Department of Mathematical Sciences

CARNEGIE MELLON UNIVERSITY

OPERATIONS RESEARCH II 21-393

Homework 2: Due Friday September 19.

1. Find a shortest path from s to all other nodes in the digraph below. Each edge (x, y) is labelled by a pair (a, b) and the length of the corresponding arc is $a+b t$ where t is the time the path reaches x. All arcs are directed lexicograhically e.g. (c, e) is directed from c to e.

Solution

2. Let \mathcal{W} denote the set of walks in a directed graph D. If W_{1} is a walk from a to b and W_{2} is a walk from b to c then $W_{1}+W_{2}$ is the walk from a to c obtained by following W_{1} and then W_{2}.
Let $\ell: \mathcal{W} \rightarrow \mathbb{R}$ be a real valued function defined on \mathcal{W}. Suppose that it has the following properties:
(a) $\ell(C) \geq 0$ for any closed walk C. (A walk is closed if it begins and ends at the same vertex).
(b) If W_{1}, W_{1}^{\prime} are walks from a to b and W_{2}, W_{2}^{\prime} are walks from b to c and $\ell\left(W_{i}^{\prime}\right) \geq \ell\left(W_{i}\right)$ for $i=1,2$ then $\ell\left(W_{1}^{\prime}+W_{2}^{\prime}\right) \geq \ell\left(W_{1}+W_{2}\right)$.

Consider the following algorithm: n is the number of vertices in D.
Initialise $W_{i, j}=(i, j)$ and $D_{i, j}=\ell\left(W_{i, j}\right)$ for $i, j=1,2, \ldots, n$.
For $k=1$ to n Do
For $i=1$ to n Do
For $j=1$ to n Do
$D_{i, j} \leftarrow \min \left\{D_{i, j}, \ell\left(W_{i, k}+W_{k, j}\right)\right\}$
If $D_{i, j}=\ell\left(W_{i, k}+W_{k, j}\right)$ then $W_{i, j} \leftarrow W_{i, k}+W_{k, j}$ oD
oD
oD

Prove that when the algorithm finishes,

$$
D_{i, j}=\min \{\ell(P): P \text { is a path from } i \text { to } j\} .
$$

Solution: We argue by induction on k that at the end of k executions of the outermost loop, for all $i, j, D_{i, j}$ minimises $\ell(P)$ over all walks from i to j whose interior vertices are in $\{1,2, \ldots, k\}$.
This is trivially true for $k=0$, since the claim is about the "lengths" of the edges (i, j).
Assume that the claim is true for $k \geq 0$. A walk from i to j either uses vertex $k+1$ in its interior or it doesn't. By induction, the shortest walk from i to j that doesn't use $k+1$ is $D_{i, j}$. So, we only have to argue that $\ell\left(W_{i, k+1}+W_{k+1, j}\right)$ is the length of a shortest walk from i to k that uses $k+1$.

Let $W=W_{1}+W_{2}+W_{3}$ be a walk from i to j where
W_{1} goes from i to $k+1$ and only uses $\{1,2, \ldots, k\}$ in its interior;
W_{2} goes from $k+1$ to $k+1$;
W_{3} goes from $k+1$ to j and only uses $\{1,2, \ldots, k\}$ in its interior.
It follows from Property (b) that

$$
\ell\left(W_{1}+W_{2}\right) \geq \ell\left(W_{1}+\Lambda\right)=\ell\left(W_{1}\right)
$$

where Λ is the path from $k+1$ to $k+1$ that consists of the single vertex $k+1$.

Applying (b) again, we see that

$$
\ell(W) \geq \ell\left(W_{1}+W_{3}\right) \geq \ell\left(W_{i, k+1}+W_{k+1, j}\right)
$$

This completes the induction. So, for each $i, j, W_{i, j}$ minimises $\ell(W)$ over all walks from i to j. Now if $W_{i, j}$ is not a path, then we can write it as $W_{1}+W_{2}+W_{3}$ as above and show that there is a walk W^{\prime} from i to j with $\ell\left(W^{\prime}\right) \leq \ell\left(W_{i, j}\right)$ and with fewer edges. Clearly $\ell\left(W^{\prime}\right)=\ell\left(W_{i, j}\right)$ here, but then we have that the walk from i to j that minimises ℓ and has fewest edges among walks that minimise ℓ, must be a path.
3. Suppose that the edges of a connected graph $G=\left(V, E=\left\{e_{1}, e_{2}, \ldots, e_{m}\right\}\right.$ are given lengths $\ell\left(e_{i}\right), i=1,2, \ldots, m$ where $\ell\left(e_{i}\right)<\ell\left(e_{i+1}\right), 1 \leq i<$ $m-1$. Fot two spanning trees T_{1}, T_{2} we say that $T_{1} \prec T_{2}$ if there exists $r \leq n-1(n=|V|)$ such that if $T_{1}=\left\{e_{i_{1}}, e_{i_{2}}, \ldots, e_{i_{n-1}}\right\}$ and $T_{2}=\left\{e_{j_{1}}, e_{j_{2}}, \ldots, e_{j_{n-1}}\right\}$ then $i_{k}=j_{k}$ for $1 \leq k<r$ and $i_{r}<j_{r}$.

Prove that if T^{*} is the tree constructed by the Greedy Algorithm (Kruskal) and T is any other spanning tree, then $T^{*} \prec T$.
Solution: This follows immediately from the fact that $e_{j_{k}}$ has minimum length of all edges that do not create cycles with $\left\{e_{j_{1}}, e_{j_{2}}, \ldots, e_{j_{k-1}}\right\}$

