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DPL.1

Dynamic Prggggﬁmihg

Cynamic programming is an approach to solving problems
rather than a technique for solving a particular problem. The
approach can be appliad.tn”i wide range of problems, although

in many cases it leads to impractical algorithnms.

The problem to be tackled is fbrmulatéd as' making a
sequence of decisinns;. Having made cne deeision, the problem
of choosing the remaining daciq}cns is often a similar but
'smaller' version of tﬁe criginal ﬁrublem. This can lead to a
'functional equation’' for fiﬁding the best initial decision and

each subsequent decisien.

" §1 A production problem

As a sinmple example we consider the follewing problem:
4 company estimates the demand dj-fnr 6ne of its products over
the next n ﬁeriads. < costs the company c¢(x) to manufacture
x units in any one pericd. 4All demand must be met in the period
in which. it occurs but stncké.may be built up to provide for
deﬁand in future periocds. The maximum stock +hat ean be held
at any time is H. How much should be produced in each period
to minimise the total cost of production. To make the problem
self-contained we have to say something about initial and final
storks., Suppose then that there is an initial stoek of iD and

that any stock left over at the end of period n-is worthless.

The problem then is to decide how much to produce in period

1, how much to produce in period 2 etc. Suppose we decide to




produce an amount X, in period 1, then at the beginning of
pericd 2 we will have a sta;k_léésl of iy + x; - d; and the
problem of minimising the prnduétinn cost over the next n-l1
parieds. - We can write this down mathematically. Define the .
quantity ff(i} to be the minimum cost of meetipé demaﬁd'in.
periods r,r +'1,...n given that one has i units in stock at the

beginning of peried r.

Focussing temporarily on pericd 1, we can ask the question,
if we decide teo produce an amount %q in period: 1, what is the
minimum preducticn cost obtainable over the whole n periods?

This minimum cost is clearly .

¢1.1l) . clixl} + fziiIGI +xy - dl}

The first term is the cost of period'l and the second term

in the minimum cost over pericds 2,3,...n given that we produced

_xl.

L ]

The next question is what is the best value of x, to take.
The answer must be, the value of x, +hat minimises (1.1}, This
will give us the minimum production cost for pericds 1,2,...0

starting with a stock i, i.e. fltin}. We have thus proved that

(1.2) fl{ia} = min {:txl} + fztlu +x, - dl})
1
A similar argument about the decision to be taken at the
beginning of perioed r given that the stock level is currently i

shows that in general

WL
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(1.3)  £,00) = min (e(x,) + £, (1 + x 4,0
*»

The range over which the 'dacision variable' x, is to be
minimised depends on our assumptions about the: problem.  Firstly
we must have x_ > O and since we must produce enough to meet the
demand d_, we must have i + X, 2 &r' The maximum stock level is

H and consequently we must have f +x_ - d_ < H. Thus x_ is to

r r

be chosen in the range
(l.4%) max (0, d-i) ¢ x, £ E+d, - i.

Now the arguzent that produced (1.3)only read holds true for
r ¢ n~-1, basically because we have not defined £  ,(i). Examining
our assumption about final stocks we can see that this is

equivalent to

(1.5) : fn(i] = min (cfznji
' *n

This can he'pu‘t into the framework of (L.3)by d.efiniﬁg
fn+1(il = 0. Equations 1.3 and 1.5 give us a means of solving
our problem. We first calculate £ (i) for i = 0,1,2,...H. We
thsn use (1.3) to caleulate £ _,(i) for i = 0,1,2,...H, and then
f,-p(1) and so on until we reach f,(i). If the production
quantities x need not he-integral then we have to approximate by
dividing the range [0,H] into a suitable number of points -
depending on the accuracy required and computer storage anc t;me

available,.

Let us solve the above problem when n = U, dj = 3 in all

periods, the maximum stock level H = & and c(x) = lax-xi.




DP 1.4

So that we can keep track of the aptimal-pmduatian policy
we make a note of the value of x, mlnlmlsmng the R.H.S nf[l*S}
for each i. Denote this value by x, (3. :

Stage 1 - caleulation of !#

By definition £, (i) = min (18x-x’[max(0,3-1)¢ x < 7-i)
£,(0) = 45, x,(0) = 3; fu(1}1= 3z, ;ntli = 2; futi} =87
x,(2) = 13 £,(3) = 0, :HIEJ = 03 futH] = 0,_xufu3 =

Stage 2 = caleulation of 2'3

In this case 1.3 beccmes.

£40i) = min (18x-x" + £,¢i + x = 3)[max(0,3 = 1)< x € 7 = i)
£(0) = min(s5 + £,(0), 55 + £,(1), 65 + £,(2), 72 + £,(3),
77 + £,(4)) = 72 ' L

and xatﬁ) =

Continuing this we build up the table

i £, x (1) £,(0)  x,(0) fzfil x,(1)  £,(1) x,(i)

O uE 3 72 ] OGS Sy 142 7
3 32 2 65 5 104 216 135 %6
V1Al Al 56 4 89 1 126 <5
a0 0 45 EOZ3ha 72 0 109 o
50 0 32 0/2 65 0 104 0/2

Suppose for example that the initial stock level in peried 1
is 0., We see from the table that the minimum total production

cost is 142, The coptimal producticn pelicy is found as follows:




ulfn} = 7 i,e. given a stock level of 0 at the beginning of
period 1 the optimum producticn for pearied 1 is 7. Producing

7 in pericd 1 means ué start period 2 with a stock level H.

From the table X,(4) = 0 i.e. given a stock level of 4 at the
beginning of period 2 the optimum production for period 2 is O.
This means we start peried 3 with stock level 1. Now x,(1) = 5,
so we produce 5 units in peried 3 and therefore start periﬂd L
with initial stock 3. As xutz} = 0 we produce nothiag in this
period, Thus the optimal pelicy starting period 1 with zero

stock is

We may in a similar manner use the table to find the optimum

policy for all pessible initial stock levels.

In the method above we have worked backwards from periocd n in
caleulating the optimum poliecy. This is called the backward

formulation of the problem.

T+ is also possible to solve the problem working forwards

from period 1, giving us a forward formulaticn.

Tn the backward formulation model we nad to be explicit on
what happened to the final stock, in the forward formulation we
have to fix the initial stock at some value. For simplicity

assume the initial stock is zero. .

New let us define the quantity g (i) to be the minimum cost
of meeting demand in perieds 1,2,...r given that the stock level

at the end of period r is i. Then arguing in a similar manner to

DPL5
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the béckward formulation we get

(1.6) g (i) = etd + 4;)

(1.7) EL(L) = min{c{xr) + gr_lti s = xr)I
+ sa xr E 3 - = .
where X, in 1.7 panges over
max (0,1 + ::!r-H} <x,gi+d,
Starting with g, as defined in(Q.6)we use (1.7) iteratively

to calculate g_ and we can thus calculate an optimum for any

value of the final stock.
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Dynamic Programming: replacement of a machine

A company uses a machine to manufacture a single product over the next N
periods. The demand in period n is known to be d,, and the maximum amount
of stock that can be held at one time is H. The cost of producing an amount
x depends on the current age of the machine. It costs ¢(x,t) to produce an
amount z using a machine of age t. A machine of age 7' has to be scrapped.
Assume that we start in period 0 with a new machine. A new machine costs A
to buy. Here is how we formulate the problem: Let f, (¢, k) denote the minimum
cost of meeting demand in periods n,n + 1,..., N if we start period n with a
machine of age ¢ and h units in stock. Then

nggrg@wrdn{c(:r, t)+ for1(t+ 1,2 +h—d,)} Keep old machine
fault,h) = min g T2 .
ogngEIE}wdn{A +c(x,0) + for1(l,z+h —d,)} Replace machine
@>d,—h

The above recurrence is computed for n = NN —1,...,1,t=0,1,..., 7 -1

and h =0,1,...,H. If t =T then we let

)

fn(Tu h) =A+ fn(ovh)'
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Minimal triangulation of a convex polygon

Let P be a convex polgon with vertices X1, Xo, ..., X,. We want to triangulate
it in such a way as to minimise the sum of the lengths of the chords used.

X, X3

X, X3

Xy

Xs

X5

Xs

Let mj;, be the length of the minimum length triangulation of the polygon
defined by Xk, Xk+1, ce 7X[,Xk. Then

mi = min {mi; +mj; + X — X1+ X - X} 1)

where | X}, — X| is the length of the edge X, X, etc.
Here mj, = 0if I = k 4+ 1 and we use the recurrence (1) to compute what we
want i.e. mj .



Probabilistic shortest path

Now consider the mountain range problem where at passi € P.,0 <r < N (P,
denotes the set of passes in range r) you have to choose a decision d € D; , and
then you have probability pq(r,i,j,t),j € Pry1,t > o of arriving at pass j with
the journey taking time t. The first problem is to minimise the expected time
to reach the final destination F'. So if f,.(i) denotes the minimum expected time
to reach F' from i € P,, we have

fr(z): min Z pd(r7i7j7t)(t+fr+l(j))

deD;
i,r >0
JEP 41

To guarantee that we reach F' we should put Py41 = {F'}.

We can also consider the alternative problem. We can ignore costs and try to
maximise the probability that we arrive at F' within time 7. Then if g,.(i,t),i €
P,,0 <t <T denotes the maximum probability of reaching F' by time T,

gr(ist) = max ¢ > pa(rinJ, T)gr41 (ot +7)
B )

As a boundary condition we have

1 t<T

F.t) =
gn+1(F 1) {O t>T



Dynamic Programming: probabilistic production problem

A company needs to meet demand for its single product over the next N periods.
The cost of producing an amount = is ¢(z) in any period. The demand is a
random variable and let us assume that

Pr(dn = d) = Pn,d d>0.

The company can store up to amount H at any time. The company will try to
meet the demand, but if it is too large then there is a penalty cost of 7 for any
demand left unsatisfied. The company wishes to minimises the expected cost of
production. Assume first that the company has to make its period n production
decision before it knows d,,. Let f,(h) denote the minimum expected cost of
production in periods n,n+1,..., N if we start period n with h units in stock.
Then, if &7 = max{0, £},

fu(h) = Imrl;%l{c(.%')—l—z Pr.a( froe1(min{(z+h—d)", H})+m max{0,d—(h+x)}).}.
= d>0

As an alternative criterion, suppose one has to minimise expected cost subject
to having at least a 90% chance of meeting demand in every period. Then we
let f,,(h) be the minimum cost of operating under these criteria for a given n
and h.

fa(h) = min{c(z) + Y ppalforr(min{(z +h = d)*, HY) + 7(d = (b +2))*)}

c2ah d>0

where oy = ming : Y0 o0 Prnd < -1

If the company can make its period n production decision after it knows d,, then
we have
fa(h) = pna min_{c(@)+ fari(h+z—d)}.
w>(d—h)"
x<H+d—h



A problem with an infinite time horizon

A system can be in one of a set V' of possible states. For each v € V one can
choose any w € V and move to w at a cost of ¢(v,w). The system is to run
forever and it is requiredto minimise the discounted cost of running the system,
assuming that the discount factor is . A policy is a function 7 : V' — V. So if
|V| = n then there are n™ distinct policies to choose from.

Example

2 1 3
Costs | 4 3 2 a=1/2.
1 3 2
Let 7 be a policy and let y, be the discounted cost of this policy, starting at
v € V. Then

yo = c(v,m(w)) + Yrr)y  vEV. (1)
Example Let (1) = 7(2) = 7(3) = 1. Then

1
Y1 = 2+§y1

1
Yo = 4+§y1

1
ys = 1+§y1-

So
y1 =4, y2 =6, y3 = 3.

Problem: Find the policy 7* which minimises ¥, simultaneously for all v € V.

Theorem 1 Optimality Criterion

*

7 is optimal iff its values y); satisfy
Yy = mir‘}{c(v, w) + ayy,} Yv e V. (2)
we
Proof Suppose that (2) does not hold for some .

Yu > cu, Mu)) + ayxw) uwelU
Yp = meie{c(v,w) + ayy } ugU

Define 7 by 7(u) = A(u) for u € U and 7(v) = w(v) for v ¢ U. Then for u € U,

Yu > C(uu )‘(U’)) + AYX(u)
gu = C(’U,, A(u)) + ag}\(u)
So if &, =y, — Yy for v € V then

Eu > O‘ffr(u) u e U. (3)



Also, for v ¢ U

Yo = C(U, W(U)) + AYr(v)
g'U = C(U, W(U)) + agﬂ(v)
and so
g'u = O‘ffr(v) v ¢ U. (4)

It follows from (3), (4) that

& > atfﬁt(v) Yo ¢ Ut >1
& > Oftgﬁ-t(u) VueUt>1

Letting t — oo we see that
& >0Vvand & >0VueU.

Thus 7 is strictly better than II i.e. if (2) does not hald, then we can improve
the current policy.
Conversely, if (2) holds and 7 is any other policy and 7, = g, — y; then

y’u = C(U7 ﬁ'(’U)) + a?gﬁ'(v)
Yo < (v, 7(v)) + oy,

and so
T = Qlagy) = o = &'pey  fort >1

which implies that n, > 0 for v € V.
Policy Improvement Algorithm

1. Choose arbitrary initial policy 7.
2. Compute y as in (1).
3. If (2) holds — current 7 is optimal, stop.
4. 1If (2) doesn’t hold then
5. compute A by
Ya(v) = Ming {c(v,w) + ayw}.
6. T A
7. goto 2.

In our example with 7= = (1,1,1). First compute A = (1,3,1). Re-compute

y=(33,13,2). Now A = i.c. (1) holds and we are done.



Let us introduce some probability: Suppose now that for each i € V' there is a
set X; of possible decisions. Suppose that if the system is in state ¢ and decision
r € X; is taken then

e The expected cost of the immediate step is ¢(z, 7).
e The next state is j with probability P(x,%, j)

A policy 7 specifies a decision 7 (i) € X; for each i € V.

First let us evaluate this policy.

Let y; denote the expected discounted cost of pursuing policy 7 indefinitely,
starting from i € V.. Then

Yi = c(ﬂ—(i)v Z) +a Z P(ﬂ—(z)v ivj)yj

JEV
or .
y=cr+aPyory=(I—aP;) e, = Z(aPF)tcw
t=0

where Py (i,7) = P(m(i),4,7) and ¢ (i) = e(m(i), 7).
So policy 7 can be evaluated.

Theorem 2 Optimality criterion:

c(m(i),i) +a > P(r(i);i,j)y; = min | c(z,i) +a > P(x,i, §)y; (5)
JEV ¢ jeV

7 is optimal iff (5) holds.

Proof Suppose first that (5) does not hold. Define a new policy & by

c(m(i),1) + o Z P(7(4),i,7)y; = min { c(x,) + « Z P(x,1,7)y;

reX;

jev eV
We have
yi > c(®(i),i) +a Y P(r(i),i,§)y; (6)
jev
9 = co(7(i),i) + Z P(7(i),4,5)9;
jev
and so

(I —aP:)(y—9) =0

and then since (I — aP;)~! has only non-negative entries:

(I —aP;) '(I—aP:)(y—9)>0ory—4>0



But § # y since there is strict inequality in (6) for at least one ¢ and 7 is strictly
better than .
Conversely, if (5) holds and 7 is any other policy, we get that

yi < c(#(i),i)+a Y P(#3),i,5)y
gi = (&), i) +a ) P(F(i)d, )9

and so
(I —aP:)(y—9) <0

and then since (I — aP;)~! has only non-negative entries:

(I—aP;) Y(I—aP:)(y—9) <0ory—3<0



A taxi driver’s territory comprises 3 towns A,B,C. If he is in town A he has 3
altrenatives:

1. He can cruise in the hope of picking up a passenger by being hailed.
2. He can drive to the nearest cab stand and wait in line.
3. He can pull over and wait for a radio call.

In town C he has the same 3 alternatives, but in town B he only has alternatives
1 and 2.

The transition probabilities and the rewards for being in the various states and
making the various transitions are as follows:

A:
b5 .25 .25 10 4 8
P=] .0625 .75 1875 | R= 8 2 4
25 125 625 4 6 4
B:
) 0 .5 14 0 18
P= .0625 .875 .0625 } f= [ 8 16 8 }
C:
.25 .25 .5 10 2 8
P= .125 75 125 R = 6 4 2
75 .0625 1875 4 0 8

He wishes to find the policy which maximises his long run average gain per
period.



Shortest Path Problems

A digraph D = (N,A) consists of 2 sets:
N = the set of nodes

ACNxN is the set of arcs

2

. \?\3 ’.1.

L

The above is a pictorial representation of the digraph with

N

{1,2,3.4}

A= {{1,3), (2.1), (2.2). (2.3). (3.2)}

We will only consider digraphs with N and A finite.

A walk W from a node il, to a node ip is a sequence of arcs

((il,iz), (iz'iB)""'(ip—l‘ip)) or equivalently a sequence of nodes
(11,....ip) where (ii_l.it) €A for 2<t<p.
Although W is not a set we use the notaiton u €W or i € W to say

arc u is in W or node i 1is in W.

Examples: (1,3,2) and (2,2.3,2,1) are walks in the digraph give in fig. 1.

If W= (il....,ip) and 1 {a <b{p we use the notation
W[a.b] = (ia.ia*l,....ib} for the sub-walk of W from i, to 1.

Next given a walk Wl = (11,...,ip) and a walk W2 = (ip:jl,jz.....Jp) we
define the walk

2
2,

| Fig



Wy + Wy = (it dpeen a0

(We can only form Wl + Wé if the terminal node of Wl = the inital node of
W2}.
A Path P is a walk in which no node is visited more than once.

A circuit is a walk from a node to itself e.g. (1,2,3,4,1) of fig. 2 is a

circuit.

Length

We now assume that associated with each arc u € A is a length &(u)
i.e.: £: A-R.

The length of a walk W is then defined by

(W) = I £&(u)
uew

i.e. the length of a walk is the sum of the lengths of the arcs in the walk.
We shall be concerned here with the following problem: given a node

s €N, find for each node j # s a minimum length path from s to Jj.
Because of an assumption we will make about the non-existence of negative

circuits we will be able to show that a shortest path from s to j is also

a shortest walk from s to j.

Nepative Circuits

If some arc lengths are negative it is possible that there is a circuit



C such that ¢£{C) < 0. We exclude this possibility for the following reason:

e

< F> »< GQ' »£ Fa >

Flg 3
Suppose &(C} < 0. Define walk Wn to consist of (the path P from s
to x) + (the path Q@ from x to y) + (n times round C) + (the path R

from y to j). Then B{Wn) = &(P) + £(Q) + né{C) + &(R)

Thus there is no shortest walk from s to j.

Since the number of paths from s to t is finite (< 2|Al) there is
aiways a shorfest path from s to t but there are no known polynomial
algorithms for finding shortest paths if there are negative circuits. This is

essentially because they rely on

Theorem 2.1
If D has no negative circuits then a shortest path from node s to

node t # s is a shortest walk from s to t.

Proof
Let W be any walk from s to t and let P* bea shortest path from
S to t. We can construct a path P from s to t such that &(W) 2 e{P).

As &(P) 2 e(P*) we have &(W) > 8(P*) and our theorem.



Construction of P

If W is a path let P = W, otherwise suppose W = (s = 11,...,1p = t}.

Let ia = ib be the first repeated node. Let T(W) be the walk W[1,a] +

Wb, p].

TRz e

TOW)

Then T(W) is a walk from s to t with fewer edges than W and

e(T(W)) = &(W) - &(¥[a,b]}

I~

(W) as Wa,b] is a circuit.

If T(W) is not a path we construct T2(W) and so on. Thus there exists k >
O such that TX(W) is a path. Let P = TX(W). Then
£(P) € (T (W)L, .. <e(W). o



Properties of Shortest Paths

Theorem 3.1 (Optimality of sub-paths)

let P = (i1 = s.....ip = t) be a shortest path from s to t. Then for

1{a<b<t Pla,b] is a shortest path from ia to ib'

Proof
Let R be any path from i  to i,. Let W= P[1,a] + R+ P[b,t]. W~

is a walk from s to t. We know that

0 2> &(W) - &(P) [P is alsoc a shortest walk

= £(R) - 2(P[a.b]).

Suppose next that for each j € N we have a path Pj from s to J-

(P, = (s)) and that d(J) = &(P,) (d(s) = 0).

Theorem 3.2

{Pj; il N}y isa collection of shortest paths from s to each node of D

if and only if V_j € N we have
(3.1) d(j) < d(i) + &(i.]) V(i,j) € A.
Proof

only if: Suppose 3.1 does not hold and that there exist nodes x,y and

arc (x,y) such that

d(y) > d(x) + &({x.y).



Consider W = Px + (x,y). ¥ is a walk from s to y and
2(W) = d(x) + &(x,y) < e(Py). This contradicts the fact that Py is a
shortest path.

If: Suppose 3.1 holds V j€N. let x €N and P=(s=il....,ip=x) be
a path from s to x. We show that £&(P) 2 d(x).

From 3.1 we have d(ik) - d(ik—l) < e(ik-l‘ik) 2 {k {(p. Thus
P P
(3.2) 2 (d(i) -4{i, ) € 2 &(i _,.i,).
k=2 k k-1 k=2 k=1""k

But the LHS of 3.2 "collapses™ to d(ik) - d(il} = d{x} - 0 and the RHS of
3.2 is 2(P). o
The aim of all shortest path algorithms is to find a set of paths

satisfying 3.1.



Ford's Algorithm

Suppose that D 1is given as a list of arcs and A = {ul,....um} vhere
u, = (xi.yi).

We will first consider how to compute the lengths of shortest paths and
then show how to produce paths. |

At a general stage of the algorithm we will have estimates d{j) for the
shortest path length to j € N. Initially d(s) =0 and d(j) =« for
J € N\{s}.

The idea behind Ford’s algorithm stems from theorem 3.2: if we have an

arc (x,y) such that d(y) > d(x) + &(x.y) then replace d(y) by

d{x) + 2(x.y).

Ford’s Algorithm (ignore statements on first reading)

begin
{Initialization: assume s = 1 and [N| = n, |A] = m)

d(1}) :=0; for j =2 to n do [d(i) :=; w(j) :=s7;



repeat {main loop}

flag := false

by

or

w

=1 to m do

begin {process arc (xa,ya)}

if d(y,) > d(y,) + &(x,.y,) then

end

until

end

Example

Arc

PN T T g e, g g g, o~
oo W W WA N = = =t
NRONEAWDWN
=ah b W= WA WN N
LS L L L LS L NPT Sl T e

begin
d(y,) i=d(x) + &(x,.y.): mly ) :=x:

end

flag = false
3=4

d(1) d(2) d(3) d(4) d(5) 4(6)
0 © [ - - . -]
O 2 © [ -] ]
0 2 2 0 -] -]
0 2 2 [+ [ -]
4] 2 2 -] -] ]
0 2 2 5 w 3
&) 2 2 3 L 3
0 2 2 3 5 3
C 2 2 3 5 3
0 2 2 3 5 3
0 2 2 3 2 3

There were no changes during second pass

END OF 1ST PASS

END OF 2ND PASS



Recording the shortest paths

We will show that the set of paths produced by the algorithm forms a

directed tree rooted at s.

i.e. for each j € N we record a predecessor node w(j) so that on

termination of the algorithm we have the following:
(5.1a) m{s) = s

(5.1b) for j#s 3k >0 such that s = Wk(j) and
P = (s = 7). 7N rP(0).7(3). 5)

is a shortest path from s to j.
The statements of Ford's algorithm actually find shortest paths.
Lemma 5.1

Throughout the algorithm if d(j) # ® then d(j) is the iength of some

walk from s to j.
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Proof
The statement of true initially. We show that processing an arc does not

alter the statements truth. Suppose that immediately prior to processing

arc (x,y) that d(x) = e(wx) or ® and d(y) = e(wy) or « for walks

wx,wy. After processing (x.y) only d(y) can be altered and then d(y)} = B(W&)

or Q(Wx + (x,y})} or o, 0

During execution of the algorithm let label d(j) be correct if
d(j) = the length of a shortest path from s to j.

Note that once d{j) is correct it does not change anymore. If it did
change it would be reduced and then lemma 5.1 would imply the existence of a
walk shorter than the shorest path which contradicts theorem 2.1.

For 0<k ¢ |V] -1 let
H(k) = {j € N : 3 a shortest path from s to j which has k arcs or less}

Lemma 5.2

After k passes through the main loop all nodes in H(k) have correct d

labels.

Proof
By induction on k. For k = 0 the result is true because H(0) = {s}.
Suppose this result is true for all k ( K. Let j € H{(K)\H{(K-1) and let

P=(s= il,....ik=j) be a shortest path from s to j.- By theorem 3.1 i
' th

€ H(K—l) and so its label is correct at the beginning of the K main loop.

th

During execution of the K main loop arc (iK_l.j) will be processed and so

at the end of the K" main loop d(j) € d(1,_,) + £(i ) = (P) and then

K-1'3
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lemma 5.1 and theorem 2.1 imply d{j) = &(P).

Now H(|N] - 1) ={j : 3 a path from s to j}. We therefore have

Theorem 5.1
Ford’s algorithm terminates after at most |N| - 1 iterations, having
computed the shortest distance from s to each j € N. | la]
It is easily seen that the computation time for the main loop is bounded
by some multiple of |A|. Thus the overall computation time of Ford's
algorithm is O(|N]| x |A]).

We have still to verify that on completion w7 provides shortest paths.

Lemma 5.3

On completion of the algorithm the ¥ labels are correct.

Proof

On completion we have
(5.2) d(j) = d(w(i)) + &(w(j).J) Vjen.

This is because there will have been no further reduction in d(w(j))
after the last assignment to d{j).

If we can show that (5.1) holds it will follow from (5.2) that d(j) =
8(Pj) and we are through. _

Fix j € N and consider the sequencé 'j.w(j).wz(j)..... We have to show
that d k such that rk(j) = s. If this is not true then 3 & <{ m such that
(5) = () # . |

Now for 1 € N\{s} let T(i) be the number of arc processings up to and
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including the processing of arc (w(i).i) that gave d{i) its final value. Let
T(s) = 0. Now i # s implies T(i) > T(w(i)) because d(i) is not made
correct until after d{w(i)} is made correct.

Thus T(we(j)) > T[we+1(j)) 2.0 T(vm(j)) which contradicts we(j) =

™(3). D

A Computational Improvement

Consider the following situations we are about to process arc (x,y).
This arc has been processed before but d(x) has not been reduced since (x.y)
was last processed. Thus we know that prior to processing (x.y) that
d(y) € d{x) + &(x,y) and so in fact there is no point in processing (x.y).

We can speed up execution of the algorithm if we obey the following rule:
arc {X,y) is processed only if d{x)} has been reduced since arc (x.,y) was
last processed.

In the main loop arcs are processed in blocks. A block consists of all
the arcs leaving a specific node.

The search for nodes whose d labels have been reduced since their
blocks were last processed is speeded up by keeping them in a gueue Q.

A queue is a linked list of nodes where insertions are made at the "back

end” and deletions are from the "front end"” only.



Ford’'s algorithm (final version}

procedure process (node : x); {process all the arcs leaving x}

begin
for (x.y) €A do
begin
if d(x) + (x,y} < d(y) then
begin
d(y): = d(x) + &(x.¥): €(y): = x;

f y is not in Q then insert y into Q

end
end
end;
{initialization}
begin

d(1) = 0; w(1) = 1; for j =2 ton do [d(§): = = 7(J):

Q@ =2T1];

while Q # ¢ do

begin

delete x = front{(Q) from Q,
process (x)

end

end

1]

13
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Example (see digraph on p3)

J
a(j)x(J)

1 2 3 4 5 6 Q
0 1 ® 1 ® 1 o 1 ® 1 ™ 1 1
0 1 2 1 2 1 ® 1 ® 1 3 1 | 2936
0 1 2 1 2 1 5 ) © 1 3 1 | 3964
0 1 2 1 2 1 3 3 5 3 3 1 | 645
0 1 2 1 2 1 3 3 4 3 3 1 | 45
0 1 2 1 2 1 3 3 4 3 3 1 |5
0 1 2 1 2 1 3 3 4 3 3 1 | e

To prove that the modification is valid we relate the new algorithm to
the cld.

Let p(1),p(2).... be the sequence of nodes processed by the new
algorithm. Define ko =0 and kl.el..
p(l),...,p(kl-l) are all distinct but p(kl)

..kt.et... as follows:

1

p(Bl) where 1 £ 81 £ k1 -1

p(82) where k1 < 82 < k2—1

p(k;)....p(k,-1) are all distinct but p(ky)
and so on.
Let Xt = {p(kt_l].....p(kt—l)}. Yt ={x € Xt and x is not in Q

immediately prior to the etth node processing}. =

v + - 'XP( k’ﬂ P“
Exercise: show that N = Xt U Yt. S“?ch"ﬁ "‘eXEn O\ - P(b‘b“.} P(hk-‘ )Q}. Tk P
_’_-_,/—/_-J\:\t____/

[Hint: it is a simple direct consequence of Q being a queue] (3{

Suppose now we re-ran the new algorithm but just before we process p(et)
we process all the nodes in Yt' Nothing will happen to d or 7 because
none of Yt are in Q. But the exercise shows that now between processing
p(kt-l) and p(kt-l) all nodes and hence all arcs are processed, i.e. we have
gone through a main loop of the old algorithm (the order in which we process

arcs in a main loop is irrelevant). Thus convergence in O([N| x |A|) time is

assured.



Exercise: show that we do one less main loop in the new method.

The algorithm above is very efficient.

results for some random problems.

We give a table of reported

The run time

is in seconds on a

COC 6600

Problem [Nj |A] t Problem |N| |A]
1 500 12500  .267 S 1000 4000 .139
2 500 7500 . 177 10 1000 3000 .123
3 500 2500 .089 11 1000 2000 .088
4 500 1250 .050 12 2000 16000 .476
5 500 1000 .045 13 2000 12000 .371
6 500 750 .039 14 2000 8000 .315
7 1000 10000 .288 15 2000 4000 .191
8 1000 5000 165

Exercise: the initialization step wastes a little time, what should it be?
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Dijkstra’s algorithm

When arc lengths are all non—negative the following algorithm is
applicable.
For k€ N let Tk = {v: (k,v) € A} = set of out-neighbours of k.

Dijkstra's algorithm

begin
A1 (1) :=0: w(1) i=1: for j =2 to n do [d(§) i= £(s,3): m(§) := s]

S := {1} [S = {nodes that have been processed})

for i '=1 to n2 do
begin
B: let d(k) = min (d(j): j € N\S) ;
S =8 U {k} ;

{process k}

C: for v € Tk -8 do

if d(v) > d(k) + 2(k.v) then

begin
d(v) := d(k) + &(k.v),
n(v) =k
end
end

end

A nice feature of Dijkstra’s algorithm is that each node is processed

exactly once (except for last node which need not be processed).



Example

1 k
0 1 1 3 1 0 1 © o 1 2
3 1 @ 1 3 w 1 3
3 1 4 3 2 0 1 6
3 1 4 3 3 6 4
4 3 3 6 [
3 7
shortest path tree
A
{
7
L

Theorem

Assuming that all arc lengths are non-negative, Dijkstra’s algorithm

terminates with a shortest path from

s

to each node of D.



Proof

At each stage the digraph (S,XS} where XS = {(w{j}.i): j € S - {s}} is
a directed tree rooted at s and for j € S, d(j) is the length of the path
from s to J 1in this tree. Furthermore if j € S then d(j) is the
minimum length of a path from s to j, which follows a tree path in S§ and
then jumps to. J.

We prove by induction on |S]| that throughout the algorithm j € S
implies d(j) is the length of a shortest path from s to j.

This is clearly true when |S| =1 and S = {s}. Suppose it is true for
S| < ¢ and suppose k is the qth node added to S, Let
1,i
first node of P that is not in 8 -~ {k}. Then

P=(S =1 2""'ia = k) be any path from s to k and let ib be the

2(P) 2 2(P[1.b]) [arc lengths non-negative
> d(ib_l) + e[ib_l.ib)
> d(ib) [See first paragraph
2 d(k) [definition of k

Execution Time

A naive implementation is 0(n2).

Line A is O(n) and is executed once
Line B is O(n) and is executed n-1 times

Line C is 0(|Tk|) and total execution time is 0(E|Fk|) = 0(|A]) = O(nz).
k
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Digraphs without circuits

These are important not least because they occur in critical path
analysis. Their application in this area involves computing longest paths.
For this problem inequalities are reversed throughout the previous sections

but most important the optimality conditions (3.1) becomes
(7.1} d(j) = max (d(i) + £(i.7)).
- J

topological Ordering

Let the nodes of digraph G = (N,A) be ordered or numbered 1,2,....n.

This ordering is topological if (i.,j) €A =1 < j

8 D

£ A

FBEDAC 1is a topological ordering for the above digragh.

Theorem 7.1

There exists a topological ordering for a digraph G if and only if the

digraph does not contain any circuits.

Proof

Suppose first that the nodes of G have been topologically ordered

1,2,...,n. Suppose G has a circuit (il.iz,....ip=i1) then we have
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i, €i, <... <i_ =1 contradiction.

Conversely assume G has no circuits. We describe an algorithm for
numbering the nodes of G. 1It’'s general step i;: if nodes 1,2,....,k have
been chosen define Gk = (Nk'Ak) where Nk =N - {1,2,...,k}

Ak =AN N xN.

Note Go =G and Ak consists of these arcs not involving 1,2,....,k.
Now since G has no circuits Gk will not have any for k = 0,1,...,n-1,
Thus (Lemma 7.1 below) Gk has at least one node without predecessors. Let

k+1 be such a node (a predecessor of a node j is a node i such that

(i,3) € A). 128 1: D
C z H C
8 ‘ N 3:zA
£ £ e
D A 0 A

The algorithm above will number the nodes 1,2,...,n. Now let (i,j) € A.

From the way j was chosen from Gj- we see that (i,j) € A which implies

1 j-1
that i € {1,2,...,3-1} or 1 < j. o

Lemma 7.1

Let G = (N,A) be a digraph without circuits. Then G contains 2 node

without predecessors.
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Proof

Let Xy € N. If x4

is an arc (x2.x1). If Xy has no predecessors we are finished, otherwise

has no predecessors we are finished otherwise there

there is an arc (x3,x2). Continuing thus we generate a sequence X 1Xgu oo
vwhere (xk+1.xk) €A for k 2 1. This sequence must terminate with a node
without predecessors or repeat a node because G is finite. But repeating a

node means there is a circuit in G. O

Assume now that we have topologically ordered the nodes of a digraph G.

Then (1.9) can be replaced by

(7.2) d(j) = max (d{(i) + &(1,3)) J=1.....n
i<j
vwhere it is assumed that s = 1 (what if s # 1?) Given that d{(1) = 0 we

can use (7.2) to compute d{2)},... in a manner analogous to back-substitution

for solving a lower triangular set of linear equations

begin
d(1): = 0;
for j: =210 n do
d(J): = max (d(i) + &(i.3): (i.3) € A) *
end

{Note that because (i,j) € A implies { < j % can be carried out

validly.)
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Since (7.1) holds on completion of the algorithm a proof of validity is

obvious.

Computaional Considerations
The complexity of the algofithm is O(IA[) and there exists an O |A|)

method for topologically ordering the nodes.
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Shortest paths between all pairs of neodes

We complete the material on shortest paths by describing an algorithm for
finding shortest paths between all pairs of nodes.

We use the two matrices D = Hdin, N = Hngjﬂ where dij islthe length
of the current best known path from i to j and nij is the second node

after i on this path. the algorithm tries to improve paths as follows.

el ~

- (J(i —

If in figure 12 dik + dkj < dij then the known path from i to
should be replaced by the known path from i to k followed by the one from

k to j.

Floyd's Algorithm

(Initialization)

begin
for i :=1 to n do
for j: = to n do

~—
=]
—_—
e
Gty
S
.
il
Cte
L]



(main algorithm)

for k=1 to n do
for i :=1 to n do
for ji=1 to n do

if d(i.j) > d(i.k) + d(k,j) then

d(i,j) := d(i.k) + d(k.§); n(i.j) := n(i.k)

end

Initially

D=0 3 » 5 N=1 2 3 4 5
@ 0 12 8 1 2 3 45
© 120 183 1 2 3 45
5 4 © 0 ® 1 2 3 45
4 8 © 100 1 2 3 45

Stage 1

D=0 3 © 5 o N=1 2 3 4 5
© 0 12 8 1 2 3 45
® 120 18 3 1 2 3 45
5 4 © 0 o 1 23 45
4 7 « 9 0 11310

Stage 2

D=0 3 155 11  N=1 2 2 4 2
®© 0 12 8 1 2 3 4°5
® 120 183 1 2 3 45
5 4 160 12 1 2 2 4 2
4 7 199 0 111465
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Stage 3
P=0 3 155 11 N=1 2 2 4 2
© O 12308 1 2 3 3 5
o 120 18 3 1 2 3 4 5
B 4 160 12 1 2 2 4 2
4 7 199 0 1 11 4 5
Stage 4
D=0 3 155 11 N=1 2 2 4 2
30 12 30 8 3 2 3 3 5
23120 18 3 4 2 2 4 5
5 4 160 12 1 2 2 4 2
4 7 199 O 1 1 1 4 5
Stage 5
D=0 3 155 11 N=1 2 2 4 2
120 12 17 8 5 2 3 5 b
7T 100 123 5 5 3 5 5
5 4 160 12 1 2 2 4 2
4 7 199 0 1 1 1 4 5
Ex
dyp =10 ny, =5, 15 =1, nyy = 2
Shortest path from 3 to 2 is (3.,5,1,2)
Theorem 7.1
Floyds algorithm finds a shortest path between any pair of nodes.
Proof

¥We shall prove this by induction, the hypothesis being that at the

beginning of the kth stage di is the minimum length of a path from i to

J
J with intermediate nodes taken from 1,2,....k-1. This is true for k=1
and so assume it to be true for a general k. Ngw paths from i to j which
only use 1,2,....k as intermediate nodes either use node k or they do
not. The minimum length of such paths which do not use k is the value of

dij at the beginning of the k’th stage. A path from i to j which uses k



is the catenation of a path from i to k and a path from k fo j and

both these paths use only 1,2,...,k-1 as intermediate nodes. Thus the

minimum length of a path from i to j which only uses 1,2,....,k as

intermediate nodes is min {dij‘dik+dkj} which is the value of dij at the

beginning of stage k+l.
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Operations Research II

Notation

UL~ n LAL¥ 70N
X @y = wman {X,¥}. @xi =‘max-{x1, 2,...,xn}

® =
xQy=x+y
If A=Ha I, B=Ib Il are n xn matrices then A® B = lic. .l where
1] 1] 1]

n
45 = si? a; @ bkj = min {aik + bkj =1<k {n}
e.g.

4 2|1Q@ 2 1 3 5
& =
-1 3 1 3 1 0

Now let D be a digraph and L = neiju where £.. = length of arc (i,j).
Claim % @

t 2 2 (t)

L"=L%L% ... &L = ueij I
satisfies
B§§) = min length of a walk from i to j using t arcs or less.

Proof

By induction on t. Obvious for t = 1.

Let Rg?) = minimum length of a walk from i to j using u arcs or

less. Now



(1) A ) e A v k=120

ij kj’

To see this note that for any u > 1

{(a) h(u+1) < min {kgE) + & k=12,...,n}.

ij = ki’
Since each term in the minimisation is the length of some walk from i to j

using {u+ 1 arcs

and
(b) If W= (i-= il’i2 ..... i, = j), v{u+ 1 is a shortest walk using < u
+ 1 arcs then
A§?+1) = e(igig..d ) v 8 L2 A§2) A
J v 1y-19 v-1 v-19

(a) and (b) imply (1).
We can now use induction on t to prove the claim.

Now

n
t+1 @ Ve,
e§j+ ) = (egk) ® Ayl

in (1) C k=
min {Rik + ekj tk=1,2,...,n}

. (t) C Lo _ . .
min {hik + ekj :k=1,2,...,n} induction

= h§§+1) ' by (1}.



Now if D bhas no negative circuits then Kg?_l) = minimum length of a path

from i to j (why?) and so

Dn_1 is the matrix of shortest path lengths.

Question: if there are no negative cycles, why is

r

D = Ds for all r,s, > n-1 ?
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Assignment Problems

Suppose that there are m jobs available and m people are to be
considered for filling these jobs. Suppose it has been estimated that if
person { is given job j gpen the cost of the job will be cij. The problem is
how to assign people to jobs in such a way as to minimise the total cost.

We show how this problem can be solved as a sequence of shortest path

problems.

Notation

An assignment a is a permutation of [m] = {1,...,m}.

A solution to the assignment problem can be expressed as person i does
job a(i) for some assignment a. Let Am = {assignments}. Then the problem

can be expressed

m

minimise 151 cia(i)

subject to a € Am

Another, fruitful, way of viewing this problem is that we seek a minimum

weight perfect matching of the complete bipartite graph Kﬁ n’

Cig- "wugt of elye (6i)

ali)
A k—assigggent a is a permutation of [k]. For a € Ak we let

k
c(a) = 1§1c‘a(”'



(= |

_ For a €7Ak define the bipartite digraph G(a) with nodes Vﬁ =
(Vi Vgs-nns voho W= {Wl.w2.....Wh} and arcs B(a) U F(a) where
B(a) = {(wa(i)’vi): 1<1i<k} Backward Arcs
F(a) = {(Vi'wj): 1>k or 1<k and i ¥ a{i)} Forward Arcs

Example m =3, k =2, a(l) =2, a(2) =1

Arc lengths in G(a) are defined as follows:

if (vi,wj) € F(a) £(i1.3) = 53

if (wj,vi) € B{a) £(j.i) = _cij

Suppose next that a € A, k <m and P = (v =V, W, ,....V, W, =
e Ak k+1 il A lp jp
wk+1) is a path in G{a) from Vier1 € Vm to W .4 € Wﬁ
an) =3 Y W, o =axP
a(3)=2 Y w, add VW,
o!fe‘:- \fz wl
% ¥y
V‘P wq, | dfﬂ f V| w?
%o “y . e odd ww,

P= Vi y W15 Ve, Wa V) W,



~~
We can construct a new assignment a (denoted by axP) where

a(i,) :

a(i)

"
[

t=1,...,p

a{i) otherwise

It is not too difficult to see that a % P € Ak+1 and further that

c{axP) = c(a) + ¢ c +c ... ¥ C

8 ldy Tigedg Tp+dp

= c(a)} + &(P).

We have a similar result if C = (vi Wy Yy ¥y = vy } isa
1 1 P ‘P “ptl 1
cycle in G{a) - assuming 11 £ k.

We again define a*C and this time c(a*C) = c(a) + &(C) and axC € Ak

We need the following lemma: for a digraph G = (V.E)} we define for each

vVEY

H

d+(v) (v.j) € E}Y| - outdegree of v

d (v) [{(i,v) € E}| - indegree of v

Lemma 1

Suppose that for digraph G = (V,E) we have d'(v), d (v) {1 for all
v€V. Then G is a collection of isolated nodes (d'(v) = d (v) = 0) plus &
collection of node disjoint cycles Cl""’cp plus a collection of node
disjoint paths Pl,....Pq where q = |{v : d+(v) =1, d (v) = 0}|

[{v : d'(v) = 0, d(v) = 1}



Proof {Outline)

By induction on [E[. Trivially true for [E} = 0 and so assuming it is
true for all digraphs with |E[ < m and suppose we have a digraph with |[E| =
m > 0. Delete an arc (x,y). apply the induction hypothesis and then put (x,y)
back ~ which either turns a path into a cycle or lengthens a path or joins 2
isolated nodes. All cases maintain the result. o

A k-assignment a will be called o-optimal if for any a’' € Ak with
we have c{a) { c{a').

Theorem
let a € Ak be o-optimal
(i) If C is a cycle in G(a) then £(C) 2 ©
{(ii) Let P be a shortest path from Vis1 to W1 Then axP is also

o-optimal.

Proof
(i) Now axC € Ak and so c(axC) = c(a) + E(C) 2 c{a) by assumption.
Hence £(C) 2 O.

(ii) Let a be any k+l - assignment. We show that there exist node

disjoint cycles Cl.....C q20 and a path Q@ from v

q kel to Werl such

that

{strictly speaking we need brackets on RHS of the above). Then



o) = o@) + 3 £(C;) + 2(@)
i=1

2 c(a) + £(Q} by (i)
2 c(a) + &(P) by assumption
= c(a*P)
To construct CI""‘qq and .Q consider the subset X of arcs of G{a)

defined by

X = {(vi‘w;(i)): i=k+lorikand a(i) # ;(i)}

u{(wa(i),vi): i {kand a(i) # ;(i)}

One then checks that the digraph (Vk+1 u Wk+1.

conditions of the lemma, that d+(vk+1] =1, d(

X) satisfies the

})=0 and d'(w . .) =0,

_ Vi1 Tk+1
d-(wk+1) = 1 and that all other vertices are isolated or satisfy d+(v) =

d (v) = 1. The cycles and path of the lemma are what we need. o



Assignment Algorithm

(Initial Description)

begin

construct G(a);
find a2 shortest path P from Vi to v
a = axp

end

end

By Theorem 1 a remains o-optimal and after m—iterations we will have
solved the problem. As arc lengths could be negative, each shortest path
problem could take 0(m3) steps and so the time complexity of the whole

algorithm is 0(m4) .

Example



[




Linear Programming Formulation

m m
ALP = minimise 2 2 ¢, x,.
i=1 j=1 RN
subject to
m
1 2 x,.=1 i=1,2,....m
( ) i=1 1 !
m
(2) 2 ox,, =1 i=1,2, ,m
j=1 M
(3) Xij 2 0 ¥ i,j.
Let XF = {x: (1) - {3) hold}
and

XI = {x € XF: xij =0 or 1, Vi,j}.

Assignment Problem is equivalent to minimise ch subject to x € X

I

Proof

If a is an assignment then putting



gives a solution to ALP with value c(a).

Conversely, if x € XI define a by
a(i) = unique j such that xij =1
(uniqueness follows from (1))

a is a permutation for if a(r) = a{s) = k then

m

2 X, 2 X, +x, =2, contradiction. 0
-, Tik Tk

We show that

N
)

I min ch subject to x € XI [min{c{a): a € A}]

min cTﬁ subject to x € XF

= = zp , say.
Proof
Consider dual problem
m m
DALP = maximise Z ¥y + Zz,
i=]1 j=1

subject to Y; + zj < cij Vi,j
We show that if a is the assignment constructed by our algorithm then there

. »* % .
exists (y ,z ) satsifying
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* * - -
(4) ¥y + Zj < cij 1<i,j€<m
3 *
(5) Yi * Za%(4) = Cia¥(1) 1 Sigm

Now (4) implies y*,z* is a dual solution and so

m mo
(6) Zp 2 2 y.+ 3 =z_. [zF is max. dual
i=1 ' =1
[value
But, from (5)
m m m
Z e, ¥ .= 3 y.+ I z %
i1 2 (1), i=1 2 (1)
m m
(7) = 3 y? + 3 oz
i=1 j=1 J

since a# is a permatation.
Hence Zp 2 c(af) 2 Zp, where the first inequality follows from (6). (7) and
the second from duality.

To construct y*.z* let ; be the {m—1)-assignment produced just before
a. For x € VUW let d{x) = length of shortest path from v, to X in
G(a).

Let

1.2,....m

>
i

—d(vi) i

Z. = d(wj) j=12,...,m
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Observe first that

d(vy) = A0 5) + vy 1<¢1<md

since (w;(i),vi) is the unique arc entering v, in G(a). Equivalently

» %* ~
(8) Vi = Zari) T ©i,a(i)°
This verifies (5) whenever ;(i) = a#(i). and also (4) for all i.j = a(i).
But if a*(i) # af{i) then the last path P found contains the arc

{v..w »* _.) and for an arc of P we have
i"a (i)

d(waf(i)) = d{v,) + E(Vi,waf(i))

or

»*
Za¥1) < Y1t Ci,at(4)

and (5) is verified for all 1.
We only now need check (4) for arcs of F(a)} which are not on P. But

for such arcs we have

d(wj) < d(vi) + e(vi,wj).



Notes on optimization

August 21, 2018

1 Optimization Problems

We consider the following problem:
Minimize f(x) subject to x € S, (1)
where x = (21, x2,...,2,) and S C R"™.
Example: f(x) =c’xand S = {x € R": Ax = b,x > 0} — Linear Programming.
Local versus Global Optima: x* is a global minimum if it is an actual minimizer in ([1]).

x* is a local minimum if there exists 0 > 0 such that f(x*) < f(x) for all x € B(x*) N S,
where B(x,0) = {y : [y — x| < d} is the ball of radius §, centred at x.

See Diagram 1 at the end of these notes.

If S = () then we say that the problem is unconstrained, otherwise it is constrained.

2 Convex sets and functions

2.1 Convex Functions

A function f: R"™ — R is said to be convex if

FOx+ (1= Ny) <Af(x)+ (1= f(y)
See Diagram 2 at the end of these notes.

Examples of convex functions:



F1
F2

F3

F4

F5
F6

F7

A linear function f(x) = a’x is convex.
If n =1 then f is convex iff

fy) = f(x) + f'(z)(y — x) for all z,y. (2)
Proof. Suppose first that f is convex. Then for 0 < X\ <1,

fl@+AMy—2)) <L =N f(x) +Af(y)
Thus, putting h = A(y — ) we have

fo) > flo) + LEF h]z — f(=))

Taking the limit as A — 0 implies .

Now suppose that holds. Choose x # y and 0 < A < 1 and let z = Az + (1 — \)y.
Then we have

fl@) = f(2) + f'(z)(@ = 2) and f(y) = f(2) + ['(2)(y — 2).
Multiplying the first inequality by A and the second by 1 — A and adding proves that

M (2)+ (1= fy) = f(2).

(y — ).

[
If n > 1 then f is convex iff f(y) > f(x) + (Vf(x))"(y — x) for all x,y.
Apply F2 to the function h(t) = f(tx + (1 —t)y).
A n=1and [ is twice differentiable then f is convex iff f”(z) > 0 for all z € R.
Proof. Taylor’s theorem implies that
Fly) = (&) + F@)y — ) + 57"y — 2)? where = € [r,y].
We now just apply . O

It follows from F3 that e*” is convex for any a € R.

x® is convex on R, for a > 1 or a < 0. x® is concave for 0 <,< 1.
Here f is concave iff —f is convex.

Suppose that A is a symmetric n X n positive semi-definite matrix. Then Q(x) = x” Ax
is convex.

By positive semi-definite we mean that Q(x) > 0 for all x € R™.

We have

QMAx + (1 = Ny) = AQ(x) — (1 = N)Q(y)
=A?Q(x) + (1= 1)?Q(y) + 2M(1 = )x" Ay = AQ(x) — (1 = ) Q(y)
=-A1-N)Q(y —x) <0.



F8 If n > 1 then f is convex iff V2F = To. ; ] is positive semi-definite for all x.
Apply F7 to the function h(t) = f(x + td) for all x,d € R"™.

Operations on convex functions

E1 If f, g are convex, then f + g is convex.
E2 If A > 0 and f is convex, then Af is convex.

E3 If f, g are convex then h = max {f, g} is convex.
Proof.

h(Ax + (1 = N)y) = max{f(Ax+ (1 = N)y),g(Ax+ (1 = N)y)}
< max {Af(x) + (1= A)f(y), Ag(x) + (1 = A)g(y)}
< Amax {f(x), g(x)} + (1 = A) max {f(y), 9(y)}
= Ah(x) + (1 = A)h(y).

Jensen’s Inequality
If fisconvex and a; e R", \; e Ry, 1 <i<mand A\ + \g+---+ \,, =1 then

/ (Z )\z’ai> < Z f(hiay).

The proof is by induction on m. m = 2 is from the definition of convexity and then we use

m m—1 s
Z a an, + ( ) 2.7 - )\ma
Application: Arithmetic versus geometric mean.
Suppose that aq,as,...,a,, € R,. Then
ay+ag+---+ap
L > (aras - - am) ™. (3)

m

—log(x) is a convex function for > 0. So, applying (),

=1 =1

Now let A\; =1/mfori=1,2,...,m



2.2 Convex Sets

A set S C R" is said to be convex if x,y € S then the line segment
Lix,y)={x+(1-NyeS:0<A<1}.

See Diagram 3 at the end of these notes.

Examples of convex sets:

Cl S={x:a’x=1}. x,y € S implies that
a’Mx+(1—-Ny)=da'x+(1-Naly= +(1-)\) =1,
C2 S= {x calx < 1}. Proof similar to C1.
C3 S =B(0,0): x,y € S implies that
x4+ (1 =Ny| <[ Xx|+[(1T =Ny <Ad+ (1 —N)d =4.

C4 If f is convex, then the level set {x : f(x) < 0} is convex.
F(x), £ly) < 0 implies that f(Ox + (1~ N)y) < Af(x) + (1 — A} f(y) < 0.

Operations on convex sets:

O1 S convex and ¢ € R™ implies that x + 5 = {x+y : y € S} is convex.

02 S, T convex implies that A = SN T is convex. x,y € A implies that x,y € S and so
L=L(x,y) CS. Similarly, L CT andso L C SNT.

O3 Using induction we see that if S;, 1 < ¢ < k are convex then so is ﬂle Si.

O4 If S, T are convex sets and «, 5 € R then aS + T = {ax + By} is convex.
If z; = ax; + By; € T,i = 1,2 then

/\Z1 + (1 - )\)ZQ = Oé()\Xl + (1 — )\)Xg) + B()\yl + (1 — )\)YQ) eT.
It follows from C1,C2 and O3 that an affine subspace {x : Ax = b} and a halfspace {x : Ax < b}
are convex for any matrix A any vector b.

We now prove something that implies the importance of the above notions. Most optimiza-
tion algorithms can only find local minima. We do however have the following theorem:

Theorem 2.1. Let f, S both be convez in (I). Then if x* is a local minimum, it also a global



Proof.
See Diagram 4 at the end of these notes.

Let § be such that x* minimises f in B(x*,d) NS and suppose that x € S\ B(x*,0). Let
z = Ax* + (1 — \)y be the point on L(x*,y) at distance ¢ from x*. Note that x € S by
convexity of S. Then by the convexity of f we have

) < f(x) S AT + (1= A)f(x)
and this implies that f(x*) < f(x). O

The following shows the relationship between convex sets and functions.

Lemma 2.2. let fi, fa,..., fm be convex functions on R". Let b € R™ and let

Then S is convex.

Proof. 1t follows from O3 that we can consider the case m = 1 only and drop the subscript.
Suppose now that x,y € S i.e. f(x), f(y) <b. Then for 0 < A <1

FOX+ (1= A)y) S AF() + (1= N F(¥) < Ab+ (1= A)b=b.

So, Ax+ (1 =Ny € S. O

3 Algorithms

3.1 Line search —n=1

Here we consider the simpler problem of minimising a convex (more generally unimodal)
function f: R — R.
See Diagram 5 at the end of these notes.

We assume that we are given ag,a; such that ag < x* < a; where x* minimises f. This
is not a significant assumption. We can start with ag = 0 and then consider the sequences
G = f(2),& = f(—2") until we find ¢y < min {(o, G;} (resp. &1 < min {&,&}). Then we
know that z* € [(, G;] (resp. x* € [&,&]).

Assume then that we have an interval [ag, a;] of uncertainty for x*. Furthermore, we will have
evaluated f at two points in this interval, two points inside the interval at as = ag+a?(a;—ag)
and a3 = ag + a(a; — ag) respectively. We will determine « shortly. And at each iteration
we make one new function evaluation and decrease the interval of uncertainty by a factor a.
There are two possibilities:



(i) f(as) < f(az). This implies that z* € [ag, as]. So, we evaluate f(ag+ a?(az — ag)) and
make the changes a; — a!:

/ / / 2 /
ay < ag, @y < as, ay < ag + a(ag — ap), ay < as.

(ii) f(a2) > f(as). This implies that a* € [ag,a1]. So, we evaluate f(ap+) and make the
changes a; — aj:
apy < ay, @y < ay, ay < as, ay <+ ag + o(a; — ap).
In case (i) we see that a} —ay = a3 — ay = a(al — ap) and so the interval has shrunk by

the reqmred amount. Next we see that a, — aj = o*(az — ag) = o*(a} — ag). Furthermore,
ah — ap = as — ag = &*(a1 — ag) = ala] — ap).

In case (ii) we see that a} — af, = a; — as = a3 — (ap + @*(a; — ap)) = (1 — a?)(a; — ap). So,
shrink by « in this case we choose « to satisfy 1 — o? = . This gives us

1++/5
9

a = — the golden ratio.

Next we see that a)y —a) = a3 —ag = (o — a2)(a1 —ag) = 2= (al —ap) = (1 —a)(a) —ap) =
a?(ay — ap). Finally, we have a} — a = ag + a?(a; — ag) — a2 = a*(a; — ap) = ald) — af).

Thus to achieve an accuracy within ¢ of 2* we need to take t steps, where oD < § where D
is our initial uncertainty.

3.2 Gradient Descent

See Diagram 6 at the end of these notes.

Here we consider the unconstrained problem. At a point x € R", if we move a small distance
h in direction d then we have

fx+hd/[d]) = f(x) + h(V]) % +O(h?*) > f(x) = h[Vf| + O(h?).

Thus, at least infinitessimally, the best direction is —V f. So, for us, the steepest algorithm
will follow a sequence of points xg, X1, ..., Xy, ..., where

Xkl = X — 6ka(Xk>
Then we have

|Xpt1 — X*|2 =[x — X*|2 - QCYka(Xk)T(Xk —x") + ozi|Vf(xk)2|
< fxp — X7 = 200 (f (1) — F(x7)) + QZV f(xi) 7, (4)

The inequality comes from F3.



Applying (4) repeatedly we get
k K
xe =X < [xo =X =2 oa(f(xi) — f(x)) + Y o[V (xi)]” (5)
i=1 =1

Putting R = |x¢ — x*|, we see from (f]) that

k

2y ailf(x) = f(x) < RP+ ) oV f(x)l” (6)

i=1 i=1

On the other hand,
>l ()= f(x) = <Z ai> min {f(x) = f(x) 4 € [K]} = (Z cu) (f (tmin—f(x)),

where f(Xmin) = min{f(x;) : i € [k]}.
Combining (6)) and we get

2 2k 2
f(szn) - f(X*) S d il GkZi:1 <
2 iy

where G = max {|V f(x;)| : i € [x]}.

?

So, if we choose ay, so that Y ;= a; =00 and >, a7 = O(1) then

| f (Xmin) — f(x*)] = 0 as k — oc.

As an example, we could let o; = 1/i.

4 Separating Hyperplane

See Diagram 7 at the end of these notes.

Theorem 4.1. Let C be a convex set in R"™ and suppose x ¢ C. Then there exists 0 # a € R"
and b € R such that (i) a"x > b and (i) C C {y e R": aly < b}.

Proof.
Case 1: C is closed.
Let z be the closest point in C' to x. Let a=x —2z # 0 and b= (x — z)’z. Then

T

a'x—b=(x—2)"x- (x—2)"

z=|x—1z|>>0.

This verifies (i). Suppose (ii) fails and there exists y € C such that a’y > b. Let w € C be
the closest point to x on the line segment L(y,z) C C. The triangle formed by x, w,z has a
right angle at w and an acute angle at z. This implies that |x —w| < |x —z]|, a contradiction.

7



Case 2: x ¢ C. )
We observe that C' O C and is convex (exercise). We can thus apply Case 1, with C replacing
C.

Case 3: x € '\ C. Every ball B(x,d) contains a point of R" \ C that is distinct from
x. Choose a sequence X, ¢ C,n > 1 that tends to x. For each x,, let a,,b, = afzn
define a hyperplane that separates x, from C, as in Case 2. We can assume that |a,| = 1
(scaling) and that b, is in some bounded set and so there must be a convergent subsequence
of (a,,b,),n > 1 that converges to (a,b),|a] = 1. Assume that we re-label so that this
subsequence is (a,),n > 1. Then for y € C' we have aly < b, for all n. Taking limits we
see that al'y < b. Furthermore, for y ¢ C' we see that for large enough n, aly > b,. taking
limits we see that a’y < b. O

Corollary 4.2. Suppose that S, T C R™ are convex and that SNT = (). Then there exists
a,b such that alx <b forallx € S and a’x > b for allx € T.

Proof. Let W = S+ (—1)T. Then 0 ¢ W and applying Theorem [£.1] we see that there exists
a such that a’z < 0 for all z € W. Now put

1
b=— (sup a’x + inf aTx) .
2 xeS xeT

]

Corollary 4.3 (Farkas Lemma). For an m X n matriz and b € R™, exactly one of the
following holds:

(i) There exists x € R™ such that x > 0, Ax = b.

(ii) There exists u € R™ such that u’ A > 0 and u’b < 0.

Proof. We cannot have both (i), (ii) holding. For then we have
0<ulAx=u'b <.

Suppose then that (i) fails to hold. Let S = {y : y = Ax for some x > 0}. Then b ¢ S and
since S is closed there exists a, 3 such that (a) a’b < 8 and (b) a” Ax > 3 for all x > 0.
This implies that a’ (b — Ax) < 0 for all x > 0. This then implies that u = « satisfies
(ii). O

4.1 Convex Hulls

See Diagram 8 at the end of these notes.



Given a set S C R", we let
conv(S) = {Z Aix; : (i) |I] < oo, (i) A =1, (iii) A; > 0,i € I, (iv) x; € S,i € 1} .
icl iel
Clearly S C conv(S), since we can take || = 1.
Lemma 4.4. conv(S) is a conver set.

Proof. Let x =3, \iXi,y = D5 113y € conv(S). Let K = IUJ and put \; = 0,i € J\1
and pu; = 0,75 € I\ J. Then for 0 < o <1 we see that

ax+ (1 —a)y = Z(Oé)\l + (1 — a)u;)x; and Z(a)\l +(1—a)u) =1

ieK ieK
implying that ax + (1 — a)y € conv(S) i.e. conv(S) is convex. O

Lemma 4.5. If S is convezx, then S = conv(S).

Proof. Exercise. O

Corollary 4.6. conv(conv(S)) = conv(S) for all S C R™.

Proof. Exercise. m

4.1.1 Extreme Points

A point x of a convex set S is said to be an extreme point if THERE DO NOT EXIST
y,z € S such that x € L(y,z). We let ext(S) denote the set of extreme points of S.

EX1 If n =1 and S = [a, b] then ext(S) = {a, b}.

EX2 If S = B(0,1) then ext(S) = {x: |x| = 1}.

EX3 If S = {x: Ax = b} is the set of solutions to a set of linear equations, then ext(S) = 0.
Theorem 4.7. Let S be a closed, bounded convex set. Then S = conv(ext(S)).

Proof. We prove this by induction on the dimension n. For n = 1 the result is trivial, since
then S must be an interval [a, b].

Inductively assume the result for dimensions less than n. Clearly, S O T = conv(ext(S)) and
suppose there exists x € S\T'. Let z be the closest point of T to x and let H = {y caly = b}
be the hyperplane defined in Theorem Let b* = max {aTy "y EeS } We have 0* < oo
since S is bounded. Let H* = {y : a’y = b*} and let S* = SN H*.
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We observe that if w is a vertex of S* then it is also a vertex of S. For if w = Awy + (1 —
A)wa, Wi, We € 5,0 < A < 1 then we have

bv* =a’w = Aa’w; + (1 — Nalwy < A" + (1 = \)b* = b

T

This implies that a’w; = a’w, = b* and so wy, wy € S*, contradiction.

Now consider the point w on the half-line from z through x that lies in S* i.e

W—z+aTX_b(x—z)
Now by induction, we can write w = Zle A;w; where wyi, Wy, ..., W are extreme points of
S* and hence of S. Also, x = uw + (1 — p)z for some 0 < p < 1 and so x € ext(S). O

The following is sometimes useful.

Lemma 4.8. Suppose that S is a closed bounded convex set and that f is a convex function.
The f achieves its maximum at an extreme point.

Proof. Suppose the maximum occurs at x = A\;xy; + -+ + \eXp where 0 < A\, ...\ < 1
and Ay + -+ X\ = 1 and xy,...,x; € ext(S). Then by Jensen’s inequality we have
fx) S Af(xa) 4+ 4 Aef(xe) S max{f(x;) : 1 <i <k} 0

This explains why the solutions to linear programs occur at extreme points.

5 Lagrangean Duality

See Diagram 9 at the end of these notes.

Here we consider the primal problem
Minimize f(x) subject to ¢g;(x) <0,i=1,2,...,m, (8)
where f, 91,92, ..., 9m are convex functions on R".
The Lagrangean -
L(x,A) = f(x) + ) Aig(x).
i=1
The dual problem is

Maximize ¢(A) subject to A > 0 where ¢(A) = min L(x, A). (9)

xER™

We note that ¢ is a concave function. It is the minimum of a collection of convex (actually
linear) functions of A — see E3.

10



D1 :Linear programming. Let f(x) = ¢'x and g¢;(x) = —alx +b; for i = 1,2,...,m. Then

L(x,A) = (CT — )\TA) x + bTX where A has rows ay, ..., a,,.

D2

Weak Duality: If X is feasible for () and x is feasible for (§) then f(x) > ¢(X).
d(A) < L(x,A) < f(x) since \; >0,¢;(x) <0,i=1,2,...,m. (10)

Now note that ¢(X) = —oo, unless ¢’ = AT A, since x is unconstrained in the definition of
¢. And if ¢ = AT A then ¢(X) = b”A. So, the dual problem is to
Maximize b7 X subject to ¢/ = AT A4 and XA > 0, i.e. the LP dual.

Strong Duality: We give a sufficient condition Slater’s Constraint Condition for tightness

in (10).

Theorem 5.1. Suppose that there exists a point x* such that g;(x*) < 0,i = 1,2,...,m.
Then

A) = i .
Tiléi())(ﬁb( ) x:gi(xr)nglgie[m} f(X)

Proof. Let

A={u,t): Ix eR" g;(x) <wuy,i =1,2,...,mand f(x) < t}.
B=1{(0,s) € R"*':s < f*} where f*= min  f(x).

x:9;(x)<0,3€[m]

~—

Now AN B = and so from Corollary there exists A, 7, b such that (X,v) # 0 and

b <min{A"u+~t: (u,t) € A}. (11)
b > max {Au+1t: (u,t) € B}. (12)

We deduce from that A >0and g > 0. If v < 0 or \; < 0 for some ¢ then the minimum
in (L1)) is —oco. We deduce from that vt < b for all t < f* and so vf* < b. And from

that
vf(x)+ Z Nigi(x) > b >y f* for all x € R"™. (13)
=1

If v > 0 then we can divide by v and see that L(x,A) > f*, and together with weak
duality, we see that L(x,A) = f*.

If v = 0 then substituting x* into we see that Y ", \;g;(x*) > 0 which then implies
that A = 0, contradiction. O

11



6 Conditions for a minimum: First Order Condition

6.1 Unconstrained problem

We discuss necessary conditons for a to be a (local) minimum. (We are not assuming that
f is convex.) We will assume that our functions are differentiable. Then Taylor’s Theorem

fla+h) = f(a) + (Vf(a))"h+o(/h])
implies that
Vf(a) =0 (14)
is a necessary condition for a to be a local minimum. Otherwise,
fla=tVf(a) < fla) —t|Vf(a)]*/2
for small ¢ > 0.
Of course (14 is not sufficient in general, a could be a local maximum. Generally spealking,

one has to look at second order conditions to distinguish between local minima and local
maxima.

However,
Lemma 6.1. If f is convex then is also a sufficient condition.

Proof. This follows directly from F3. ]

6.2 Constrained problem

We will consider Problem , but we will not assume convexity, only differentiability. The
condition corresponding to (14)) is the Karush-Kuhn-Tucker or KKT condition. Assume that
f,91,92, ..., gm are differentiable. Then (subject to some reqularity conditions, a necessary
condition for a to be a local minimum (or maximum) to Problem is that there exists A
such that

Vf(a)+ Z A\iVgi(a) = 0. (15)

N>0 1<i<m. (16)
Aigi(a) =0, 1<i<m. Complementary Slackness (17)

The second condition says that only active constraints (g;(a) = 0) are involved in the first
condition.

One deals with g;(x) > 0 via —g;(x) < 0 (and \; < 0) and g;(x) = 0 by ¢;(x) > 0 and
—g;(x) <0 (and \; not constrined to be non-negative or non-positive).

In the convex case, we will see that (15]), and are sufficient for a global minimum.

12



6.2.1 Heuristic Justification of KKT conditions

See Diagram 10 at the end of these notes.

Suppose that a is a local minimum and assume w.l.o.g. that g;(a) = 0 for i = 1,2,...,m.
Then (heuristically) Taylor’s theorem implies that if (i) h"Vg;(a) < 0,4 = 1,2,...,m then
(ii) we should have h”V f(a) > 0. (The heuristic argument is that (i) holds then we should
have (iii) a + h feasible for small h and then we should have (ii) since we are at a local
minimum. You need a regularity condition to ensure that (ii) implies (iii).)

Applying Corollary we see that the KKT conditions hold. We let A have columns
Vgi(a),i=1,2,...,m. Then the KKT conditions are AX = —V f(a).

For much more on this subject see Convex Optimization, by Boyd and Vendenberghe
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E'xempleg _
\. Capital Budgeting

A firm has n projects that it would like to undertake but because
of budget limitations not all can be selected. In particular project 3§
1; expected to pmd'f:ce 2 :eva'nu'e of t:j but :equires'an investment of ‘-ij _
in time period i for i=1,...m. The capital available in time periodi is b .
The problen of mininising revenue subject to the budget constraints can be
formulated as follows: let xj = O or 1 correspond to n;t p?oceeding or
iespect.ively proceeding with project j then we have to

n

Maxinise . x c jx 3
3=

subject to - I .a,_j xy € by L=l,ecem
=1

o> € | x 'u':estr SRR (5

2. Denot location

We consider here a simples problem of this type: a company has selected
m possible sites for distribution of itsproducts in a certain area., There
are n customers in the area’ and the transport cost of supplying the whole
of customer 3's requirements over the given planning pezi&d from

potential site i is € 3 Should site { be developed it will cost f i to

construct a depot there. which sites should be selected to minimise the

total construction plus transport cost?




To do this we 1nt_zaduce m variables yl....ym which can only take va.ues

© or 1 and correspond to a particular site being not developed or developed

respectively. We next define Xy 4 to be the fraction of customer 3's

xequirements _supf.olied fromdepot i in a given solution. The problen can then

be expressed,

Minimise I z cij xij + z fiyi .
| o im 3= i=1
subject to m
Z lxij'l 3 = 1,.0sn - -*
i=1 _
81j$ Yy 1-1,...,,;3__.,“’_““
i: -
’xij 2o oy g, in\:e%u .L-_-'L'. m

Nete thal " Wf Y. =0 Lhen ? Y. =0 ‘and  there s ne
conkigbubion te the ke EnL (.cft Alss ;- L <YL .,mE.(\c's Xy =0
?o( i -; PERAAL cm& ¢ No 5“’65 are, dgsﬁnkt&ed ?'foﬁ\ s'&e t.
Ths Coff%‘o\\ks Emn.“b te fno Aego\: ot sJ;u.-.

0\'\ ‘C\\t c-U\!\' \m“& \g' "i L\-Qn gg- = g g,:—\v;\ c\-\ '\.s H\r
coct of constracking depet '1 F\lso o, < 9y beromes g |
whieh  helds any vToy Sem  the c;:mStfcamk < '* |

3. Set c::ver:i.p_g

Let S,,...5) be a family of subsets of a set: s ={1,2,...m }.

A covering of S is a subfamily s ?ug jg‘I such that § = U S; . Yol
;QI, ) e A
Assume that each subset S 3 ha.s cost c > O assocjated with it, We define

the cost of a cover to be ths sum of the mts of the subsets included in

the cover,



The problex of finding a cover of minimum cest is of particular

e ;'\-,} -
E .

practical significance. As an integer program it can be specififed_as

follows: define the m x n matrix A = ” "‘ij ” by

aijtl_iftts

3

= 0 otherwvise

Let xj be O -~ 1 variables with xj = 1(0) to mean set §j is included

(respectively not included) in the cover. The problem is to

n
rinimise ) cj'xj
e j.l
n
(15.1) subject to ) By %521 i=1,...m
i=1
3j =0orl _ ‘

The » inei;uality constraints have the following significance:

since ’j = 0 or 1 and the coefficients a,, are also O or 1 we see that

i)
n .
a .
jaztl 14 ’j can be zero only if "j = O for all j such that aij =]

'In other words cnly if no set 84 is chosen such that 1 € 54. The
inequalities are put 1_n to aviod this. |

As an exaxple considér the following simplified airlins2 ::.v.-ew
scheduling problem. An aizline. has m scheduled flight-legs per week in
its current service. A flight-leg being a singlé flight flovn by a single
crevw e.g'. London - P#:is leaving Heathrow at 10.30 am. Let Sj i=1l,...n

be the collection of all possible weekly sets of flight-legs ‘that can be

flown by a single crew.” Such a subset_iust take account of restricticns like

a crew arriving in Paris at 11,30 am. cannot take a flight: out of New York
at 12,00 po, and so' if Cj is the cost of set sj of flight-legs then the

problem of minimising cost subject to covering all flight-legs is a set



-y’

coverir g problem, Note that if crews are not allowed to be passengers on a

AL

flig.\_f.‘i.e. so that t.he'y can be flown to their next flight, then we have to >

make 15,1 an eguality - the set partitioning problem,
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Furthor Uses of Intager Variables

{1 If a variable x can only take a finite number of values pl...'.pm
we can replace x by the expression

Py:¥y * eee ¥ Pp ¥n

where

1l "n.l

.H + see 4+
and '1 - 0 ox 1 1 = 1...-“

For example x might be the ouiput of a plant which can be small Pyr

medium p, or large py. The cost e(x) of the plant could be represented
by

C-¥y T Gy Wy + c,y ¥,

whare n. ig the cost of a small plant ete.




{2) In L.P. O3e generally consider all constraints to be hold:'l_ng
simultaneocusly. - It is possible that the variable might have to satisfy

one or other of a set of constraints

.
-

eogo

" a) 0OL£xXSM

0<x <leor x2 2 .

can be expressed

x<1l+ (M-28
x 2 2+ M06-1)

x20 $§=00rl

x<Misa notional upper bound to make this approach possible,

{b) 314’82».‘34

xlzlot xzzl but not both 2 1
g X 4%y 2 O

can be expressed

x, +x, s 4
x, z ¢
z, 2 1-8
Xy e (3-8) + 48
x, £ § + 4 (1-8)

d = o'cr l




Integer programming problems generally take much longer to solve then
the eorzespondiﬁg linear program obtained by ignoring i.nt'egrality.. It is
wise therefore to consider the possibility of solving as a straiéht forward
L.F, and then rounding e.g. in the trim-loss preblenm. 'i‘his is not always
possible for example if %, is a O - 1 variable such that x, = O means do
not build a plant and x; = 1 means build a plant then rownding x; = % is

not very satisfactory.

A cutting Jplane algorithm for the pure problem

~ The rationale behind this approach in:~

1) Solve the continuous problem as an L.P, i.e, ignore intagrality.

2) If by chance the optimal bglic variables are all integer then the
optimum solution has been found. Otherwise:-

3) Generate a cut i.e. a constraint which is satisfied by all integer '
solutions to the problem but not by the current L.P. solution,

4) A44 this new éonst:a.tnt and go to (l).

The idea of such an approach is illustrated below:-

It is straight forward to show that i{if at any stage the current L.P.
solution x is integer it is the optimal integer solution., This is because x

is optimal over a region containing all feasible integer solutions.



The problem is to define cuts that ensure the eonvergenc'e of the
algorithm in a finite number of steps. The first finite algorithm was
daviged by R.E, Gomory. |

It :I.s“ based on the following constryction: let

15,2
( ) X .lxl*.o."lnxn.b

be an equation which is to be satisfied by non-negative integers .

XyreoeXy and let § be the iet ofl possible sclutions,

Por a real numbe: £ we dafine LI;J it to be the largest integer < .

Thus £ = [£] + e where 0 s € < 1,

les) =6  |3j=3 l-e&}=-s

Now let a - ay + £j and b= b + £ in(15.2)then we have -

n
1 (la ]+ f;] xy = lp) + £
=1
and hence
_ n n
(15.3) ) tyxy=f = Db - ) 85 *3
j=1 4=1

Now for x € S the right hand side of 15,3 is clearly integer and
SO = zfjxj-fis integer for x € S, Since x 2 O for x € S we also
have £ 8 - £ > = 1 and since { is integer we deduce that { 2 0O and that

I fj xj 2 £ forxe §
I=1

Suppose now that one has solved the continuous problem in (1)

of our cutting plane algorithm and the sclution is not integer. Therefore

there is a basic variable 'x1 with



. x, + Z hij xj 'b.i.o
3fz

where bio is not integer.

Putting £, = hij - Lb:l.j] and £=b, - Lbiol and@ we deduce
that - |

(15.4) 1 £ x
jét

for all integer solutions to our problem.

Now £ > O since b,  is not integer and so (15.4)is not satisfied by

the current I.P, solution since xj = 0 for ij and so (lS.d)is a cut,

Statement of the Algorithm

s The initial continudus pioblem solved by the algorithm is the L.P.

problem obtained by ingoring integrality.

Step 1
. Solve current con;.inuous prcblenm,
Step 2 -
If the solution is integral it is the optimal integer solution,
Ptherwise. |
Step 3

cuooée a basic variable x; which is currently non-integer, construct
the corresponding constraint 15.4 and add it to the problem. Go to

Step 1.

We note that the tableau obtained after adding the cut is dual

feasible and so the dual simplex algorithm is used to re-optimise.
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One can show that the Gomory cuts ) fjx > £ vhen expressed in

3

terms of the original non-basic variables have the form | w w

¥y S

vhere the V4o W are integer and the value of [ w x_ after solving the

"3
Current continuous problem is W+ ¢ where 0 < ¢ < 1 assuming the current
solution non-integer, Thus thé cut is obtained by moving a hyperplane
parallel to itself to an extend which cannot exclude an integer solution.
It is worth noting that the plane can usually be md further without
e;tcluding integer points thus generating deeper cuts, PFor a discussion

on how this can be done see the referance given for integer programing.‘

Further Remarks

1) After adding a cut and carrying out one iteration of the dual
simplexalgorithm the slack variable corresponding to this cut becomes
honbasic. 1f during a succeeding iteration this slack variable becomes
basic then it may be discarded along with its current row without
affecting terminatien. mis means that the tableau never has more than

n+1rows or m + n columns,

2) A valid cut can be éenerate& from any row containing a non-integral
variable., One strategy is to choose the variable with the largest
fractional part as this helps' to produce a 'large' change in the
objective ;'alue. It is interesting that finitness of the algorithm has
not been p:’roved for this strategy alt:hoi:gh finitness ﬁus been proved for
the strategy of always choosing the 'topmost' row the tableau with a .

non=-integer variable,

) The behaviour of‘ this algorithm has been erratic. It has for example
worked well on set covering problems but in other cases the algorithm has to
be terminated because of excessive use of computer time. This raises an
1lpori:ant point; if the algorithm is stopped prematurely then one does not

have a good sub-optimal solution to use., Thus in some sense the algorithm
ts uarclisble,



It is useful to see what has happened graphically. We first express ’:7

the cuts in terms of x,, X,. ' - )

Cut no.l
) 3 :
7,

% x, +%_x3 : %
.8ince
: Xy = 7 -2:1 - 482 this becomes

"2 £ 1.
Cut no.?2

After re-arranging, this becomes

% + xzn‘s?.

A {s optimal selution ignoring integrality _ J
8 i5s optimal solution efter ‘adéiag cut C) '

C is Optimal integar solution found after adding C2.



Branch and Bound Method

The method to be descr;bed in this section constztutcs the
most successful method appl;ed to date. The idea is Quite general
and has been applled to many other discrete optimisation problems,

e.g. travelling salesman, job sﬁop'schqduling.

-Let us assume we are.trying to solQe the mixed integer ’
problem 12.2.- Let us call this problem Po+ The first step is to -
solve the 'continuous' L.P. problem obtained by ignoring the
integrality constraints. If in the optimal solution, one or more
- of the integer variables turn out to be non-integef, we choose one
such variable and use it to split the given problem Py into two
vsub-problems' Pl and P2. Suppose the variable chosen is yj and
it takes the non-integral value Bj in the continuous optimum. Then

P1 and P2 are defined as follows:

P

1 PD with the added constraint yj < [ Bj]

1

2 ¥ Py with the added constraint yj > [ Bj] +.1

Now any solution to Py is either a sclution of P1 or P, and so Po
can be solved by solving P, ani Pz. We continue by éoiving the
L.P. problems associated with P1 and Pz. We then choose one of'the
problems and if necessary split it into two sub-problems as was

done with Po.



This process can be viewed as the construction of a binary tree of

sub-problems whose terminal (pendant) nodes correspond to the problems

that remain to be solved.

In an actual computation one keeps a list of the unsolved problems

into which the main problem has been split. One alsoc keeps a note of

" the objective value MIN of the best integer solution found so far.

Step 0

Initially the list consists of the initial problem Po. ?ut MIN equal

to either the value of some known integer solution, or if one is not
given equal to some upper bound calculable from initial data, if

neither possibility is possible put MIN = =.

Solve the L.P; problem associated with P,. If the sclution has

integral values for all integer variables terminate, otherwise

Step 1

Remove a problem P from the list whose optimal continuous objective

function value X is less than MIN, If there are no such problems

terminate. The best integer solution found so far is optimal. If

none have been found the problem is infeasible.

U UUIUS VSRR

D



15

Step 2

Amongst the integer variables in problem P with non-integer
values in the optimal continuous solution for P select one for

branching. Let this variable be yp and let its value in the

continuous solution bé B;
Step 3

Create two new problems P' and P" by adding the extra restrictions
< and

yp < [6] and yj

associated with P' and P" and add these problems to the list. . If

2 [BJ + 1 respectively. Solve the L.P. problems

& new and improved integer solution is found store it and update
MIN. The new L.P. problems do not have to be solved from scratch
but can be re-optimised using the dual algorithm (or

parametrically altering the bouni on yp). If during the

re-optimisation of either L.P. problem the value of the objective

function exceeds MIN this problem may be abandoned. Go to step 1.

If one assumes that each integer variable in Py has a finite
upper bound (equal to some large number for notionally unbounded |
variable) then the algorithn must terminate eventually, because as
one proceeds further down the tree of problems the bounds on the
variaebles become tighter and tighter, and these would eventually

become exact if the L.P. solutions were never integer.
As an example we show & possible tree (Fig 1) for solving

Minimise 20 - 3xl - sz
Subject to

© 2
T X *tx;s3

Fx-Ex sl | /7
e ~ >N and x. .x. integer
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§17. Two Person Zero Sum Games

(" . We discuss here an application of linear programming to the t-eory
of games, This theory is an attempt to provide an analysis of sitvations

involving conflict and competition.

Gome 4_ . ' ' :+ there are two players R and B

and to play the game they each choose a nuber 1, 2, 3 or 4 without the

other's knowledge and then they both simultaneously announce their numbers.

. ¥ A culls t and B oalLs ¥ Lhen B poysS Q an Gmou onl
Q) —U-\e-'gogeﬂ— ‘vea i the mobrx below. (\; Qs <'

this ¢ ec\wn\un\'« te R ?“‘3"“5 & "Q‘&)

16 2 =3 -2

This is a two person zero sum game, zero sum because the algehraic sum

of the players'wi,nn'm? w o.lmés'zero.

"Game 2 (Penalby Kicks)
Suppose A and B play the following game of SoCCeY . A piays in goal
‘and B takes penalty kicks. B can kick the ball into the left hand corner,
the Right hand corner or into the Middle of the goal. ‘A can Dive to his

Right or Dive to his left oxr Stay where he is. ¥ A c.arrec.l‘b SucSSQS

where B vl Rick the ball he wiill moke o save.

“The anQSQ Le A 15 given by the FoLlou'—mﬁ makrix .
‘ 2 R L M
DR 2 -1 =2

{ moo-l 2 -2

s ‘1> -1 1
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We first add 3 to each element of the matrix and then solve either
(1.8 or (1915

Problem (J7.i0) 1=
maxinise yl + yz + y3

Swbdect to Sy'l + 2)'2 + Yo &1

LS

2y1 +5y2 +y3 "1

1A

25'1 + 23,-2 + 4y3‘_<_ 1
yli .vzl 1'3 a O -

The optimal sclution can be found to be ¥y -lfeyz - .J—'fy3 -.llaand
Y, +y, + g8 '3/31mp1ying that n = % and 9y =9 =q, - 'y.i' he
solution to (I19) e X, = 21 x, = ZZ x, -5'/“' implying that
¢ ‘2 and py -'/., p, = % and p, -'57 « Since we added 3 to

each element initially we see that the actual value of the game to A

18 9 -3 = - Y
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Dominated Stratecgies

In the matrix gape below

T 3 -3 -2
3 2 ‘3 3
2 3 2 -

we see that strategy(3) is better for A than strategy {1) for any choice

of strategy by B and consequently strategy (1) can be ignored by A and

3 2 3 3
2 3 2 =

¥e see now that strategy{4)is better than either of strategies

the game reduced to

(2} (3Yfor B for either of A's strategies. Thus columns 1, 3 can be

deleted to reduce the game to

;2]

We hawve used the ide2 of dominated strategies to reduce the size of the

game to be considered. Thus

Strategy(i)dominates stzategy’_i") for the row player R if .

aijk ai'j for all j.

Strategy(3)dominates strategy(}')for the column player B! if

-
'.1.: ‘1:]' for a.l;L i.
Thus strategies{i*)[4') above can be ignored. Successive applications

of these rules can reduce the siz: of a game aigni:ﬁcantly.

Ronc‘.cm P‘:\o P‘FS

Ve _?(m.“.a no\.e Uno}. H-st o.Lovc-. on;\\\is.\s .Qeoes H\rou\u)\vx
“'\C]Nombe_cl .lg A,B "\w;\nj s‘deo‘:e& Euch'cs l,l .L'l\t P&é;&f

t. A '\C. o vondem vartable whese e"?ec“?& ‘volue g G
. 3
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Appendix 2: Existence of Equilibria in Finite' Games

We give a proof of Nash’s Theorem based on the celebrated Fixed Point Theorem of
L. E. J. Brouwer. Given a set C and a mapping T of C into itself, a point z € C is said
to be a fixed point of T, if T(z) = z.

Brouwer’s Fixed Point Theorem. Let C be a nonempty, compact, convex set in a
finite dimensional Euclidean space, and let T be a continuous map of C into itself. Then
there exists a point z € C such that T(2) = z.

The proof is not easy. You might look at the paper of K. Kuga (1974), “Brower’s
fixed point Theorem: An Alternate Proof”, SIAM Journal of Mathematical Analysis, 5,
893-897. Or you might also try Parthasarathy and Raghavan (1971), Chapter 1.

Now consider a finite n-person game with the notation of Section II1.2.1. The pure
strategy sets are denoted by Xi,...,Xn, with X consisting of m; > 1 elements, say

X ={1,...,m:}. The space of mixed strategies of Player k is given by X},

Xi =P = (De,1y- -+ Peimye) 1 PR 2 0fori=1,... ,mg, and X% prs =1} (1)

For a given joint pure strategy selection, @ = (i1,...,4,) with {; € X; for all j, the
payoff, or utility, to Player k is denoted by ux((¢1,...,i,) for k =1,...,n. For a given joint
mixed strategy selection, (p1,...,Pn) with p; € X7 for j = 1,...,n, the corresponding
expected payoff to Player k is given by gr(p1,--.,Pn),

mi: Min
gk(Pl, sos ;pn) = Z Tt Z P, - 'pn,inuk(ilr' .. sin)' (2)

i1=1 in=1

Let us use the notation gx(p1,...,Pnl?) to denote the expected payoff to Player k if Player
k changes strategy from pj, to the pure strategy i € X,

gk (P, .. ,Pnli) = gr(P1y. -+ s Ph—1,0i, Pty - - +Pn)- . (3)

where ; represents the probability distribution giving probability 1 to the point i. Note
that gx(pi,...,Pn) can be reconstructed from the gi(pi,...,pnli) by "

my,
gk(Pl,---,Pn) = Zpk,igk(f’l,---,pnli) (4)
=1
A vector of mixed strategies, (pi1,...,Pn), is a strategic equilibrium if for all ¥ =
1,...,n,and all ¢ € X, .

gx(P1,-- ., Pnli) < gr(P1,...,Pn). (5)

A-4
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Theorem. Every finite n-person game in strategic form has at least one strategic equi-
librium.

Proof. For each k, X is a compact convex subset of m; dimensional Euclidean space,

and so the product, C = X7 - x X, is a compact convex subset of a Euclidean space
of dimension Y., m;. For z = (pl, .»Prn) € C, define the mapping T'(2) of C into C by
T(z)=2'=(p1,---, ) (6)
where ' N '
o _ _ Prit+ max(0,gx(p1,...,Pnli) — gr(P1,- - ., Pn))
Pii = (7)

1+ 375 max(0, gk (P1s - - -, Puld) — g(P1,- -+, Pn))
Note that px; > 0, and the denominator is chosen so that E,__lpk ; = 1. Thus 2’ €

C. Moreover the function f(2z) is continuous since each gi(pi,.. ,pn) is continuous.
Therefore, by the Brouwer Fixed Point Theorem, there is a point, 2’ = (q1,...,g,) € C

such that T'(2') = 2’. Thus from (7)

gr,¢ + max(0, gy (2'd) — gi(2"))
14352 max(0, gk (2'|5) — ge(2'))”

(8)

ki =

forallk=1,...,nand i=1,...,my. Since from (4) gx(2’) is an average of the numbers
gk(2'|i), we must have gi(2'}t) < gr(2’) for at least one ¢ for which gx; > 0, so that
max(0, gx(2'|i) — gr(2')) = 0 for that i. But then (8) implies that 23—1 max(0, gr (2’ |_7) -
gk(2')) = 0, so that gx(2'|i) < gi(z’) for all k and i. From (5) this shows that 2’ =
(q1,...,4an) is a strategic equilibrium. m _

Remark. From the definition of T'(2), we see that z = (p1,...,pn) is a strategic
equilibrium if and only if 2 is a fixed point of 7. In other words, the set of strategic
equilibria is given by {z : T(2z) = z}. If we could solve the equation T'(z) = z we
could find the equilibria. Unfortunately, the equation is not easily solved. The method of
iteration does not ordinarily work because T is not a contraction map.
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Inventory Control

§1. - Introduction

We are mainly concerned here with the control of the
inventory (stock) levels in an organization,

We shall develop models for-a range of different situations
and use a variety of techniques for their solution. The
number of situations studied can only be a sample of possible
problem structures and there is no all powerful "inventory
management system". which can be generally applied.

why keep InQentoniéS?A

On the face of it inventories represent idle resources
and are wasteful. Moﬁey tied up in stocks could be invested
elsewhere. They are, nevertheless, necessary to uncouple
inputs and outputs, and usually arise from essentially "batch"
inputs - either from buying in dozens to sell singly, or from
naturally arising pnoauction procésses. Some common example.
of inventories are: ' ‘

1) . Stocks of spare parts for cars, locomotlves
or any industrial machinery

2) Stocks of fuel at power stations, petrol stations

3) Stocks of semi-finished goods waiting for next
stage in a production line. .

4)  Stocks of blood in a blood bank

5) _Money kept for withdrawals by banks, building
societies etc.’

Costs Involved

(a) Inventory Systems
(i) basic item cost, e.g. cost of purchase from supplier:
often constant, but may be effected“by quantity discount
'structures, and in dynamic sifuations. may change with time.

{ii) The cost of making an order excluding cost (i), e.g.
cost of paper work involved: ranges from very small costs
to substantial ones in some special cases.
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(iii) Inventory holding costs: includes capital
insurance, buildings etc. usually taken as
proportional to the value of inventory held.

{iv) Stock ouf Costs, i.e. cost of bging out of stock
when an item is demanded: this is generally difficult
to assess especially with regard to customer satisfaction.
In some cases back orders can be 'backlogged' i.e.
filled later on, while in others, non-fulfilled demands
represent 'lost sales’. |

Types of Inventory System

The two most common types‘of inventory system are:
(al Lot Size - Re-order point systems

Orders for fixed quantities are placed when the stock
level falls to a preset figure. This requires a constant
monitoring of stock levels, every time an item is taken from stock.

(b) Cyclical Review Mcdels

Stocks of a particular item are ekamined at fixed
intervals of time and an amount is ordered. depending on the
stock level at that time. Often the rule is to order up to
a predetermined level i.,e. if stock level is s and one orders
up to level L, then one orders L-s '

Lead Time

There is usually a delay between making an order, and the
time when the order actually arrives. This time is called the
lead time. It may be constant, dependent on order size, or even
a stochastic variable. - '
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The questions we shall concern ourselves with are:
(1) When to order?

(2) How much to order?

§2 DeterministiC'Sing;ETPrbduct'Mbdéls

In this section we examine 3 models of an inventory system.
They are necessarily very simple but illustrate some of the

ideas involwved.
-Model 1

The demand for the product is coﬁstant and A per period.
There is a zero lead time aﬁdrno stockouts are allowed. At
constant intervals of time T we make an order for Q-items of
stock. The problem is to choose T and § so as to minimise the

average cost per period of running the system.

Notation
A = the fixed cost associated with making an order (a(ii))
= unit cost per item.
I = inventory carrying charges. If one unit of stock is

kept for t periods then the-inventory charge is It units.
Let § > O be the stock level when each order arrives. The

stock level will have a pattern as shown in the diagram below
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From the diagram we see that Q = AT and so only one of these

variables can be chosen independently.

‘Ordering'Cost

The actual cost of the items bought or produced is AC per
period on average regardless of the inventory policy and will

not affect the choice of Q. It is therefore ignored.
The average number of orders per period will be 1/T = A/Q.
Therefore the average fixed cost of making orders is .

I A/Q
Holding Cost. ' :

The average stock level -is 3(S+(S5+Q))=8+Q/2.
& the average holding cost per period is
I(S+Q/2)
Therefore the average total variable cost per period K is

given by
2.1 K = AX/Q + I(Q/2+48)

K‘\

Q

K is to minimised for Q and § > 0. Now for given Q we minimise
K by taking S = 0. To find the optimal Q we differentiate
0).

2.1 (with §
Now %%

Putting %%

- m/Q? + 172

n

O gives the optimal Q_ where




DS

2.2 QW=(2iA/1)%

The right hand side of 2.2 is sometimes referred to as the
Wilson Lot Size Formula. Using this we see that the optimal

time interval T, and the minimum cost Kw are given by

= 3
T, = (2A/AI)

_ V2
K, = (23A1)

Discriete Case : !

Suppose that one can only order discrete quantities
Qs 2 gy».. and that Qw is not an exact multiple of q. In
this case we simply compare the costs for Q = [leq] and

Q = [Qw/é] + q and take the smaller.

Ex
A =10, A = 100, I = .1 and g = 10
then Q= 1#1.4 and X_ = 1H.141 -
W w
Also XK(1u40) = 14.1u43 and X(150) = 14,167
Therefore the optimal value of Q in the discrete case is

Q = 140.

Model 2

This model is the same as for model 1 except that items
out of stock can be b&ck—ordered and supplied when goods come
into stock. The cost of each item back-ordered is mt where t
is the length of time the demand remains unfilled. The

inventory level will follow the pattern shown below
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S is the number of back orders when the order Q arrives. The
objective is to choose Q and S so that the average cost per

period is minimised.

The following relations are apparent from the diagram

Q = AT
S = AT,
Q-8 = AT,

Ordering Cost

The number of orders per period is again 1/T = A/Q and so
the variable ordering cost is

AA/Q

Holding Cost

The proportion of time that there are gobds in stock is
T1/T. During this time the average inventory level is (Q-S)/2
and so the average holding cost per period is

I(Q*S)Tl/ZT
But from above we have that T1/T = (Q-8)/Q and so this cost is
in fact

1(Q-8)2/2Q
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Back-Order Cost

The propoption of time that the system ié out of stock is T2/T.
Because of the given form of back-order cost we may work out the
average back order cost in arsimilar way to that of the holding
cost. During the time‘the system is out of stock the average
amount back ordered is S/2. Therefore the average back-order
cost is

T ST2/2T

= w82/2Q ' from above
The total variable annual cost K is then
_ 2 2
K = XA/Q + I(Q-8)°/2Q + 7S8°/20

In order to minimise K we solve the equations

CESEN T G
aQ T 3% °
yielding

2.3 -aa/Q% -~ 1(Q-5)%/2q2 + 1(g-8) ~ 752/29? = o
and

2.4 ~I(Q-5)/Q + mS/Q = ©

These can be solved by using 2.4 to express Q in terms of S,

substitute in 2.3 to give an equation in S and then solving giving

(2AAT/m(n+I))3

92 ]
]

= Q ((m+1)/m)?

= O
t

K, (n/(n+T))3



D8

Comparing with model 1 we see that the extra freedom of allowing
back-orders enables us to reduce total cost. We can obtain the

results for model 1 by putting m = =,
Model 3

In the'previous models we assumed that the orders arrived
instantaneously in a single lot size of Q units. We now consider
a situation in which having made an order the items arrive in a
continuous stream at a rate'¢>l per period. The inventory level

assuming no back ordering will then have the pattern below:

S
-~
/7
a—

-
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During period TP the stock level increases at a rate Y-,

During period Ty the stock level decreases at a rate A.

If the length of time between orders is T and a total
amount Q is produced at a time then we must have Q = AT
otherwise stock levels will be zero again at the end of each

cycle,

" Ordering Cost

The average number of orders per perlod is again 1/T =

A/Q and so the average ordering cost is

AXx/Q
Holding Cost

If h is the maximum stock level during a cycle then
the average stock is h/2. Now h is the amount of stock

built up during TP and so

h=(p -2 TP

We also have that Q = ¢ TP as the order is produced in time

Tp. Substituting in the above gives
h = (1 - A/¢) Q

the average inventory cost per period is
3 I(1-A/¢) Q

and the average total variable cost is

K = AA/Q + 3 IQ(L-A/y)
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Sclving the equation %% = 0 gives the optimal batch

quantity as

Qb7 (y=22)?

LD
1}

with minimal cost

~
"

P
K (9= /9)

Thus total cost has decreased as against model 1 due to
decrease in inventory costs. Note that taking ¢ = = gives

model 1 again.

Fixed Lead Time

If the lead time T between making an order and receiving it
is a fixed constraint then its effect on the ébove 3 models |
and indeed any model is limited. We need only alter our
ordering policy so that if in a certain model with zero lead

time we make orders at time ty, t,,... then in the corresponding
médel with fixed lead time Tt we make orders atrtime tl—r, tz-T,...

and then in other respects i.e. costs and inventory levels etc.,

the two models will be the same.
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' §3 Deterministic Multi-Ttem Problems

We consider here some problems when more than one type of
item is being stored and when the inventory costs of the items
interact. If there is no interaction we can consider each

item separately.

Models 4 and 5 of this section are generalisations of model 1
although we could equally well have generalised model 2 or model 3.

Model 6 however is specifically a generalisation of model 3.
Model 4

Assume that there are n distinet types of item whose individual
characteristies are that of model 1. When an order is made it is
possible to order more than one type of item but the fixed cost of
ordering A is unaffected by the number of different types of goods
ordered.

Suppose then that there is a demand Aj and holding cost Ij for

item j. Let the optimal policy be to order item j at period Tj'
Nl\
< 1>
We show that T, = T, =...=T . For let T = Ty = m}n(Tj) Then

(if T:.| > T for some j by increasing the frequency of ordering of j
to that of k and ensuring that item j is ordered at the same time
as k we

(i) eliminate any extra ordering costs for j over those of k

(1i) decrease the average stock level of j.
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Thus Tj > T implies non-optimality and the result follows.

The problem then is to find the optimal value for T.

Ordering Cost

The average number of orders per period is 1/T and so the
average ordering cost per period is
A/T

Holding Cost

Let Qj be the amount of item j ordered at a time. Then since

orders are made at intervals of time T we must have

Now the average inventory for item j is Qj/2 and so the average
inventory cost per period is Iij/2. Using 3.1 we see therefore

that the average total inventory cost is

(3 T A, I.)T
: 3 J IJ)

and so the average total cost per period K is given by
K=A/T+ (3L lj Ij)T

]

The optimum value for T is obtained by solving g% = 0 which

gives

] 3
T (2A/(§ Aj Ij))

The optimal lot sizes Qj and minimal cost K can now be

calculated.
Model 5

In the previous model the items were able to share a facility
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(ordering) without_increase of cost, Thus the total cost was
smaller than if all the items were ordered éeparately. - In some
situations items will make conflicting demands on resources e.g, if
there is a shortage of storage space then calculating the optimal
lot size for eacﬁ item separately may lead to too great a demand

. for storage space. We again assume that there are n items whose
individual characteristics are those of model 1 but that the lot-

sizes Qj have to satisfy the constraint

3.2 I f, Q.

<
173 - f

1

For given batch sizes Ql,.;.Qn we may evaluate the average
total cost by summing individual costs as calculated in model 1.

This gives

3.3 X

§ (lej/Qj + Ij Qj/2)

The problem is therefore to minimise X subject to 3.2 and we can

proceed as follows:

(i) we first find the minimum of X ignoring constraint 3.2. Now
to minimise X overall we can simply minimise each term in the
summation 3.3 separately. This will naturally lead to the Wilson
Lot-Sizes

_ 3
Q,, (gAAj/1j>

If these values satisfy the constraint 3.2 then we have solved

the problem, otherwise

(2
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in these circumstances we may assume that constraint 3.2 1is

active at the optimum {(Q*;,...Q%) i.e.
Lf.Q*. = f
JQ ]
(this follows because we may express

K(Q) = K(Q*) + I g-g.(qj-q*j);...

3 ]
. 8K - 3K . .
and if Efj Q*j < f then (Ql-e — ,...Qn-e — ) is both feasible
and better than Q* for small enough & > 0 unless K . 0 for

50,

5 =1,..n but this would mean Qj = which we have already

ij
discounted).

So we now tackle the problem

3.u minimise X

subject to

3-5 F'—'Ef--'—f=0
JQJ

(Strictly speaking Qj > 0 is also a constraint but the solution to

3.4 always gives Qj > 0 so we can ignore it in this case).

Problem 3.4 is in a form suitable for application of the

classical Lagrange Multiplier Technigue.

This would state in our case that there exists 6 such that

at the optimum for 3.4

(3.6) %%. =6 %% for j = 1,...n
3 3

(a non rigourocus argument for this is that if 3.6 does not hold at

the optimum Q* then there exists q such that q.VF = O and g.VK<0
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at Q% and so for small @ > 0,Q* + 6q is both feasible and better than
Q*).

On differentiation we see that 3.6 states

2 .
-Ao - » . - » = .4
jAle 5 + 13/2 6 J‘.’:| for j l1,...n
or
. . = (2AA. - 15 ] = 1,...
(3.7) Qj ( AJ/(Ij zefj)j for jJ seesll

Now the value for 8 can be calculated by substituting 3.7

into F = 0 giving

- L
(3.8) § £5(2h5As/(T5-20850)% = £

In general 3.8 may be solved using any numerical technique

e.g. Newton Raphson or Bisection \(Exercise:find a range for &)

Bxamzle

A company manufactures 3 types of washing machine with

characteristics as below:

Washing Machine Price(&) Sales/Week

1 80 100
2 120 80
3 150 50

The inventory charge per week is ﬁorked out as 1% of the
price of the item. The fixed costs Aj for making an order are
all the same at £100. The company at present manufactures the
machines in batches calculated through the Wilson Lot Size formula.
There is concern however at the amount of money tied up in stock

under this poliecy and it has been decided to cut the average value
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of stock held by 20%. How can this be done at minimum increase

in total cost of ordering and inventory?
In this case constraint 3.2 will be of the form

3.9 T C, Q. <
J QJ ¢

where Cj is the cost of each item. Also we will have Ij=ICj

for some I - in the example .0l. We see then that the optimal

Qj as given by 3.7 are

Q.

3

1

(nAj/ch >%(1-291'

1y

] ij where o = (1~-261

Thus instead of calculating & we can calculate o and since
ZCij is to be cut by 20% we see that o = 0.8. ‘?hus the optimal
lot sizes are
Q = 40 Q, = 28 Q; = 6.5

1

1 _—
) giving

The value of 6 can be calculated from o = (1-26I
6 = - .0028. This value has a similar significance to that of
the shadow prices of linear programming (§6) i.e. for a small
increase 6C in the right hand side of 3.9 the saving in cost will

be .0028 §&C.
Model b

Suppose now that a factory manufactures n products with the
characteristics of model 3 i.e. constant demand Aj and rate of
production wj for product j. The products all share the same

manufacturing facility and sc¢ cannot be manufactured simultaneously.
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Instead they must be produced in series in batches i.e. first

a batch of product jl’ then a batch of product j2"" and so on.

This sequence of batches of products jl"“jn is.to be
repeated indefinitely at intervals of time T. Note that it is
possible for there to be some idle time between a batch of product
jn being completed and a new batch of jl being started due to
excess production capacity. Instead of a fixed set up cost for
each product we have a change-over cost Cij if a batch of product
j is produced immediately after product i. The problem is to
find the oraering of batches and the lengths of fime interval T so
that set up costs and inventory costs are minimised. Fortunately

the selection of sequence and calculation of T can be done

separately i.e. first find optimal sequence and then calculate T.

Finding an optimal sequence is non-trivial if the number of
jobs is not small. It is in fact what is called a travelling
salesman problem and the general solution of such problems is
discussed elsewhere. For the example given below we simply evaluate

the total change-over cost of all possible sequence.

Assume therefore that we have found the best sequence and that

the total change-over cost is A.

Now let Ql""Qn be the batch sizes of each product produced
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in each production cycle of length T.and let T,,...T  be the time

spent in each cycle producing'tﬁese batches. Then we have

"
)
=

Q3 = %5

and

for reasons as given in model 3.

We therefore have

3.10 T. = p.T where p. = A./¥.
j P ere Py 3793

Summing 3.10 for j = l,...n we have that

[y o ]
+1
1t
H
™
©

and since I Tj .i T we mpst-have z Py < 1 else it is not possible

to produce %he products as described above. Ifz pj < 1 then

there is time to spare and so another product could possibly be
fitted in. Assuming then that this production method is feasible we

calculate the average total change-over and inventory costs. Now

the inventory levels of each individual product will be as in model 3

and so the average inventory cost for product j will be

I. A.(1-p.)T/2
3 3( p])/
Therefore the average total cost is K where

3.11 K = A/T + BT where B = § I I5},(1-ps)
3
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The optimal value for T is then found from Sk = 0 i.e.

T = (a/B)?
and the values K’Ti and Qj can then be evaluated.

Examgle

Suppose there are 4 products with data

Product A v I
1 2ob 600 2
2 100 400 1
3 80 40O 3
b 50 250 .2

Changeover costs Cij are given by the matrix

- 20 30 40
30 - 20 50
4O 30 - 10
30 l20 40 -

The possible production sequences are (arbitrarily choose 1 as

beginning of cycle)

Cycle Changeover Cost
2 3 4 20 + 20 + 10 + 30 = 80
2 4 3 20 + 50 + 40 + 40 =150

30 + 30 + 50 + 30 =140

30 #+ 10 + 20 + 30 80

50 + 10 + 20 4+ 40 =110

A T = R S T S R
[4%]
=
w N

y 3 2 O + 40 + 30 + 30 =140
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Thus the optimal sequence is 1-2-3-4 giving A = 80, We note
that Bpj = 59/60 and so a schedule is possible. Direct

calculation gives
B = 133.3 +# 37.5 + 96 + 40 .= 406.8
Therefore the optimal value of T = .44,
From this we then calculate

3 1 2 3 4

Tj .15 A1 .08 .09
Qj 90 kL 36 22

K= Z(AB)% = 361

The models discussed in §2 and §3 are obviously much simplified
ignoring the major factor of stochastic variation. In spite of
this however the batch sizes as calculated do find a use in some

practical models.
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" Inventory Problems

1) A firm manufactures and sells a single product. The
demand for the product is 150 units/year. The value of the
stock for calculating inventory costs is £10 per unit. The
set up cost for a run of the product is'£100: The penalty
cost 1s considered to be £5 per unit per year out of stock.

The inventory carrying charge is €1 per unit per period held.

Find the optimal re~order policy if

a, Production time is negligible and no stock-outs are allowed.

b. Production time is negligible and stock-outs can be back-
ordered.

c. Production is at a rate of 400 units per year and no stock-

outs are allowed.

2) A firm manufactures and sells 3 different products, production
time being negligible. Data on costs and demands are given
in the table below. The maximum average value of inventory
that can be held at any one time is £4000. Find the optimal
re-order policy under these circumstances if the inventory

charge is 10% of the items value per period.

Produet Demand/year Value/item Set up cost
1 2000 10 50
2 1500 ' 15 40
: 3000 20 | 80
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3) Assuming the demand and cost data for Q2 find the optimal
production policy if _

(a) Production rates for products 1;2;3”are”6000; 5000, 12000
items per period'respectiver;

(b) Cﬁangeoveﬁ costs are given by

|1 2 3

[0

1| - 150 200
2 {100 ~ 250
3| 200 150 =~

(4) If the different items can be ordered at the same time at
a cost of 50 and other parameters are as in Q2 find the optimum

order policy,

(5) Extend model 3 to take account of the possibility of having

back-orders as in model 2.

(6) In an inventory system the cost of having q units in
inventory for t units of time is-Bqts. Demand is uniform at a
constant rate of A units per unit time. No stockouts are allowed.

The fixed order cost is A. Solve the system




It may be that it is unrealistic to assume that each
additional order means an additional cost. If we consider a
situation in which the sales department can deal with up to
a certain number of orders per period, then it is reasonable to
assume that the cost of orders up to this level remains constant.
Suppose then that n itemé are stocked by the firm and that the
.parameters I,ijlj are as in the previous example, Suppose also
that up to L orders per periocd can be dealt with, Thep if Xg is the
number of orders for items made per period we have the constraint

n
(1.52) I xy <L

For simplicity let us assume that goods arrive in batches and
no stock-~outs are allowed. Then we only need to calculate the

inventory cost per period. The amount of items ordered at a time

Q must be such that all demand lj in that period is met.

Qj =.lj/xj

The average stock level of items will be in and sco the total

(inventory} cost per period is

(1.53) K=

||M';l

A/ Xs
521 3IC5A 475

The problem we must solve is that of minimising 1.53 subject
to 1.52. Now one can see that no optimal solution to this problem

will give a strict inequality in 1.52 because we would be able to

obtain a cheaper solution by increasing %, for example. Sc we can




assume equality in 1.52 and we can use a Lagrange multiplier

8 as in the previous model. Define

J

K + 6(% xj - L)

then we have gi
%3

0 in an optimal solution.

This becomes on differentiation
-1 IC.A./x:%2 4+ 8 =0
L |
(1.54) x5 = (chz.jlze)i
and we choose 0 so aé fo make

,
T(IC.A./26)% = L,
173

We take the following example with 5 different items

3 ' cy A rcjxj)%
1 25 50 35.03
2 5 100" 22.36
3 30 150 67.08
4 2 300 24,24
5 1 600 24,24

The inventory charge is % giving I = .05 and the maximum number
of orders per period L is- 30. We have calculated the quantities
(lej)i because as can be seen from 1.54, the optimal X3 are

proportional to them, and consequently we have




: 3 . 3
. . = oA C.A.
1.5%6 xJ L(CJAJ) /T ¢ 3 J}
From the table we have E(Cjkj)%:ITS and therefore

= h,2, X = 4,2

Xy = 6.1, X, = 3.9, Xy = 11.6, x 5

4

If we want an integer solution, we can start by rounding

the optimal solution above giving

We then try to improve this solution by seeing if the total
inventory cost can be decreased by increasing the number of orders
for one item'by_one and simultaneously decreasing the number of

orders of another item by one.

j o, B.

] J
1 20.80 14,90
2 20.80 12.50
3 17.10 1y4.40
4 25.00 15.00
.5 25.00 15,00

oy is the increase in the average stock value of item j if one
less of item j is ordered per period.
Bj is the decrease in the average stock value of item j if one more

of item j is ordered per period.

We can see from this table that any such change will increase the
average total value of the stock held and consequently we have found

the optimal integer solution.

While it is true in general that there is some way of finding the



Y-

optimal integer solution by rounding the
optimal 'continuous' solution, not all roundings will do.

For example if Xy = .25 then rounding to Xy =0 will not be

feasible.
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