Department of Mathematical Sciences

CARNEGIE MELLON UNIVERSITY

OPERATIONS RESEARCH II 21-393

Homework 1: Due Monday September 21.

Q1 Solve the following knapsack problem:

maximise
$$4x_1 + 8x_2 + 13x_3$$
 subject to
$$3x_1 + 4x_2 + 5x_3 \leq 16$$
 $x_1, x_2, x_3 \geq 0$ and integer.

Q2 An $m \times n$ rectangle of wood is to be cut into smaller rectangles. An $a \times b$ rectangle is worth $m_{a,b}$. The machine that cuts rectangles can only cut full length or full width. I.e. if after cutting there is an $x \times y$ rectangle then the machine can cut it into two rectangles $z \times y$ and $(x - z) \times y$ for some z or into two rectangles $x \times z$ and $x \times y - z$.

Describe a dynamic programming algorithm for finding the way of cutting into pieces that maximises the total value of the rectangles produced.

Q3 Consider a 2-D map with a horizontal river passing through its center. There are n cities on the southern bank with x-coordinates a(1)...a(n) and n cities on the northern bank with x-coordinates b(1)...b(n). You want to connect as many north-south pairs of cities as possible with bridges such that no two bridges cross. When connecting cities, you can only connect city i on the northern bank to city i on the southern bank. Construct a Dynamic Programming solution to this problem. (You can assume that $a(1) < a(2) < \cdots < a(n)$, but you cannot assume that $b(1) < b(2) < \cdots < b(n)$. If both sequences are increasing, then the problem is trivial).