺 = (𝑉, 𝐴), where set V includes all

of the cities, and set A includes all of the pairwise edges. Different from the original

version, the businessman has a budget constraint which must be less than or equal to L

(a constant) for the total costs of the stays in any city he has stays for the night,

excluding the departure city. Hence every arc length is computed by adding the

distance between two cities to some constant weight 𝜆 times the max of the combined

cost at the destined city minus the budget constraint and zero.

For instance, the arc length between two cities A and B is

𝑙(𝐴, 𝐵) = 𝐷𝑖𝑠𝑡(𝐴, 𝐵) + 𝜆 × (𝐶𝑜𝑚𝑏𝑖𝑛𝑒𝑑 𝐶𝑜𝑠𝑡 𝑜𝑓 𝑆𝑡𝑎𝑦𝑠 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝐴 𝑎𝑛𝑑 𝐵(𝑖𝑛𝑐𝑙. 𝐵) − 𝐿)+,

Similarly, we have the arc length from B to A as,

𝑙(𝐵, 𝐴) = 𝐷𝑖𝑠𝑡(𝐴, 𝐵) + 𝜆 × (𝐶𝑜𝑚𝑏𝑖𝑛𝑒𝑑 𝐶𝑜𝑠𝑡 𝑜𝑓 𝑆𝑡𝑎𝑦𝑠 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝐵 𝑎𝑛𝑑 𝐴(𝑖𝑛𝑐𝑙. 𝐴) − 𝐿)+

6

Following the definition above, the length of a Path 𝑃 = (𝑥0, 𝑥1, 𝑥2, … 𝑥𝑘), not additive as

in the original Dijkstra’s algorithm, is the addition of the distances plus 𝜆 times the max

of the combined cost of all of the cities, excluding the departure city, minus the budget

constraint and zero.

𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑥0, 𝑥1) + 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑥1, 𝑥2) + ⋯ 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑥𝑘−1, 𝑥𝑘) + 𝜆

× (𝐶𝑜𝑚𝑏𝑖𝑛𝑒𝑑 𝐶𝑜𝑠𝑡 𝑥1 + ⋯ 𝐶𝑜𝑚𝑏𝑖𝑛𝑒𝑑 𝐶𝑜𝑠𝑡 𝑥𝑘 − 𝐿)+

Therefore, given a departure city and arrival city, we are essentially minimizing the

total distance travelled while keeping the whole trip’s cost under the budget, and our

final goal is to find the minimum 𝜆 such that both constraints are satisfied. The 𝜆 in this

problem plays the role of balancer, when 𝜆 has small value, the length of an arc is

dominated by the distance constraint, and the budget constraint has little effect. As a

result, when we are minimizing the total weight, we are finding the shortest path

between two cities, but the budget constraint could be violated. On the other hand, if the

𝜆 has large value, the length of an arc is dominated by budget constraint, and the

distance constraint has little effect. Consequently, when we are minimizing the total

weight, we are finding a path such that the budget constraint is met, while we’re not

guaranteed the path we find is the shortest. Hence, finding the appropriate 𝜆 can give us

the shortest path given each day’s constraint is satisfied. Later in the paper, we will

implement the Dijkstra’s algorithm efficiently and taking advantage of bisection method

to find the 𝜆.

A B

7

Dijkstra’s Algorithm & Implementation

In this project, we decide to code our programs in Java.

To solve the problem, there are two different algorithms we must consider. The first is

the extended Dijkstra’s algorithm, described as follows.

Define our measure of distance as

𝑙(𝐴, 𝐵) = 𝐷𝑖𝑠𝑡(𝐴, 𝐵) + 𝜆 × (𝐶𝑜𝑚𝑏𝑖𝑛𝑒𝑑 𝐶𝑜𝑠𝑡 𝑜𝑓 𝑆𝑡𝑎𝑦𝑠 𝐵𝑒𝑡𝑤𝑒𝑒𝑛 𝐴 𝑎𝑛𝑑 𝐵 (𝑖𝑛𝑐𝑙. 𝐵) − 𝐿)+.

Dijkstra's algorithm will first select a starting node and assign some initial distance

values and will try to improve them step by step.

1. Assign to every node a tentative distance value; set it to zero for our initial node

and to infinity for all other nodes.

2. Mark all nodes unvisited. Set the initial node as current. Create a set of the

unvisited nodes called the unvisited set consisting of all the nodes.

3. For the current node, consider all of its unvisited neighbors and calculate

their tentative distances. In our case, we need to keep track of the actual distance

of the path as well as the total cost accumulated from staying overnight in cities

during the trip. Call the first distance d1 and the second distance d2, respectively.

We then test if the new distance to an unvisited neighbor is less than the

previously recorded tentative distance of B, then overwrite that distance. Even

though a neighbor has been examined, it is not marked as "visited" at this time,

and it remains in the unvisited set.

4. When we are done considering all of the neighbors of the current node, mark the

current node as visited and remove it from the unvisited set. A visited node will

never be checked again.

8

5. If the destination node has been marked visited (when planning a route between

two specific nodes) or if the smallest tentative distance among the nodes in

the unvisited set is infinity (when planning a complete traversal; occurs when

there is no connection between the initial node and remaining unvisited nodes),

then stop. The algorithm has finished.

6. Select the unvisited node that is marked with the smallest tentative distance, and

set it as the new "current node" then go back to step 3.

A complete implementation of our algorithm is attached in Appendix.

9

Bisection Algorithm

 Since Dijkstra’s algorithm in our problem requires a specific value for the 𝜆

parameter in order to run, we wish to find the minimum 𝜆 which gives a different path

between any two given cities. In the context of our problem, finding such a 𝜆 implies

that we are finding the Lagrange multiplier such that the businessman is indifferent

between traveling a longer physical distance and traveling a shorter distance while

staying overnight at different cities.

 The algorithm to find the 𝜆 is as follows.

1. Initialize 𝜆 = 0.001.

2. While Dijkstra’s algorithm continues to give the same cost for two predefined

cities (in this case Azores and Manila), 𝜆 ← 𝜆 ⋅ 2.

3. Now we have two different 𝜆 that gives two different total costs. To find the

minimum 𝜆, we apply the bisection algorithm and stop at a given threshold of

0.001.

The code for this part can also be found in the appendix.

10

Results & Discussion

Having implemented the revised Dijkstra’s algorithm and the bisection method

from the previous sections, in this section, we will display and explain some of the

outputs and discuss improvements that could be made to expand this paper.

Example 1: Departure city: Azores Arrival city: Manila

Firstly, we set 𝜆 = 0, in this way, we are only considering minimizing the travelling

length between the two cities while ignoring the budget constraint.

Output: Path: [Azores, Paris, Berlin, Manila]

 Distance of this path is: 82.0 (thousand miles)

Moreover, we can calculate the total cost associated with this route, which in this case is

$472.

Hence, if we have a budget higher than this number, we can achieve the shortest path of

82 thousand miles.

Now, let’s consider a shorted budget of only $400. Our search of 𝜆 gives us 0.0835.

And the path from the output: Path: [Azores, Manila]

 Distance of this path is: 83.0

From this output, we are guaranteed the direct flight from Azores to Manila with

distance 83(thousand miles) is the shortest and cheapest path under the budget L =

$400. And our trip’s cost is $60.

11

To double check the algorithm’s validity, we can consider another route from Azores to

Paris and then to Manila. In this case, we have a travelling distance of 83(thousand

miles), the same as our output from the program. However, this trip’s cost adds to $365,

which is way higher than the direct flight of only $60.

Example 2 Departure city: Azores Arrival city: San Francisco

We follow the same step as in example 1, and get the following results.

When 𝜆 = 0,

Output: Path: [Azores, Montreal, San Francisco]

Distance of this path is: 49.0(thousand miles)

And the cost with the route is $321, which means any budget greater than this will

achieve this shortest path.

Consider a new budget of $200. We get 𝜆 = 0.0455.
Our route for this constraint is Path: [Azores, San Francisco]

 Distance of this path is: 50.0(thousand miles)

Hence, we are guaranteed the shortest and cheapest path under this constraint is a

direct flight from Azores to San Francisco with cost of $199.

12

Further Improvement

Despite that the algorithms implemented have shed us light upon solving a more

realistic version of shortest path problem, we still have a lot to improve. One of the

restrictions is that our data set size is limited. By including more cities and giving fewer

direct flights available, we are expecting to see 𝜆 to change more dramatically and by

feeding in different budget constraint we can obtain more diversified routes. In addition,

we can throw in more constraints to the weight, and lessen more assumptions. For

instance, instead of ignoring the lay-off time, we can add in the cost of this waiting time

and the commuting cost from airport to hotel as well. Hence, we introduce more 𝜆’s and

can try various ways other than bisection method to get those numbers faster and more

efficiently.

13

Conclusion

In this paper, we have achieved a more realistic version of shortest path problem

with one more budget constraints. To accomplish this, we’ve modified the weight of a

path by adding the extra term 𝜆 times the max of the combined cost of all of the cities,

excluding the departure city, minus the budget constraint and zero. We then revised the

Dijkstra’s algorithm and implemented the bisection method to find 𝜆. Despite limited in

data size and assumptions constraints, the approach of solving this single budget

constraint problem sheds us light and paves a good way towards a more complicated

multi-constraints shortest path problem.

14

Appendix

Graph Implementation

package graph;

public class Vertex implements Comparable<Vertex>
{
 private final String name;
 private Edge[] adjacencies;
 private double minDistance = Double.POSITIVE_INFINITY;
 private double minDistance2 = 0.0;
 private Vertex previous;
 private double cost;

 public Vertex(String argName, double cost) {
 name = argName;
 this.cost = cost;
 }

 public void setAdjacencies(Edge[] e) {
 adjacencies = e;
 }

 @Override
 public int compareTo(Vertex other) {
 return Double.compare(minDistance, other.minDistance);
 }

 public String getName() {
 return name;
 }

 public double getCost() {
 return cost;
 }

 public Edge[] getAdjacencies() {
 return adjacencies;
 }

 public Vertex getPrevious() {
 return previous;
 }

 public String toString() {
 return name;
 }

 public void setMinDistance(double minDist) {
 minDistance = minDist;
 }

 public double getMinDistance() {
 return minDistance;
 }

 public void setMinDistance2(double minDist) {
 minDistance2 = minDist;
 }

 public double getMinDistance2() {
 return minDistance2;
 }

15

 public void setPrevious(Vertex u) {
 previous = u;
 }
}

package graph;

public class Edge
{
 private final Vertex target;
 private final double weight;
 public Edge(Vertex argTarget, double argWeight) {
 target = argTarget;
 weight = argWeight;
 }

 public Vertex getTarget() {
 return target;
 }

 public double getWeight() {
 return weight;
 }
}

Djikstra Implementation

package algorithm;

import graph.Edge;
import graph.Vertex;

import java.util.PriorityQueue;
import java.util.List;
import java.util.ArrayList;
import java.util.Collections;

public class Dijkstra
{
 private static double lambda;
 private static double thresh;

 public Dijkstra(double _lambda, double _thresh) {
 lambda = _lambda;
 thresh = _thresh;
 }

 public void setLambda(double _lambda) {
 lambda = _lambda;
 }

 public void setThresh(double _thresh) {
 thresh = _thresh;
 }

 public double getLambda() {
 return lambda;
 }

 public double getThresh() {
 return thresh;
 }

 public static double getL2Weight(double cost) {

16

 return lambda*Math.max(0, cost-thresh);
 }

 public void computePaths(Vertex source)
 {
 source.setMinDistance(0.);
 PriorityQueue<Vertex> vertexQueue = new PriorityQueue<Vertex>();
 vertexQueue.add(source);

 while (!vertexQueue.isEmpty()) {
 Vertex u = vertexQueue.poll();

 // Visit each edge exiting u
 for (Edge e : u.getAdjacencies())
 {
 Vertex v = e.getTarget();
 // weight and the l2 weight
 double weight = e.getWeight() + getL2Weight(u.getMinDistance2());
 double distanceThroughU;
 if(u.getPrevious() == null) {
 distanceThroughU = u.getMinDistance() + weight;
 } else {
 distanceThroughU = u.getMinDistance() + weight -
getL2Weight(u.getPrevious().getMinDistance2());
 }

 if (distanceThroughU < v.getMinDistance()) {
 vertexQueue.remove(v);
 v.setMinDistance2(u.getMinDistance2() + v.getCost()) ;
 v.setMinDistance(distanceThroughU) ;
 v.setPrevious(u);
 vertexQueue.add(v);
 }
 }
 }
 }

 public List<Vertex> getShortestPathTo(Vertex target)
 {
 List<Vertex> path = new ArrayList<Vertex>();
 for (Vertex vertex = target; vertex != null; vertex = vertex.getPrevious())
 path.add(vertex);
 Collections.reverse(path);
 return path;
 }
}

Our Program with Bisection Method

package main;

import graph.Edge;
import graph.Vertex;

import java.util.List;
import java.util.Scanner;

import algorithm.Dijkstra;
import util.ParseData;

public class Main {

 public static int cityIndex(String city, String[] cities) {
 for(int i = 0; i < cities.length; i++) {
 if(cities[i].equals(city))
 return i;

17

 }
 return -1;
 }

 private static double costPath(String startCity, String endCity, String[] name,
int[] px, int[][] dist, double lambda) {
 double cost = 0.0;

 Vertex[] vertices = new Vertex[30];
 int index = 0;

 for(int i = 0; i < 30; i++) {
 vertices[i] = new Vertex(name[i], px[i]);
 }

 for(int i = 0; i < 30; i++) {
 Edge[] e = new Edge[29];
 for(int j = 0; j < 30; j++) {
 int d = dist[i][j];
 if(d != 0) {
 //System.out.println(vertices[j].getName());
 e[index] = new Edge(vertices[j], d);
 index++;
 }
 vertices[i].setAdjacencies(e);
 }
 index = 0;
 }

 // Read the starting and ending vertices

 int startIndex = cityIndex(startCity, name);
 int endIndex = cityIndex(endCity, name);

 System.out.println(lambda);
 Dijkstra dk = new Dijkstra(lambda, 400);
 dk.computePaths(vertices[startIndex]);
 List<Vertex> path = dk.getShortestPathTo(vertices[endIndex]);
 //System.out.println("Path: " + path);

 double expenseCost = 0.0;
 double distCost = 0.0;

 for(int i = 1; i < path.size(); i++) {
 int pIndex = cityIndex(path.get(i-1).getName(), name);
 int ind = cityIndex(path.get(i).getName(), name);
 distCost += dist[pIndex][ind];
 if(i != path.size() - 1) {
 expenseCost += px[ind];
 }
 }
 cost = expenseCost + distCost;
 return cost;
 }

 private static double computeLambda(String[] name, int[] px, int[][] dist) {
 String startCity = "Azores";
 String endCity = "Manila";
 double lambda = 0.001;
 double cost;
 do {
 lambda *= 2;
 cost = costPath(startCity, endCity, name, px, dist, lambda);
 } while (cost >= 494.0);

18

 double lambdaA = lambda/2;
 double lambdaB = lambda;
 while(lambdaB-lambdaA > 0.001) {
 lambda = (lambdaA + lambdaB)/2.0;
 cost = costPath(startCity, endCity, name, px, dist, lambda);
 if(cost >= 494.0) {
 lambdaA = lambda;
 } else {
 lambdaB = lambda;
 }
 }

 return lambda;
 }

 public static void main(String[] args)
 {

 ParseData pd = new ParseData();
 // names of the cities
 String[] name = pd.parseName();
 // cost of the cities
 int[] px = pd.parseCost();
 // distances between cities
 int[][] dist = pd.parseDist();

 Vertex[] vertices = new Vertex[30];
 int index = 0;

 for(int i = 0; i < 30; i++) {
 vertices[i] = new Vertex(name[i], px[i]);
 }

 for(int i = 0; i < 30; i++) {
 Edge[] e = new Edge[29];
 for(int j = 0; j < 30; j++) {
 int d = dist[i][j];
 if(d != 0) {
 //System.out.println(vertices[j].getName());
 e[index] = new Edge(vertices[j], d);
 index++;
 }
 vertices[i].setAdjacencies(e);
 }
 index = 0;
 }

 // Read the starting and ending vertices

 Scanner in = new Scanner(System.in);
 System.out.print("Please enter your starting destination: ");
 String startCity = in.nextLine();
 int startIndex = cityIndex(startCity, name);
 System.out.print("Please enter your ending destination: ");
 String endCity = in.nextLine();
 int endIndex = cityIndex(endCity, name);
 System.out.print("Please enter your budget: ");
 double budget = in.nextDouble();
 Dijkstra d = new Dijkstra(0.083, budget);

 d.computePaths(vertices[startIndex]);
 List<Vertex> path = d.getShortestPathTo(vertices[endIndex]);
 System.out.println("Path: " + path);

 double expenseCost = 0.0;
 double distCost = 0.0;

19

 double cost;
 for(int i = 1; i < path.size(); i++) {
 int pIndex = cityIndex(path.get(i-1).getName(), name);
 int ind = cityIndex(path.get(i).getName(), name);
 distCost += dist[pIndex][ind];
 if(i != path.size() - 1) {
 expenseCost += px[ind];
 }
 }
 cost = expenseCost + distCost;
 System.out.println("Distance of this path is: " + distCost);
 System.out.println("Cost of this path is: " + cost);

 in.close();

 System.out.println(computeLambda(name, px, dist));
 }
}

Utility to Parse Files

package util;

import java.io.BufferedReader;
import java.io.FileNotFoundException;
import java.io.FileReader;
import java.io.IOException;
import java.util.StringTokenizer;

public class ParseData {

 public int[] parseCost() {
 int[] ret = new int[30];
 Object sCurrentLine;
 int index = 0;

 BufferedReader tb;
 try {
 tb = new BufferedReader(new FileReader("ha30_prices.txt"));
 while ((sCurrentLine = tb.readLine()) != null) {
 ret[index] = Integer.parseInt((String)sCurrentLine);
 index++;
 }
 tb.close();
 } catch (FileNotFoundException e) {
 e.printStackTrace();
 } catch (NumberFormatException e) {
 e.printStackTrace();
 } catch (IOException e) {
 e.printStackTrace();
 }
 return ret;
 }

 public String[] parseName() {
 String[] ret = new String[30];
 Object sCurrentLine;
 int index = 0;

 try {
 BufferedReader tb = new BufferedReader(new
FileReader("ha30_name.txt"));
 while ((sCurrentLine = tb.readLine()) != null) {
 ret[index] = (String)sCurrentLine;
 index++;
 }

20

 tb.close();
 } catch (FileNotFoundException e) {
 // TODO Auto-generated catch block
 e.printStackTrace();
 } catch (IOException e) {
 // TODO Auto-generated catch block
 e.printStackTrace();
 }
 return ret;
 }

 public int[][] parseDist() {

 int[][] ret = new int[30][30];
 Object sCurrentLine;
 String delims = " ";
 // reset index to 0 after every row
 int i = 0, j = 0;

 try {
 BufferedReader tb = new BufferedReader(new
FileReader("ha30_dist.txt"));
 while ((sCurrentLine = tb.readLine()) != null) {
 StringTokenizer st = new StringTokenizer((String)sCurrentLine,
delims);
 while (st.hasMoreTokens()) {
 ret[i][j] = Integer.parseInt(st.nextToken());
 j++;
 }
 i++;
 j = 0;
 }
 tb.close();
 } catch (FileNotFoundException e) {
 e.printStackTrace();
 } catch (NumberFormatException e) {
 e.printStackTrace();
 } catch (IOException e) {
 e.printStackTrace();
 }
 return ret;
 }
}

