Q1 In an inventory system:

- A is the fixed cost associated with making an order.
- I is the inventory charge per unit per period.
- π is the back order cost per unit per period.
- λ is the demand per period.
- $\psi > \lambda$ is the rate at which ordered items arrive.

Determine the optimal order strategy and its cost per period.

Solution:
With reference to the diagram above, we have

\[Q = \lambda T \]
\[T = T_1 + T_2 + T_3 + T_4 \]
\[\frac{T_1 + T_2 + T_4}{T} = \frac{Q - S}{Q} \]
\[\frac{T_3}{T} = \frac{S}{\lambda T} = \frac{S}{Q} \]
\[S = (\psi - \lambda)T_4. \]
\[h = (\psi - \lambda)T_1. \]
\[h = \lambda T_2. \]

We deduce from this that

\[\frac{T_1 + T_2}{T} = \frac{Q - S}{Q} - \frac{T_4}{T} = \frac{Q - S}{Q} - \frac{\lambda}{\psi - \lambda} \cdot \frac{S}{Q} = 1 - \frac{\psi}{\psi - \lambda} \cdot \frac{S}{Q} \]

and

\[\frac{T_3 + T_4}{T} = \frac{\psi}{\psi - \lambda} \cdot \frac{S}{Q} \]

and

\[T_1 = \frac{T_1 + T_2}{T} \cdot \frac{\lambda}{\psi} = \frac{Q - S}{Q} \cdot \frac{\psi}{\psi - \lambda} \cdot \frac{S}{Q} \]

and then

\[h = Q \cdot \frac{\psi - \lambda}{\psi} - S. \]

The total cost per period is

\[K = \frac{A}{T} + I \cdot \frac{T_1 + T_2}{T} \cdot \frac{h}{2} + \pi \cdot \frac{T_3 + T_4}{T} \cdot \frac{S}{2}. \]

We write this in terms of \(Q, S \) only.

\[\frac{A}{T} = \frac{A \lambda}{Q}. \]
\[I \cdot \frac{T_1 + T_2}{T} \cdot \frac{h}{2} = I \cdot \left(1 - \frac{\psi}{\psi - \lambda} \cdot \frac{S}{Q} \right) \cdot \left(\frac{Q}{2} \cdot \frac{\psi - \lambda}{\psi} - \frac{S}{2} \right). \]
\[\pi \cdot \frac{T_3 + T_4}{T} \cdot \frac{S}{2} = \pi \cdot \left(\frac{\psi}{\psi - \lambda} \cdot \frac{S}{Q} \right) \cdot \frac{S}{2}. \]
We then have

\[\frac{\partial K}{\partial Q} = -A\lambda \frac{Q}{2} + I \left(\frac{\psi - \lambda}{\psi} - \frac{\psi S^2}{(\psi - \lambda)Q^2} \right) - \pi \cdot \frac{\psi}{\psi - \lambda} \cdot \frac{S^2}{2Q^2} \]

\[\frac{\partial K}{\partial S} = I \cdot \left(\frac{\psi}{\psi - \lambda} \cdot \frac{S}{Q} - 1 \right) + \pi \cdot \frac{\psi}{\psi - \lambda} \cdot \frac{S}{Q} \]

Putting the partial derivatives equal to zero and solving gives us the optimal values

\[Q^* = \left(2A\lambda \cdot \frac{\psi}{\psi - \lambda} \cdot \frac{I + \pi}{I\pi} \right)^{1/2} \]

\[S^* = \left(2A\lambda \cdot \frac{\psi - \lambda}{\psi} \cdot \frac{I}{\pi(I + \pi)} \right)^{1/2} \]

\[K^* = \left(2A\lambda \cdot \frac{\psi - \lambda}{\psi} \cdot \frac{I\pi}{I + \pi} \right) \]

Q2 Analyse the following inventory system and derive a strategy for minimising the total cost. There are \(n \) products. Product \(i \) has demand \(\lambda_i \) per period and no stock-outs are allowed. The cost of making an order for \(Q \) units of a mixture of products is \(AQ^\alpha \) where \(0 < \alpha < 1 \). The inventory cost is \(I \) times \(\max\{L_1, L_2, \ldots, L_n\} \) per period where \(L_i \) is the average inventory level of product \(i \) in that period.

Solution: We argued in class that we order items at intervals \(T \). Thus we order \(Q_i = T\lambda_i \) units of item \(i \) each time and \(L_i = Q_i/2 \). Let \(\lambda = \max\{\lambda_1, \lambda_2, \ldots, \lambda_n\} \). Then the inventory cost is therefore \(IT\lambda/2 \). This gives us a total cost of

\[K = A \left(\frac{T \sum_{j=1}^n \lambda_i}{T} \right)^\alpha + \frac{IT\lambda}{2} = \frac{B}{T^{1-\alpha}} + \frac{IT\lambda}{2} \]

where \(B = A \left(\sum_{j=1}^n \lambda_i \right)^\alpha \).

Now

\[\frac{dK}{dT} = -\frac{B(1 - \alpha)}{T^{2-\alpha}} + \frac{I\lambda}{2} \]

Therefore, the optimal value for \(T \) is given by

\[T^* = \left(\frac{2B(1 - \alpha)}{I\lambda} \right)^{1/(2-\alpha)} \]
Q3 Give an algorithm to solve the following scheduling problem. There are
n jobs labelled $1, 2, \ldots, n$ that have to be processed one at a time on
a single machine. There is an acyclic digraph $D = (V, A)$ such that if
$(i, j) \in A$ then job j cannot be started until job i has been completed.
The problem is to minimise $\max_j f_j(C_j)$ where for all j, f_j is a monotone
increasing. As usual, C_j is the completion time of job j. This is distinct
from its processing time p_j.

Solution: Let S be the set of jobs with no successor in D i.e. the set
of sinks of D. The last job must be in S and it will complete at time
$p = p_1 + p_2 + \cdots + p_n$. Let $f_k(p) = \min_{j \in S} f_j(p)$. We schedule k last and
then inductively schedule the remaining jobs.