Department of Mathematical Sciences
CARNEGIE MELLON UNIVERSITY

OPERATIONS RESEARCH II 21-393

Homework 1: Due Monday September 15.

Q1 Solve the following knapsack problem:

$$
\begin{aligned}
& \operatorname{maximise} \quad 4 x_{1}+8 x_{2}+13 x_{3} \\
& \text { subject to } \\
& \qquad 3 x_{1}+4 x_{2}+5 x_{3} \leq 16 \\
& x_{1}, x_{2}, x_{3} \geq 0 \text { and integer. }
\end{aligned}
$$

Solution

w	f_{1}	δ_{1}	f_{2}	δ_{2}	f_{3}	δ_{3}
0	0	0	0	0	0	0
1	0	0	0	0	0	0
2	0	0	0	0	0	0
3	4	1	4	0	0	0
4	4	1	8	1	8	0
5	4	1	8	1	13	1
6	8	1	8	1	13	1
7	8	1	12	1	13	1
8	8	1	16	1	17	1
9	12	1	16	1	21	1
10	12	1	16	1	26	1
11	12	1	20	1	26	1
12	16	1	24	1	26	1
13	16	1	24	1	30	1
14	20	1	24	1	34	1
15	20	1	28	1	39	1
16	20	1	32	1	39	1

Solution: $x_{1}=0, x_{2}=0, x_{3}=3$. Maximum $=39$.
Start with $x_{1}=x_{2}=x_{3}=0 . \delta_{3}(16)=1$ and so we add one to x_{3}. We have used up 5 units of the knapsack. There are 11 units left. $\delta_{3}(11)=1$ and so we add one to x_{3}. We use up another 5 units and so we are left with 5 .
$\delta_{3}(6)=1$. We add one more to x_{3}. There are now 1 units in the knapsack. $\delta_{3}(1)=0$ and so we move to column 2. $\delta_{2}(1)=0$ and so we move to column 1. $\delta(1)=0$ and we are done.

Q2: An $m \times n$ rectangle of wood is to be cut into smaller rectangles. An $a \times b$ rectangle is worth $m_{a, b}$. The machine that cuts rectangles can only cut full length or full width. I.e. if after cutting there is an $x \times y$ rectangle then the machine can cut it into two rectangles $z \times y$ and $(x-z) \times y$ for some z or into two rectangles $x \times z$ and $x \times y-z$.
Describe a dynamic programming algorithm for finding the way of cutting into pieces that maximises the total value of the rectangles produced.
Solution: Let $f(i, j)$ be the maximum value obtained from a rectangle with corners $(0,0)$ and (i, j). Then

$$
f(i, j)=\min \left\{\begin{array}{l}
\min _{x \leq i}(m(i-x, j)+f(x, j) \\
\min _{y \leq j} m(i, j-y)+f(i, y)
\end{array}\right.
$$

Q3 Consider a 2-D map with a horizontal river passing through its center. There are n cities on the southern bank with x-coordinates $a(1) \ldots a(n)$ and n cities on the northern bank with x-coordinates $b(1) \ldots b(n)$. You want to connect as many north-south pairs of cities as possible with bridges such that no two bridges cross. When connecting cities, you can only connect city i on the northern bank to city i on the southern bank. Construct a Dynamic Programming solution to this problem. (You can assume that $a(1)<a(2)<$ $\cdots<a(n)$, but you cannot assume that $b(1)<b(2)<\cdots<b(n)$. If both sequences are increasing, then the problem is trivial).
Solution: Let $f(j)$ be the maximum number of bridges choosable if we only use $(a(i), b(i), i \geq j)$. Then

$$
f(j)=\max \begin{cases}f(j+1) & \text { do not choose }(a(j), b(j)) \\ 1+f(\min \{k>j: b(k)>b(j)\}) & \text { choose }(a(j), b(j))\end{cases}
$$

