Finite Markov Chains

\(\Omega \) is a finite set.

\(X_0, X_1, \ldots, X_t, \ldots \)

is a sequence of random variables on \(\Omega \).

\[
\Pr [X_{t+1} = y | X_0, X_1, \ldots, X_t = \omega] = \Pr [X_{t+1} = y | X_t = \omega]
\]

Markov Property
\[P(x, y) = P(x, y) \]

Prob. of going from state \(x \) to state \(y \) in one step.

\[\sum_y P(x, y) = 1 \]

\(P \) is non-negative

(\(\omega \) stochastic)
Example 1

Pad 1

Pad 2

States are \(\mathcal{S} = \{ 1, 2 \} \)

\[
P = \begin{bmatrix}
1 & p \\
q & 1-q
\end{bmatrix}
\]

On pad 1 go to pad 2 with prob. \(p \), else stay put.
\[P(x, y) = P_r[x \rightarrow y \text{ in one step}] \]

\[P^b(x, y) = P_r[x \rightarrow y \text{ in } b \text{ steps}] \]

Induction on \(b \).

True for \(b = 1 \).

Assume true for some \(b > 1 \).

\[P^{b+1}(x, y) = \sum_{z \in E} P^b(x, z) P(z, y) \]
\[p^{t+1}(x, y) = \sum_{z \in \mathcal{Z}} p^t(x, z) p^t(z, y) \]

Going from \(x \) to \(y \) in \(t+1 \) steps

Different \(z \) define disjoint events

Start in state \(x \) with probability \(\mu(x) \)

Probability in \(y \) after \(t \) steps:

\[\sum_{x} \mu(x) p^t(x, y) = (\mu p^t)_y \]
In many chains of interest, as $t \to \infty$, the probability of being here, starting at t_0, can be represented as:

$$\begin{pmatrix}
\pi_1 & \pi_2 & \cdots & \pi_n \\
\pi_1 & \pi_2 & \cdots & \pi_n \\
\pi_1 & \pi_2 & \cdots & \pi_n \\
\cdots & \cdots & \cdots & \cdots
\end{pmatrix}$$

all rows look same.
The probabilities π_1, \ldots, π_n are called the **steady state distribution**.
Irreducibility and Aperiodicity

P is irreducible if $\forall x, y$ there exists a $t = t(x,y)$ such that $P^t(x,y) > 0$

Ω: directed graph (Ω, A)

Irreducible \iff strongly connected

\exists directed path $\alpha \rightarrow y$ in Ω, $\forall x, y$
Define a relation \(\approx \)

\[a \approx b \iff \exists \text{ path } a \rightarrow b \quad \text{ and path } b \rightarrow a \]

\(\approx \) is an equivalence relation.

Equivalence classes are called "strong component." Denote \(D_1, D_2, \ldots, D_k \).

Define \(\Gamma = (\xi_1, \xi_2, \ldots, k, \xi), B \) such that

\[(i,j) \in B \iff \exists \ x \in D_i \quad \text{ and } \ y \in D_j \quad \text{ and path } x \rightarrow y \in D\]
\[\Gamma \text{ in acyclic.} \]

\[\Rightarrow \text{ all } w_i \text{ in same component.} \]

\[\Gamma \text{ is DAG: } \]
Periodicity

Start at 1, at even times, on left
at odd times, on right
no steady state.

Fix this: by putting a loop at each vertex.

\[P \rightarrow \frac{I + P}{2} \]

\[P(x_n) \geq \frac{1}{2} \forall n \]
\[T(n) = \exists \delta \in R : \rho^n(x, x) \geq 0 \delta \]

Period of \(n \) = \(\text{gcd } T(n) \)

Lemma

If \(\rho \) is irreducible then

\[\text{gcd } T(x) = \text{gcd } T(y), \quad \forall x, y \]

= period of chain
Proof

For two stolen \(x, y \).

\(\exists r, l \) such that

\[P'(x, y) > 0 \quad \text{and} \quad P'(l, x) > 0 \]

\[m = r + l \in T(x) \cap T(y) \]

\[T(x) \leq T(y) - m \]

\[\sum x_0, x_1, \ldots, x_m \]

\(\gcd T(y) \) divides everything in \(T(x) \).

\[x_i = y_i - x_0 \]

\[y_0 \]
Proposition 1.7

If P is aperiodic and irreducible, then there exists $r > 0$ such that $P^r(x,y) > 0$ for all x, y.

Proof

Fact: If a_1, a_2, \ldots, a_k are positive integers with $\gcd(1, a_i) = 1$ for $i = 1, \ldots, k$, then there exist non-negative integers $n \geq n_0$ such that

$$n = a_1 \theta_1 + a_2 \theta_2 + \ldots + a_k \theta_k$$

(Frobenius number)

where $\theta_1, \theta_2, \ldots, \theta_k$ are non-negative integers.
Another way of phrasing:

\[A \leq \xi \downarrow \omega \ldots \]

1. \(\text{gcd} A = 1 \)

2. \(A \) is closed under addition

\[\Rightarrow \exists n_0 \text{ s.t. } n \geq n_0 \Rightarrow n \in \mathcal{A}. \]

\(\mathcal{T}(x) \)'s fit the claim.

\[\rho^n(x, y) > 0 \]

\[n \geq n_0 = \max(n_1, n_2, \ldots, n_{\omega}) \]
\[\rho^t(x, y) > 0 \text{ for } t \geq r + n_0 \]
C.S. example of Markov Chains

\[G = (V, E) \] of maximum degree \(\Delta \)

Suppose \(k > \Delta \)

Then \(\exists \) a \(k \)-coloring of \(G \).

[Give each vertex a color from \(1, 2, \ldots, k \) such that adjacent vertices get different color.]

Suppose I want to count \# ways \(\nu \)-coloring \(G \). (1) Difficult to do exactly
(2) Approximately?
\[\Omega = \{ k \text{-colorings of } G \} \]
\[\Omega \neq \emptyset \text{ if } k > \Delta \]

Suppose I could choose a random coloring. — (Markov chains will do this)

Choose large number
\[v, \text{ } v \text{ not adjacent to } w \]

Can estimate ratio
\[\frac{\text{colorings } c(v) = c(w)}{\text{# colorings } c(v) \neq c(w)} \]
Generating a random member \(\mathcal{S} \)

Define Markov chain on \(\mathcal{S} \).

Given a coloring \(w \in \mathcal{S} \)

1) choose random vertex
2) randomly recolor.

\(k \geq \Delta + 2 \implies \) (i) chain is "ergodic"

Run chain for a "long time" and take coloring

\(k > 2\Delta \theta(n\log n) \) is enough