
Department of Mathematical Sciences
CARNEGIE MELLON UNIVERSITY

OPERATIONS RESEARCH II 21-393

Homework 1: Due Monday September 15.

Q1 Solve the following knapsack problem:

maximise 4x1 + 8x2 + 13x3
subject to

3x1 + 4x2 + 5x3 ≤ 16

x1, x2, x3 ≥ 0 and integer.

Solution

w f1 δ1 f2 δ2 f3 δ3
0 0 0 0 0 0 0
1 0 0 0 0 0 0
2 0 0 0 0 0 0
3 4 1 4 0 0 0
4 4 1 8 1 8 0
5 4 1 8 1 13 1
6 8 1 8 1 13 1
7 8 1 12 1 13 1
8 8 1 16 1 17 1
9 12 1 16 1 21 1
10 12 1 16 1 26 1
11 12 1 20 1 26 1
12 16 1 24 1 26 1
13 16 1 24 1 30 1
14 20 1 24 1 34 1
15 20 1 28 1 39 1
16 20 1 32 1 39 1

Solution: x1 = 0, x2 = 0, x3 = 3. Maximum = 39.
Start with x1 = x2 = x3 = 0. δ3(16) = 1 and so we add one to x3. We have
used up 5 units of the knapsack. There are 11 units left. δ3(11) = 1 and
so we add one to x3. We use up another 5 units and so we are left with 5.

1



δ3(6) = 1. We add one more to x3. There are now 1 units in the knapsack.
δ3(1) = 0 and so we move to column 2. δ2(1) = 0 and so we move to column
1. δ(1) = 0 and we are done.
Q2: An m × n rectangle of wood is to be cut into smaller rectangles. An
a× b rectangle is worth ma,b. The machine that cuts rectangles can only cut
full length or full width. I.e. if after cutting there is an x× y rectangle then
the machine can cut it into two rectangles z × y and (x− z)× y for some z
or into two rectangles x× z and x× y − z.
Describe a dynamic programming algorithm for finding the way of cutting
into pieces that maximises the total value of the rectangles produced.
Solution: Let f(i, j) be the maximum value obtained from a rectangle with
corners (0, 0) and (i, j). Then

f(i, j) = min

{
minx≤i(m(i− x, j) + f(x, j)

miny≤j m(i, j − y) + f(i, y)

Q3 Consider a 2-D map with a horizontal river passing through its center.
There are n cities on the southern bank with x-coordinates a(1)...a(n) and
n cities on the northern bank with x-coordinates b(1)...b(n). You want to
connect as many north-south pairs of cities as possible with bridges such that
no two bridges cross. When connecting cities, you can only connect city i
on the northern bank to city i on the southern bank. Construct a Dynamic
Programming solution to this problem. (You can assume that a(1) < a(2) <
· · · < a(n), but you cannot assume that b(1) < b(2) < · · · < b(n). If both
sequences are increasing, then the problem is trivial).
Solution: Let f(j) be the maximum number of bridges choosable if we only
use (a(i), b(i), i ≥ j). Then

f(j) = max

{
f(j + 1) do not choose (a(j), b(j))

1 + f(min{k > j : b(k) > b(j)}) choose (a(j), b(j))
.

2


