Two Person Zero Sum Games.

Player A \[\begin{bmatrix} i & \text{matrix A} & \text{Player B} \\ x & \end{bmatrix} \]

\[A[i,j] = xc \]

Player B pays \(xc \) units to Player A.

\(A = \) Row Player: Chooses \(i \)

\(B = \) Column Player: Chooses \(j \)
\[
\begin{bmatrix}
5 & 0 \\
0 & 1
\end{bmatrix}
\]

Tennis

A

Serving

B

Soccer
A game is played over and over again.
A tries to maximize average winnings.
B tries to minimize A's average winnings.

\(S_A : \{ \text{A's possible strategies} \} \)

\(S_B \)

\((i) = i, i, i, i, i, \ldots \)

Pure Strategy
If $u \in S_A$
$\forall v \in S_B$
then $PAY(u, v) = \text{average payoff to } A$

Stable Solution:

(u_0, v_0) is stable if

$PAY(u_0, v) \geq PAY(u_0, v_0) \geq PAY(u, v_0)$

u_0 is the largest entry in column v_0.
v_0 is the smallest entry in row u_0.

(u_0, v_0)
\[
P = \begin{bmatrix} 0 & 1 & -1 \end{bmatrix} \\
R = \begin{bmatrix} -1 & 0 & 1 \end{bmatrix} \\
S = \begin{bmatrix} 1 & -1 & 0 \end{bmatrix}
\]

Is there a stable solution using pure strategies?

Is there \((u_0, v_0)\) which is a column max and row min?

Every row min = -1
Every col max = 1
What are A's guaranteed winning

\[P_A = \max_u \text{ROWMIN}(w) \]

If A chooses u then in long run A will get
\[\text{ROWMIN}(w) \]

\[u \begin{bmatrix} \star \star \star \star \end{bmatrix} \]
B should lose no more than

$$P_B = \min_{\nu} \text{COLMAX}(\nu)$$

Claim:

1. $P_A \leq P_B$
2. $P_A = P_B$ iff \exists stable solution
Claim:

(i) \(P_A \leq P_B \)

(ii) \(P_A = P_B \) iff \(\exists \) stable solution

\[
\begin{array}{c}
S_A \\
\hline
u \\
\hline
v \\
\hline
x \\
\hline
S_B
\end{array}
\]

ROWMIN \((u)\) \leq x \leq COLMAX \((u)\)

largest

smallest