Inventory Control

Model 1
Demand for a product in X units per period.

The fixed (administrative) cost of making an order is A.

The cost of keeping one unit of stock for one period is I.

Problem: minimize order + inventory cost.
What value of Q, T minimizes total cost.

Average cost per period:

$$K = \frac{A}{T} + \frac{I_0}{2} = \frac{A_T}{Q} + \frac{I_0}{2}$$

Order cost + inventory cost

Convex

$$\frac{dk}{dQ} = -\frac{A_T}{Q^2}$$

Optimal $Q = \sqrt{\frac{2A_T}{I_0}}$ Wilson-Lat-Size Formula

Optimal $T = \sqrt{\frac{2A_T}{I_0}}$
Inventory Control

Model 2

Demand for a product is \(h \) units per period.

The fixed (administrative) cost of making an order is \(A \).

The cost of keeping one unit of stock for one period is \(I \).

Allowed to go out of stock and back order items. Pay penalty per period for an item out of stock.
What value of Q, T minimizes total cost.

Average cost per period

\[K = \frac{A}{T} + \frac{T}{\frac{Q-S}{T}} + \frac{T}{T - 2} \cdot 5T = \frac{Q}{Q} + \frac{(\sqrt{2} - 0.5)I}{20} + \frac{5\pi}{20} + H(Q, S) \]

Order cost + maintenance + backorder cost \(\frac{Q}{T} \cdot \frac{Q-S}{T} \cdot \frac{1}{2} = 0.5 \text{ for solve.} \)
Inventory Control

Model 3

Demand for a product in λ units per period.

The fixed (administrative) cost of making an order is H.

The cost of keeping one unit of stock for one period is I.

Problem: minimize order + inventory cost.
\[K = \frac{A}{T} + \frac{Q}{2} = A \cdot \frac{1}{Q} \cdot \frac{(\text{Ordering cost} \times \text{Inventory cost})}{2} \]

\[Q = \frac{HT}{2} \]

\[T + T_2 = T \]

\[(1-x)T_1 + h \]

\[T_2 = h \]

Optimal \[Q = \frac{H(T - h)}{2} \]

\[K = K_0 \left(\frac{Q}{Q^*} \right)^2 \]