Optimization

\[\text{Minimize } f(x) \]
subject to \[x \in S \subseteq \mathbb{R}^n \]

Linear Programming: \[f(x) = 5x \] and \[S = \{ x \mid Ax = b, x \geq 0 \} \]

\(x^* \) is a global minimum if \(f(x) \geq f(x^*) \) for all \(x \in S \).

\(x^* \) is a local minimum if \(f(x^*) \leq f(x) \) for all \(x \) in a neighborhood of \(x^* \).

Let \(S = \{ x \mid x \geq 0 \} \), such that \(f(x^*) \leq f(x) \) for all \(x \geq 0 \).
Convex Function

\[f : \mathbb{R}^2 \to \mathbb{R} \text{ is convex if } \]

\[f(\lambda x + (1-\lambda) y) \leq \lambda f(x) + (1-\lambda) f(y), \text{ for all } \lambda. \]

Examples:
- \(f(x) = e^x \)
- \(f(x) = -\log x \)

Admissible \(\frac{d}{dx} \) is convex.
\[f(x) = f(y) \leq f(x) + (y-x)f'(x) + \frac{1}{2} (y-x)^2 \]

\[f(y) \geq f(x) + \nabla f(x) \cdot (y-x) \]

Consider \(h(t) = f(tx + (1-t)y) \), Convex function of \(t \).
If \(f'' \) exists, then \(f \) is convex iff \(f''(x) > 0 \) for all \(x \).

Quadratic Functions

\[Q(x) = x^T A x = \sum_{i,j} A_{ij} x_i x_j \]

\(A \) is a real matrix

We can assume \(A \) is symmetric:

\[A = \begin{pmatrix} A_{11} & \cdots & A_{1n} \\ \vdots & \ddots & \vdots \\ A_{n1} & \cdots & A_{nn} \end{pmatrix} \]

\[A_{i,j} = A_{j,i} \]

A is positive semi-definite if \(Q(x) \geq 0 \)

If \(Q \) is convex, then \[Q(x) \geq 0 \] for all \(x \).
Operations on Convex Functions:

1. If g convex $\Rightarrow f + g$ is convex
2. If f convex $\Rightarrow \lambda f$ is convex
3. If g convex $\Rightarrow \max f + g$ is convex

Jensen's Inequality:

\[
\sum_{i=1}^{n} \lambda_i x_i \geq \sum_{i=1}^{n} \lambda_i f(x_i) \quad \text{for $\lambda_i \geq 0$, $\sum \lambda_i = 1$}
\]

\[
\text{Induction on } M, \quad M=2, \text{ base case}
\]
Convex Sets

Non-convex

Convex: S is convex iff for line segment $L(x,y), x,y \in S \Rightarrow L(xy) \subseteq S.$

Examples:

- $S = \{x : x^2 < 1\}$
- $S = \{x : x^2 < 1\}$
- $S = B(x, r) \cap \mathbb{C}$

Level set of f:

- $f(x, y) \leq C$ when $B(x, r) \cap \mathbb{C}$
- $f(x, y) \leq C$ when $B(x, r) \cap \mathbb{C}$
Operations on Convex Sets

1. \(S + T \) is convex.

2. \(S \times T \) is convex.

If \(S \) and \(T \) are convex and \(x^* \) is a local minimum of \(f \), then \(x^* \) is also a global minimum.