Department of Mathematical Sciences

CARNEGIE MELLON UNIVERSITY

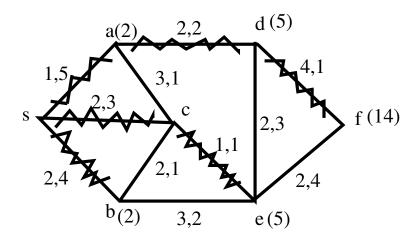
OPERATIONS RESEARCH II 21-393

Homework 2: Due Friday September 19.

1. Find a shortest path from s to all other nodes in the digraph below. Each edge (x, y) is labelled by a pair (a, b) and the length of the corresponding arc is a + bt where t is the time the path reaches x. All arcs are directed lexicographically e.g. (c, e) is directed from c to e.



Solution



2. Let W denote the set of walks in a directed graph D. If W_1 is a walk from a to b and W_2 is a walk from b to c then $W_1 + W_2$ is the walk from a to c obtained by following W_1 and then W_2 .

Let $\ell: \mathcal{W} \to \mathbb{R}$ be a real valued function defined on \mathcal{W} . Suppose that it has the following properties:

- (a) $\ell(C) \geq 0$ for any closed walk C. (A walk is closed if it begins and ends at the same vertex).
- (b) If W_1, W_1' are walks from a to b and W_2, W_2' are walks from b to c and $\ell(W_i') \geq \ell(W_i)$ for i = 1, 2 then $\ell(W_1' + W_2') \geq \ell(W_1 + W_2)$.

Consider the following algorithm: n is the number of vertices in D. Initialise $W_{i,j} = (i,j)$ and $D_{i,j} = \ell(W_{i,j})$ for $i,j = 1,2,\ldots,n$.

```
For k=1 to n Do

For i=1 to n Do

For j=1 to n Do

D_{i,j} \leftarrow \min\{D_{i,j}, \ell(W_{i,k}+W_{k,j})\}
If D_{i,j} = \ell(W_{i,k}+W_{k,j}) then W_{i,j} \leftarrow W_{i,k}+W_{k,j}

oD

oD
```

Prove that when the algorithm finishes,

$$D_{i,j} = \min\{\ell(P) : P \text{ is a path from } i \text{ to } j\}.$$

Solution: We argue by induction on k that at the end of k executions of the outermost loop, for all $i, j, D_{i,j}$ minimises $\ell(P)$ over all walks from i to j whose interior vertices are in $\{1, 2, \ldots, k\}$.

This is trivially true for k = 0, since the claim is about the "lengths" of the edges (i, j).

Assume that the claim is true for $k \geq 0$. A walk from i to j either uses vertex k+1 in its interior or it doesn't. By induction, the shortest walk from i to j that doesn't use k+1 is $D_{i,j}$. So, we only have to argue that $\ell(W_{i,k+1} + W_{k+1,j})$ is the length of a shortest walk from i to k that uses k+1.

Let $W = W_1 + W_2 + W_3$ be a walk from i to j where

 W_1 goes from i to k+1 and only uses $\{1,2,\ldots,k\}$ in its interior;

 W_2 goes from k+1 to k+1;

 W_3 goes from k+1 to j and only uses $\{1,2,\ldots,k\}$ in its interior.

It follows from Property (b) that

$$\ell(W_1 + W_2) \ge \ell(W_1 + \Lambda) = \ell(W_1)$$

where Λ is the path from k+1 to k+1 that consists of the single vertex k+1.

Applying (b) again, we see that

$$\ell(W) \ge \ell(W_1 + W_3) \ge \ell(W_{i,k+1} + W_{k+1,i}).$$

This completes the induction. So, for each $i, j, W_{i,j}$ minimises $\ell(W)$ over all walks from i to j. Now if $W_{i,j}$ is not a path, then we can write it as $W_1 + W_2 + W_3$ as above and show that there is a walk W' from i to j with $\ell(W') \leq \ell(W_{i,j})$ and with fewer edges. Clearly $\ell(W') = \ell(W_{i,j})$ here, but then we have that the walk from i to j that minimises ℓ and has fewest edges among walks that minimise ℓ , must be a path.

3. Suppose that the edges of a connected graph $G = (V, E = \{e_1, e_2, \dots, e_m\})$ are given lengths $\ell(e_i), i = 1, 2, \dots, m$ where $\ell(e_i) < \ell(e_{i+1}), 1 \le i < m-1$. Fot two spanning trees T_1, T_2 we say that $T_1 \prec T_2$ if there exists $r \le n-1$ (n=|V|) such that if $T_1 = \{e_{i_1}, e_{i_2}, \dots, e_{i_{n-1}}\}$ and $T_2 = \{e_{j_1}, e_{j_2}, \dots, e_{j_{n-1}}\}$ then $i_k = j_k$ for $1 \le k < r$ and $i_r < j_r$.

Prove that if T^* is the tree constructed by the Greedy Algorithm (Kruskal) and T is any other spanning tree, then $T^* \prec T$.

Solution: This follows immediately from the fact that e_{j_k} has minimum length of all edges that do not create cycles with $\{e_{j_1}, e_{j_2}, \dots, e_{j_{k-1}}\}$