
1 
 

Operations Research Final Project 

 
Optimal Businessman’s 

travelling problem 
 

Hongyang Yu 
Daniel Lu 

 
Special Thanks to Professor Alan Frieze 

 
 
 
 
 

 
 



2 
 

Table of Contents 
 
Introduction………………………………………………………………………………………………………………3 
 
Problem Set-up………………………………………………………………………………………………………4-6 
 
Dijkstra’s Algorithm & Implementation………………………………………………………...…………7-8 
 
Bisection Method……………………………………………………………………………………………………….9 
 
Results & Discussion…………………………………………………………………………………………...10-11 
 
Further Improvement………………………………………………………………………………………………12 
 
Conclusion……………………………………………………………………………………………………………....13 
 
Appendix……………………………………………………………………………………………………………14-20 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



3 
 

 

Introduction 
 

Inspired by the shortest path problem from lectures, we found it interesting to 

explore this idea and apply it to daily use.  The shortest path problem is the problem of 

finding a path between two vertices in a graph such that sum of the weights of its 

constituent edges is minimized. In the original problem, the weights represent the 

distance between the vertices, and we aim to minimize the total length of the path. 

However, this simplified version, despite significant in theory, doesn’t cooperate well 

with the real world problems. In reality, many other factors have to be considered 

besides the distance, for instance lodging cost, dining cost, total time travelled, etc. For a 

businessman on errand to travel from London to Shanghai, he could be asked to 

minimize the total cost of staying the night in a city, as well as the total distance (which 

is equivalent to total time, assuming no lay off time). Thus, we incorporate the extra 

constraints into the weights between the vertices. Since we have both the distance and 

costs non-negative, the arc length in the graph with cities as vertices are also non-

negative, and therefore we are safe to apply Dijkstra’s algorithm. 
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Problem Set-Up 

In this project, we pick in total 30 cities and collect the travelling distances 

among each other. Moreover to accommodate the extra costs, we combine the lodging 

cost and dining cost and use the same hotel, same date, and same currency to 

standardize the problem. (We finalize by picking the date 12/25/2013 in Hilton hotel, 

all costs are in U.S dollar, and the combined costs is calculated by hotel cost × 1.5)  

Figure 1 shows the city names, the corresponding code names, and the combined costs. 

Figure 2 shows the airline distances among the cities, in hundreds of miles.  

 

Azores 
AZ $72 

Baghdad 
BD $32 

Berlin 
BN $107 

Bombay 
BY $139 

Buenos Aires 
BS $209 
 

Cairo 
CO $125 
  

Cape town 
CN $372 
 

Chicago 
CH $95 
 

Guam 
GM $140  

Honolulu 
HU $229 

Istanbul 
IL $204 
 

Juneau 
JU $109 
 

London 
LN $387 
 

Manila 
MA $60 
 

Melbourne 
ME $240 
 

Mexico City 
MY $142 
 

Montreal 
ML $122 
 

Moscow 
MW $183 
 

New Orleans 
NS $119 
 

New York 
NY $169 
 

Panama City 
PY $119 
 

Paris 
PS $305 
 

Rio de Janeiro 
RO $229 
  

Rome 
RE $339 
 

San Francisco 
SF $199 
 

Santiago 
SO $159  
 

Seattle 
SE $119 
 

Shanghai 
SI $377 
 

Sydney 
SY $239 
 

Tokyo 
TO $291 
 

 

Figure 1 
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Figure 2 

In this problem, we have a connected directed graph𝐺 = (𝑉, 𝐴), where set V includes all 

of the cities, and set A includes all of the pairwise edges. Different from the original 

version, the businessman has a budget constraint which must be less than or equal to L 

(a constant) for the total costs of the stays in any city he has stays for the night, 

excluding the departure city.  Hence every arc length is computed by adding the 

distance between two cities to some constant weight 𝜆 times the max of the combined 

cost at the destined city minus the budget constraint and zero.  

For instance, the arc length between two cities A and B is 

𝑙(𝐴, 𝐵) = 𝐷𝑖𝑠𝑡(𝐴, 𝐵) + 𝜆 × (𝐶𝑜𝑚𝑏𝑖𝑛𝑒𝑑 𝐶𝑜𝑠𝑡 𝑜𝑓 𝑆𝑡𝑎𝑦𝑠 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝐴 𝑎𝑛𝑑 𝐵(𝑖𝑛𝑐𝑙. 𝐵) − 𝐿)+, 

Similarly, we have the arc length from B to A as, 

𝑙(𝐵, 𝐴) = 𝐷𝑖𝑠𝑡(𝐴, 𝐵) + 𝜆 × (𝐶𝑜𝑚𝑏𝑖𝑛𝑒𝑑 𝐶𝑜𝑠𝑡 𝑜𝑓 𝑆𝑡𝑎𝑦𝑠 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝐵 𝑎𝑛𝑑 𝐴(𝑖𝑛𝑐𝑙. 𝐴) − 𝐿)+ 
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Following the definition above, the length of a Path 𝑃 = (𝑥0, 𝑥1, 𝑥2, … 𝑥𝑘), not additive as 

in the original Dijkstra’s algorithm, is the addition of the distances plus 𝜆 times the max 

of the combined cost of all of the cities, excluding the departure city, minus the budget 

constraint and zero. 

𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑥0, 𝑥1) + 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑥1, 𝑥2) + ⋯ 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑥𝑘−1, 𝑥𝑘) +  𝜆

× (𝐶𝑜𝑚𝑏𝑖𝑛𝑒𝑑 𝐶𝑜𝑠𝑡 𝑥1 + ⋯ 𝐶𝑜𝑚𝑏𝑖𝑛𝑒𝑑 𝐶𝑜𝑠𝑡 𝑥𝑘 − 𝐿)+ 

Therefore, given a departure city and arrival city, we are essentially minimizing the 

total distance travelled while keeping the whole trip’s cost under the budget, and our 

final goal is to find the minimum 𝜆 such that both constraints are satisfied.  The 𝜆 in this 

problem plays the role of balancer, when 𝜆 has small value, the length of an arc is 

dominated by the distance constraint, and the budget constraint has little effect. As a 

result, when we are minimizing the total weight, we are finding the shortest path 

between two cities, but the budget constraint could be violated. On the other hand, if the 

𝜆 has large value, the length of an arc is dominated by budget constraint, and the 

distance constraint has little effect. Consequently, when we are minimizing the total 

weight, we are finding a path such that the budget constraint is met, while we’re not 

guaranteed the path we find is the shortest. Hence, finding the appropriate 𝜆 can give us 

the shortest path given each day’s constraint is satisfied. Later in the paper, we will 

implement the Dijkstra’s algorithm efficiently and taking advantage of bisection method 

to find the 𝜆. 

 

 

 

A B 
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Dijkstra’s Algorithm & Implementation 

In this project, we decide to code our programs in Java.  

To solve the problem, there are two different algorithms we must consider. The first is 

the extended Dijkstra’s algorithm, described as follows. 

Define our measure of distance as 

𝑙(𝐴, 𝐵) = 𝐷𝑖𝑠𝑡(𝐴, 𝐵) + 𝜆 × (𝐶𝑜𝑚𝑏𝑖𝑛𝑒𝑑 𝐶𝑜𝑠𝑡 𝑜𝑓 𝑆𝑡𝑎𝑦𝑠 𝐵𝑒𝑡𝑤𝑒𝑒𝑛 𝐴 𝑎𝑛𝑑 𝐵 (𝑖𝑛𝑐𝑙. 𝐵) − 𝐿)+. 

Dijkstra's algorithm will first select a starting node and assign some initial distance 

values and will try to improve them step by step. 

1. Assign to every node a tentative distance value; set it to zero for our initial node 

and to infinity for all other nodes. 

2. Mark all nodes unvisited. Set the initial node as current. Create a set of the 

unvisited nodes called the unvisited set consisting of all the nodes. 

3. For the current node, consider all of its unvisited neighbors and calculate 

their tentative distances. In our case, we need to keep track of the actual distance 

of the path as well as the total cost accumulated from staying overnight in cities 

during the trip. Call the first distance d1 and the second distance d2, respectively. 

We then test if the new distance to an unvisited neighbor is less than the 

previously recorded tentative distance of B, then overwrite that distance. Even 

though a neighbor has been examined, it is not marked as "visited" at this time, 

and it remains in the unvisited set. 

4. When we are done considering all of the neighbors of the current node, mark the 

current node as visited and remove it from the unvisited set. A visited node will 

never be checked again. 
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5. If the destination node has been marked visited (when planning a route between 

two specific nodes) or if the smallest tentative distance among the nodes in 

the unvisited set is infinity (when planning a complete traversal; occurs when 

there is no connection between the initial node and remaining unvisited nodes), 

then stop. The algorithm has finished. 

6. Select the unvisited node that is marked with the smallest tentative distance, and 

set it as the new "current node" then go back to step 3. 

A complete implementation of our algorithm is attached in Appendix. 
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Bisection Algorithm 

 Since Dijkstra’s algorithm in our problem requires a specific value for the 𝜆 

parameter in order to run, we wish to find the minimum 𝜆 which gives a different path 

between any two given cities. In the context of our problem, finding such a 𝜆 implies 

that we are finding the Lagrange multiplier such that the businessman is indifferent 

between traveling a longer physical distance and traveling a shorter distance while 

staying overnight at different cities. 

 The algorithm to find the 𝜆 is as follows. 

1. Initialize 𝜆 = 0.001. 

2. While Dijkstra’s algorithm continues to give the same cost for two predefined 

cities (in this case Azores and Manila), 𝜆 ← 𝜆 ⋅ 2. 

3. Now we have two different 𝜆 that gives two different total costs. To find the 

minimum 𝜆, we apply the bisection algorithm and stop at a given threshold of 

0.001. 

The code for this part can also be found in the appendix. 
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Results & Discussion 

Having implemented the revised Dijkstra’s algorithm and the bisection method 

from the previous sections, in this section, we will display and explain some of the 

outputs and discuss improvements that could be made to expand this paper. 

 

Example 1:  Departure city: Azores   Arrival city: Manila 

Firstly, we set 𝜆 = 0, in this way, we are only considering minimizing the travelling 

length between the two cities while ignoring the budget constraint. 

 

Output: Path: [Azores, Paris, Berlin, Manila]  

 Distance of this path is:  82.0 (thousand miles) 

 

Moreover, we can calculate the total cost associated with this route, which in this case is 

$472. 

Hence, if we have a budget higher than this number, we can achieve the shortest path of 

82 thousand miles. 

 

Now, let’s consider a shorted budget of only $400. Our search of 𝜆 gives us 0.0835.  

And the path from the output:  Path: [Azores, Manila] 

         Distance of this path is:  83.0 

From this output, we are guaranteed the direct flight from Azores to Manila with 

distance 83(thousand miles) is the shortest and cheapest path under the budget L = 

$400. And our trip’s cost is $60.  
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To double check the algorithm’s validity, we can consider another route from Azores to 

Paris and then to Manila. In this case, we have a travelling distance of 83(thousand 

miles), the same as our output from the program. However, this trip’s cost adds to $365, 

which is way higher than the direct flight of only $60. 

 

Example 2   Departure city: Azores    Arrival city: San Francisco 

We follow the same step as in example 1, and get the following results. 

When 𝜆 = 0,  

Output: Path: [Azores, Montreal, San Francisco] 

Distance of this path is:  49.0(thousand miles) 

And the cost with the route is $321, which means any budget greater than this will 

achieve this shortest path.  

Consider a new budget of $200. We get 𝜆 = 0.0455. 
Our route for this constraint is Path: [Azores, San Francisco] 

         Distance of this path is:  50.0(thousand miles) 

Hence, we are guaranteed the shortest and cheapest path under this constraint is a 

direct flight from Azores to San Francisco with cost of $199.  
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Further Improvement 

Despite that the algorithms implemented have shed us light upon solving a more 

realistic version of shortest path problem, we still have a lot to improve. One of the 

restrictions is that our data set size is limited. By including more cities and giving fewer 

direct flights available, we are expecting to see 𝜆 to change more dramatically and by 

feeding in different budget constraint we can obtain more diversified routes. In addition, 

we can throw in more constraints to the weight, and lessen more assumptions. For 

instance, instead of ignoring the lay-off time, we can add in the cost of this waiting time 

and the commuting cost from airport to hotel as well. Hence, we introduce more 𝜆’s and 

can try various ways other than bisection method to get those numbers faster and more 

efficiently. 
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Conclusion 

In this paper, we have achieved a more realistic version of shortest path problem 

with one more budget constraints. To accomplish this, we’ve modified the weight of a 

path by adding the extra term 𝜆 times the max of the combined cost of all of the cities, 

excluding the departure city, minus the budget constraint and zero. We then revised the 

Dijkstra’s algorithm and implemented the bisection method to find 𝜆. Despite limited in 

data size and assumptions constraints, the approach of solving this single budget 

constraint problem sheds us light and paves a good way towards a more complicated 

multi-constraints shortest path problem. 
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Appendix 
 
Graph Implementation 
 
package graph; 
 
public class Vertex implements Comparable<Vertex> 
{ 
    private final String name; 
    private Edge[] adjacencies; 
    private double minDistance = Double.POSITIVE_INFINITY; 
    private double minDistance2 = 0.0; 
    private Vertex previous; 
    private double cost; 
     
    public Vertex(String argName, double cost) { 
     name = argName; 
     this.cost = cost; 
    } 
     
    public void setAdjacencies(Edge[] e) { 
     adjacencies = e; 
    } 
     
    @Override 
    public int compareTo(Vertex other) { 
        return Double.compare(minDistance, other.minDistance); 
    } 
     
    public String getName() { 
     return name; 
    } 
     
    public double getCost() { 
     return cost; 
    } 
     
 public Edge[] getAdjacencies() { 
  return adjacencies; 
 } 
  
 public Vertex getPrevious() { 
  return previous; 
 } 
  
 public String toString() {  
  return name; 
 } 
  
 public void setMinDistance(double minDist) { 
  minDistance = minDist; 
 } 
  
 public double getMinDistance() { 
  return minDistance; 
 } 
  
 public void setMinDistance2(double minDist) { 
  minDistance2 = minDist; 
 } 
  
 public double getMinDistance2() { 
  return minDistance2; 
 } 
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 public void setPrevious(Vertex u) { 
  previous = u; 
 } 
} 
 
package graph; 
 
public class Edge 
{ 
    private final Vertex target; 
    private final double weight; 
    public Edge(Vertex argTarget, double argWeight) { 
     target = argTarget; 
     weight = argWeight; 
    } 
     
    public Vertex getTarget() { 
     return target; 
    } 
     
    public double getWeight() { 
     return weight; 
    } 
} 
 
 
 
Djikstra Implementation 
 
package algorithm; 
 
import graph.Edge; 
import graph.Vertex; 
 
import java.util.PriorityQueue; 
import java.util.List; 
import java.util.ArrayList; 
import java.util.Collections; 
 
public class Dijkstra 
{ 
 private static double lambda; 
 private static double thresh; 
  
 public Dijkstra(double _lambda, double _thresh) { 
  lambda = _lambda; 
  thresh = _thresh; 
 } 
  
 public void setLambda(double _lambda) { 
  lambda = _lambda; 
 } 
  
 public void setThresh(double _thresh) { 
  thresh = _thresh; 
 } 
  
 public double getLambda() { 
  return lambda; 
 } 
  
 public double getThresh() { 
  return thresh; 
 } 
  
 public static double getL2Weight(double cost) { 
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  return lambda*Math.max(0, cost-thresh); 
 } 
  
    public void computePaths(Vertex source) 
    { 
        source.setMinDistance(0.); 
        PriorityQueue<Vertex> vertexQueue = new PriorityQueue<Vertex>(); 
       vertexQueue.add(source); 
 
       while (!vertexQueue.isEmpty()) { 
        Vertex u = vertexQueue.poll(); 
 
            // Visit each edge exiting u 
            for (Edge e : u.getAdjacencies()) 
            { 
                Vertex v = e.getTarget(); 
                // weight and the l2 weight 
                double weight = e.getWeight() + getL2Weight(u.getMinDistance2()); 
                double distanceThroughU; 
                if(u.getPrevious() == null) { 
                 distanceThroughU = u.getMinDistance() + weight; 
                } else { 
                 distanceThroughU = u.getMinDistance() + weight - 
getL2Weight(u.getPrevious().getMinDistance2()); 
                } 
                 
    if (distanceThroughU < v.getMinDistance()) { 
        vertexQueue.remove(v); 
        v.setMinDistance2(u.getMinDistance2() + v.getCost()) ; 
        v.setMinDistance(distanceThroughU) ; 
        v.setPrevious(u); 
        vertexQueue.add(v); 
    } 
            } 
        } 
    } 
 
    public List<Vertex> getShortestPathTo(Vertex target) 
    { 
        List<Vertex> path = new ArrayList<Vertex>(); 
        for (Vertex vertex = target; vertex != null; vertex = vertex.getPrevious()) 
            path.add(vertex); 
        Collections.reverse(path); 
        return path; 
    } 
} 
 
Our Program with Bisection Method 
 
package main; 
 
import graph.Edge; 
import graph.Vertex; 
 
import java.util.List; 
import java.util.Scanner; 
 
import algorithm.Dijkstra; 
import util.ParseData; 
 
public class Main { 
 
 public static int cityIndex(String city, String[] cities) { 
  for(int i = 0; i < cities.length; i++) { 
   if(cities[i].equals(city)) 
    return i; 
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  } 
  return -1; 
 } 
  
 private static double costPath(String startCity, String endCity, String[] name, 
int[] px, int[][] dist, double lambda) { 
  double cost = 0.0; 
   
  Vertex[] vertices = new Vertex[30]; 
  int index = 0; 
   
  for(int i = 0; i < 30; i++) { 
   vertices[i] = new Vertex(name[i], px[i]); 
  } 
   
  for(int i = 0; i < 30; i++) { 
   Edge[] e = new Edge[29]; 
   for(int j = 0; j < 30; j++) { 
    int d = dist[i][j]; 
    if(d != 0) { 
     //System.out.println(vertices[j].getName()); 
     e[index] = new Edge(vertices[j], d); 
     index++; 
    } 
    vertices[i].setAdjacencies(e); 
   } 
   index = 0; 
  } 
   
  // Read the starting and ending vertices 
   
  int startIndex = cityIndex(startCity, name); 
  int endIndex = cityIndex(endCity, name); 
   
   System.out.println(lambda); 
  Dijkstra dk = new Dijkstra(lambda, 400); 
  dk.computePaths(vertices[startIndex]); 
  List<Vertex> path = dk.getShortestPathTo(vertices[endIndex]); 
  //System.out.println("Path: " + path); 
   
  double expenseCost = 0.0; 
  double distCost = 0.0; 
 
     for(int i = 1; i < path.size(); i++) { 
      int pIndex = cityIndex(path.get(i-1).getName(), name); 
      int ind = cityIndex(path.get(i).getName(), name); 
      distCost += dist[pIndex][ind]; 
      if(i != path.size() - 1) { 
       expenseCost += px[ind]; 
      } 
     } 
     cost = expenseCost + distCost; 
     return cost; 
 } 
  
  
 private static double computeLambda(String[] name, int[] px, int[][] dist) { 
  String startCity = "Azores"; 
  String endCity = "Manila"; 
  double lambda = 0.001; 
  double cost;  
  do { 
   lambda *= 2; 
   cost = costPath(startCity, endCity, name, px, dist, lambda); 
     } while (cost >= 494.0); 
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  double lambdaA = lambda/2; 
  double lambdaB = lambda; 
  while(lambdaB-lambdaA > 0.001) { 
   lambda = (lambdaA + lambdaB)/2.0; 
   cost = costPath(startCity, endCity, name, px, dist, lambda); 
   if(cost >= 494.0) { 
    lambdaA = lambda; 
   } else { 
    lambdaB = lambda; 
   } 
  } 
   
     return lambda; 
 } 
  
 public static void main(String[] args) 
 { 
   
     ParseData pd = new ParseData(); 
     // names of the cities 
  String[] name = pd.parseName(); 
  // cost of the cities 
  int[] px = pd.parseCost(); 
  // distances between cities 
  int[][] dist = pd.parseDist(); 
   
  Vertex[] vertices = new Vertex[30]; 
  int index = 0; 
   
  for(int i = 0; i < 30; i++) { 
   vertices[i] = new Vertex(name[i], px[i]); 
  } 
   
  for(int i = 0; i < 30; i++) { 
   Edge[] e = new Edge[29]; 
   for(int j = 0; j < 30; j++) { 
    int d = dist[i][j]; 
    if(d != 0) { 
     //System.out.println(vertices[j].getName()); 
     e[index] = new Edge(vertices[j], d); 
     index++; 
    } 
    vertices[i].setAdjacencies(e); 
   } 
   index = 0; 
  } 
   
  // Read the starting and ending vertices 
   
  Scanner in = new Scanner(System.in); 
  System.out.print("Please enter your starting destination: "); 
  String startCity = in.nextLine(); 
  int startIndex = cityIndex(startCity, name); 
  System.out.print("Please enter your ending destination: "); 
  String endCity = in.nextLine(); 
  int endIndex = cityIndex(endCity, name); 
  System.out.print("Please enter your budget: "); 
  double budget = in.nextDouble(); 
  Dijkstra d = new Dijkstra(0.083, budget); 
   
  d.computePaths(vertices[startIndex]); 
  List<Vertex> path = d.getShortestPathTo(vertices[endIndex]); 
  System.out.println("Path: " + path); 
   
  double expenseCost = 0.0; 
  double distCost = 0.0; 
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  double cost; 
     for(int i = 1; i < path.size(); i++) { 
      int pIndex = cityIndex(path.get(i-1).getName(), name); 
      int ind = cityIndex(path.get(i).getName(), name); 
      distCost += dist[pIndex][ind]; 
      if(i != path.size() - 1) { 
       expenseCost += px[ind]; 
      } 
     } 
     cost = expenseCost + distCost; 
     System.out.println("Distance of this path is:  " + distCost); 
     System.out.println("Cost of this path is: " + cost); 
   
     in.close(); 
      
     System.out.println(computeLambda(name, px, dist)); 
    } 
} 
 
Utility to Parse Files 
 
package util; 
 
import java.io.BufferedReader; 
import java.io.FileNotFoundException; 
import java.io.FileReader; 
import java.io.IOException; 
import java.util.StringTokenizer; 
 
public class ParseData { 
 
 public int[] parseCost() { 
  int[] ret = new int[30]; 
  Object sCurrentLine; 
  int index = 0; 
   
  BufferedReader tb; 
  try { 
   tb = new BufferedReader(new FileReader("ha30_prices.txt")); 
   while ((sCurrentLine = tb.readLine()) != null) { 
    ret[index] = Integer.parseInt((String)sCurrentLine); 
    index++; 
   } 
   tb.close(); 
  } catch (FileNotFoundException e) { 
   e.printStackTrace(); 
  } catch (NumberFormatException e) { 
   e.printStackTrace(); 
  } catch (IOException e) { 
   e.printStackTrace(); 
  } 
  return ret; 
 } 
  
 public String[] parseName() { 
  String[] ret = new String[30]; 
  Object sCurrentLine; 
  int index = 0; 
   
  try { 
   BufferedReader tb = new BufferedReader(new 
FileReader("ha30_name.txt")); 
   while ((sCurrentLine = tb.readLine()) != null) { 
    ret[index] = (String)sCurrentLine; 
    index++; 
   } 
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   tb.close(); 
  } catch (FileNotFoundException e) { 
   // TODO Auto-generated catch block 
   e.printStackTrace(); 
  } catch (IOException e) { 
   // TODO Auto-generated catch block 
   e.printStackTrace(); 
  } 
  return ret; 
 } 
  
 public int[][] parseDist() { 
   
  int[][] ret = new int[30][30]; 
  Object sCurrentLine; 
  String delims = " "; 
  // reset index to 0 after every row 
  int i = 0, j = 0; 
   
  try { 
   BufferedReader tb = new BufferedReader(new 
FileReader("ha30_dist.txt")); 
   while ((sCurrentLine = tb.readLine()) != null) { 
    StringTokenizer st = new StringTokenizer((String)sCurrentLine, 
delims); 
        while (st.hasMoreTokens()) { 
            ret[i][j] = Integer.parseInt(st.nextToken()); 
            j++; 
        } 
        i++; 
        j = 0; 
   } 
   tb.close(); 
  } catch (FileNotFoundException e) { 
   e.printStackTrace(); 
  } catch (NumberFormatException e) { 
   e.printStackTrace(); 
  } catch (IOException e) { 
   e.printStackTrace(); 
  } 
  return ret; 
 } 
} 
 


