Department of Mathematical Sciences
CARNEGIE MELLON UNIVERSITY

OPERATIONS RESEARCH II 21-393

Homework 1: Due Monday September 21.

Q1 Solve the following knapsack problem:

$$
\begin{aligned}
& \operatorname{maximise} \quad 4 x_{1}+8 x_{2}+13 x_{3} \\
& \text { subject to } \\
& \\
& 3 x_{1}+4 x_{2}+5 x_{3} \leq 16 \\
& x_{1}, x_{2}, x_{3} \geq 0 \text { and integer. }
\end{aligned}
$$

Q2 An $m \times n$ rectangle of wood is to be cut into smaller rectangles. An $a \times b$ rectangle is worth $m_{a, b}$. The machine that cuts rectangles can only cut full length or full width. I.e. if after cutting there is an $x \times y$ rectangle then the machine can cut it into two rectangles $z \times y$ and $(x-z) \times y$ for some z or into two rectangles $x \times z$ and $x \times y-z$.
Describe a dynamic programming algorithm for finding the way of cutting into pieces that maximises the total value of the rectangles produced.
Q3 Consider a 2-D map with a horizontal river passing through its center. There are n cities on the southern bank with x-coordinates $a(1) \ldots a(n)$ and n cities on the northern bank with x-coordinates $b(1) \ldots b(n)$. You want to connect as many north-south pairs of cities as possible with bridges such that no two bridges cross. When connecting cities, you can only connect city i on the northern bank to city i on the southern bank. Construct a Dynamic Programming solution to this problem. (You can assume that $a(1)<a(2)<$ $\cdots<a(n)$, but you cannot assume that $b(1)<b(2)<\cdots<b(n)$. If both sequences are increasing, then the problem is trivial).

