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Thus Pr(I = ⊥) ≤ 2/3 as required.

(d) This is clearly true if V = ∅. If V 6= ∅ and v = maxV ∈ I0 then, by induction

Pr(I = I0) =
N1

N1 +N2

φ
N1 +N2

N1

= φ

and similarly Pr(I = I0) = φ if v /∈ I0.
(e) Let E denote the event that some output of approxcount is bad in the iteration
that produces output. Then for A ⊆ Ω,

π̂(A)− π(A) ≤ Pr(I ∈ A | Ē) + Pr(E)− π(A)

≤ |A||Ω| + δ − |A||Ω|
≤ δ.

2

We have therefore shown that by running Ugenx for constant expected number of times,
we will with probability at least 1− δ output a randomly chosen independent set. The
expected running time of Ugen is clearly as given in (1.11) which is small enough to
make it a good sampler.

Having dealt with a specific example we see how to put the above ideas into a formal
framework. Before doing this we enumerate some basic facts about Markov Chains.

1.3 Markov Chains

Throughout N = {0, 1, 2, . . .}, N+ = N \ {0}, Q+ = {q ∈ Q : q > 0}, and [n] =
{1, 2, . . . , n} for n ∈ N+.

A Markov chain M on the finite state space Ω, with transition matrix P is a sequence
of random variables Xt, t = 0, 1, 2, . . . , which satisfy

Pr(Xt = σ | Xt−1 = ω,Xt−2, . . . , X0) = P (ω, σ) (t = 1, 2, . . .),

We sometimes write P ω
σ . The value of Xt is referred to as the state of M at time t.

Consider the digraph DM = (Ω, A) where A = {(σ, ω) ∈ Ω×Ω : P (σ, ω) > 0}. We will
by and large be concerned with chains that satisfy the following assumptions:

M1 The digraph DM is strongly connected.

M2 gcd{|C| : C is a directed cycle of DM} = 1
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Under these assumptions,M is ergodic and therefore has a unique stationary distribution
π i.e.

lim
t→∞

Pr(Xt = ω | X0 = σ) = π(ω) (1.12)

i.e. the limit does not depend on the starting state X0. Furthermore, π is the unique
left eigen-vector of P with eigenvalue 1 i.e. satisfying

P Tπ = π. (1.13)

Another useful fact is that if τσ denotes the expected number of steps between successive
visits to state σ then

τσ =
1

π(σ)
. (1.14)

In most cases of interest, M is reversible, i.e.

Q(ω, σ) = π(ω)P (ω, σ) = π(σ)P (σ, ω) (∀ω, σ ∈ Ω). (1.15)

The central role of reversible chains in applications rests on the fact that π can be
deduced from (1.15). If µ : Ω −→ R satisfies (1.15), then it determines π up to normal-
ization. Indeed, if (1.15) holds and

∑
ω∈Ω π(ω) = 1 then

∑

ω∈Ω

π(ω)P (ω, σ) =
∑

ω∈Ω

π(σ)P (σ, ω) = π(σ)

which proves that π is a left eigenvector with eigenvalue 1.

In fact, we often design the chain to satisfy (1.15). Without reversibility, there is no
apparent method of determining π, other than to explicitly construct the transition
matrix, an exponential time (and space) computation in our setting.

As a canonical example of a reversible chain we have a random walk on a graph. A
random walk on the undirected graph G = (V,E) is a Markov chain with state space V
associated with a particle that moves from vertex to vertex according to the following
rule: the probability of a transition from vertex i, of degree di, to vertex j is 1

di
if

{i, j} ∈ E, and 0 otherwise. Its stationary distribution is given by

π(v) =
dv

2|E| v ∈ V. (1.16)

To see this note that Q(v, w) = Q(w, v) if v, w are not adjacent and otherwise

Q(v, w) =
1

2|E| = Q(w, v),

verifying the detailed balance equations (1.15).

Note that if G is a regular graph then the steady state is uniform over V .
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If G is bipartite then the walk as described is not ergodic. This is because all cycles are
of even length. This is usually handled by adding dv loops to vertex v for each vertex v.
(Each loop counts as a single exit from v.) The net effect of this is to make the particle
stay put with probability 1

2
at each step. The steady state is unaffected. The chain is

now lazy.

A chain is lazy if P (ω, ω) ≥ 1
2

for all ω ∈ Ω.

If p0(ω) = Pr(X0 = ω), then pt(σ) =
∑

ω p0(ω)P t(ω, σ) is the distribution at time t. As
a measure of convergence, the natural choice in this context is variation distance.

The mixing time of the chain is then

τ(ε) = max
p0

min
t
{Dtv(pt, π) ≤ ε},

and it is easy to show that the maximum occurs when X0 = ω0, with probability one, for
some state ω0. This is because Dtv(pt, π) is a convex function of p0 and so the maximum
of Dtv(pt, π) occurs at an extreme point of the set of probabilities p0.

We now provide a simple lemma which indicates that variation distance Dtv(pt, π) goes

to zero exponentially. We define several related quantities: p
(i)
t denotes the t-fold distri-I think this should be

moved to the next
chapter

bution, conditional on X0 = i.

di(t) = Dtv(p
(i)
t , π), d(t) = max

i
di(t), d̄(t) = max

i,j
Dtv(p

(i)
t , p

(j)
t ).

Lemma 1.3.1 For all s, t ≥ 0,

(a) d̄(s+ t) ≤ d̄(s)d̄(t).

(b) d(s+ t) ≤ 2d(s)d(t).

(c) d(s) ≤ 2d̄(s).

(d) d(s) ≤ d(t) for s ≤ t.

Proof We will use the characterisation of variation distance as

Dtv(µ1, µ2) = min Pr(X1 6= X2) (1.17)

where the minimum is taken over pairs of random variables X1, X2 such that Xi has
distribution µi, i = 1, 2.

Fix states i1, i2 and times s, t and let Y 1, Y 2 denote the chains started at i1, i2 respec-
tively. By (1.17) we can construct a joint distribution for (Y 1

s , Y
2
s ) such that

Pr(Y 1
s 6= Y 2

s ) = Dtv(p(i1)
s , p(i2)

s ) ≤ d̄(s).
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Now for each pair j1, j2 we can use (1.17) to construct a joint distribution for (Y 1
s+t, Y

2
s+t)

such that
Pr(Y 1

s+t 6= Y 2
s+t | Y 1

s = j1, Y
2
s = j2) = Dtv(p

(j1)
t , p

(j2)
t ).

The RHS is 0 if j1 = j2 and otherwise at most d̄(t). So, unconditionally,

Pr(Y 1
s+t 6= Y 2

s+t) ≤ d̄(s)d̄(t)

and (1.17) establishes part (a) of the lemma.

For part (b), the same argument, with Y 2 now being the stationary chain shows

d(s+ t) ≤ d(s)d̄(t) (1.18)

and so (b) will follow from (c), which follows from the triangular inequality for variation
distance. Finally note that (d) follows from (1.18). 2

We will for the most part use carefully defined Markov chains as our good samplers.
As an example, we now define a simple chain with state space Ω equal to the collection
of independent sets of a graph G. The chain is ergodic and its steady state is uniform
over Ω. So, running the chain for sufficiently long will produce a near uniformly chosen
independent set, see (1.12). Unfortunately, this chain does not have a small enough
mixing time for this to qualify as a good sampler, unless ∆(G) ≤ 4.

We define the chain as follows: suppose Xt = I. Then we choose a vertex v of G
uniformly at random. If v ∈ I then we put Xt+1 = I \ {v}. If v /∈ I and I ∪ {v} is an
indepedent set then we put Xt+1 = I ∪ {v}. Otherwise we let Xt+1 = Xt = I. Thus the
transition matrix can be described as follows: n = |V | and I, J are independent sets of
G.

P (I, J) =

{
1
n
|I∆J | = 1

0 otherwise

Here I∆J denotes the symmetric difference (I \ J) ∪ (J \ I).

The chain satisfies M1 and M2: In DM every vertex can reach and is reachable from ∅,
implying M1 holds. Also, DM contains loops unless G has no edges. In both cases M2
holds trivially.

Note finally that P (I, J) = P (J, I) and so (1.15) holds with π(I) = 1
|Ω| . Thus the chain

is reversible and the steady state is uniform.

1.4 A formal computational framework

The sample spaces we have in mind are sets of combinatorial objects. However, in or-
der to discuss the computational complexity of generation, it is necessary to consider a
sequence of instances of increasing size. We therefore work within the following formal



CHAPTER 3

Markov Chain Monte Carlo: Metropolis and
Glauber Chains

3.1. Introduction

Given an irreducible transition matrix P , there is a unique stationary distribu-
tion π satisfying π = πP , which we constructed in Section 1.5. We now consider
the inverse problem: given a probability distribution π on X , can we find a tran-
sition matrix P for which π is its stationary distribution? The following example
illustrates why this is a natural problem to consider.

A random sample from a finite set X will mean a random uniform selection
from X , i.e., one such that each element has the same chance 1/|X | of being chosen.

Fix a set {1, 2, . . . , q} of colors. A proper q-coloring of a graph G = (V,E) is
an assignment of colors to the vertices V , subject to the constraint that neighboring
vertices do not receive the same color. There are (at least) two reasons to look for
an efficient method to sample from X , the set of all proper q-colorings. If a random
sample can be produced, then the size of X can be estimated (as we discuss in
detail in Section 14.4.2). Also, if it is possible to sample from X , then average
characteristics of colorings can be studied via simulation.

For some graphs, e.g. trees, there are simple recursive methods for generating
a random proper coloring (see Example 14.12). However, for other graphs it can
be challenging to directly construct a random sample. One approach is to use
Markov chains to sample: suppose that (Xt) is a chain with state space X and
with stationary distribution uniform on X (in Section 3.3, we will construct one
such chain). By the Convergence Theorem (Theorem 4.9, whose proof we have not
yet given but have often foreshadowed), Xt is approximately uniformly distributed
when t is large.

This method of sampling from a given probability distribution is called Markov
chain Monte Carlo. Suppose π is a probability distribution on X . If a Markov
chain (Xt) with stationary distribution π can be constructed, then, for t large
enough, the distribution of Xt is close to π. The focus of this book is to determine
how large t must be to obtain a sufficiently close approximation. In this chapter
we will focus on the task of finding chains with a given stationary distribution.

3.2. Metropolis Chains

Given some chain with state space X and an arbitrary stationary distribution,
can the chain be modified so that the new chain has the stationary distribution π?
The Metropolis algorithm accomplishes this.

3.2.1. Symmetric base chain. Suppose that Ψ is a symmetric transition
matrix. In this case, Ψ is reversible with respect to the uniform distribution on X .

38
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We now show how to modify transitions made according to Ψ to obtain a chain
with stationary distribution π, given an arbitrary probability distribution π on X .

The new chain evolves as follows: when at state x, a candidate move is gener-
ated from the distribution Ψ(x, ·). If the proposed new state is y, then the move
is censored with probability 1− a(x, y). That is, with probability a(x, y), the state
y is “accepted” so that the next state of the chain is y, and with the remaining
probability 1−a(x, y), the chain remains at x. Rejecting moves slows the chain and
can reduce its computational efficiency but may be necessary to achieve a specific
stationary distribution. We will discuss how to choose the acceptance probability
a(x, y) below, but for now observe that the transition matrix P of the new chain is

P (x, y) =

Ψ(x, y)a(x, y) if y 6= x,

1−
∑

z : z 6=x
Ψ(x, z)a(x, z) if y = x.

By Proposition 1.20, the transition matrix P has stationary distribution π if

π(x)Ψ(x, y)a(x, y) = π(y)Ψ(y, x)a(y, x) (3.1)

for all x 6= y. Since we have assumed Ψ is symmetric, equation (3.1) holds if and
only if

b(x, y) = b(y, x), (3.2)

where b(x, y) = π(x)a(x, y). Because a(x, y) is a probability and must satisfy
a(x, y) ≤ 1, the function b must obey the constraints

b(x, y) ≤ π(x),

b(x, y) = b(y, x) ≤ π(y).
(3.3)

Since rejecting the moves of the original chain Ψ is wasteful, a solution b to (3.2)
and (3.3) should be chosen which is as large as possible. Clearly, all solutions are
bounded above by b∗(x, y) := π(x) ∧ π(y) := min{π(x), π(y)}. For this choice, the
acceptance probability a(x, y) is equal to (π(y)/π(x)) ∧ 1.

The Metropolis chain for a probability π and a symmetric transition matrix
Ψ is defined as

P (x, y) =

Ψ(x, y)
[
1 ∧ π(y)

π(x)

]
if y 6= x,

1−
∑
z : z 6=x Ψ(x, z)

[
1 ∧ π(z)

π(x)

]
if y = x.

Our discussion above shows that π is indeed a stationary distribution for the Me-
tropolis chain.

Remark 3.1. A very important feature of the Metropolis chain is that it only
depends on the ratios π(x)/π(y). In many cases of interest, π(x) has the form
h(x)/Z, where the function h : X → [0,∞) is known and Z =

∑
x∈X h(x) is a

normalizing constant. It may be difficult to explicitly compute Z, especially if X is
large. Because the Metropolis chain only depends on h(x)/h(y), it is not necessary
to compute the constant Z in order to simulate the chain. The optimization chains
described below (Example 3.2) are examples of this type.

Example 3.2 (Optimization). Let f be a real-valued function defined on the
vertex set X of a graph. In many applications it is desirable to find a vertex x
where f(x) is maximal. If the domain X is very large, then an exhaustive search
may be too expensive.
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0

f(x)

x

Figure 3.1. A hill climb algorithm may become trapped at a local
maximum.

A hill climb is an algorithm which attempts to locate the maximum values of f
as follows: when at x, if there is at least one neighbor y of x satisfying f(y) > f(x),
move to a neighbor with the largest value of f . The climber may become stranded
at local maxima — see Figure 3.1.

One solution is to randomize moves so that instead of always remaining at a
local maximum, with some probability the climber moves to lower states.

Suppose for simplicity that X is a regular graph, so that simple random walk
on X has a symmetric transition matrix. Fix λ ≥ 1 and define

πλ(x) =
λf(x)

Z(λ)
,

where Z(λ) :=
∑
x∈X λ

f(x) is the normalizing constant that makes πλ a probabil-
ity measure (as mentioned in Remark 3.1, running the Metropolis chain does not
require computation of Z(λ), which may be prohibitively expensive to compute).
Since πλ(x) is increasing in f(x), the measure πλ favors vertices x for which f(x)
is large.

If f(y) < f(x), the Metropolis chain accepts a transition x→ y with probability
λ−[f(x)−f(y)]. As λ → ∞, the chain more closely resembles the deterministic hill
climb.

Define

X ? :=

{
x ∈ X : f(x) = f? := max

y∈X
f(y)

}
.

Then

lim
λ→∞

πλ(x) = lim
λ→∞

λf(x)/λf
?

|X ?|+
∑
x∈X\X? λ

f(x)/λf?
=

1{x∈X?}

|X ?|
.

That is, as λ→∞, the stationary distribution πλ of this Metropolis chain converges
to the uniform distribution over the global maxima of f .

3.2.2. General base chain. The Metropolis chain can also be defined when
the initial transition matrix is not symmetric. For a general (irreducible) transition
matrix Ψ and an arbitrary probability distribution π on X , the Metropolized chain
is executed as follows. When at state x, generate a state y from Ψ(x, ·). Move to
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y with probability
π(y)Ψ(y, x)

π(x)Ψ(x, y)
∧ 1, (3.4)

and remain at x with the complementary probability. The transition matrix P for
this chain is

P (x, y) =


Ψ(x, y)

[
π(y)Ψ(y,x)
π(x)Ψ(x,y) ∧ 1

]
if y 6= x,

1−
∑

z : z 6=x
Ψ(x, z)

[
π(z)Ψ(z,x)
π(x)Ψ(x,z) ∧ 1

]
if y = x.

(3.5)

The reader should check that the transition matrix (3.5) defines a reversible Markov
chain with stationary distribution π (see Exercise 3.1).

Example 3.3. Suppose you know neither the vertex set V nor the edge set
E of a graph G. However, you are able to perform a simple random walk on
G. (Many computer and social networks have this form; each vertex knows who
its neighbors are, but not the global structure of the graph.) If the graph is not
regular, then the stationary distribution is not uniform, so the distribution of the
walk will not converge to uniform. You desire a uniform sample from V . We can use
the Metropolis algorithm to modify the simple random walk and ensure a uniform
stationary distribution. The acceptance probability in (3.4) reduces in this case to

deg(x)

deg(y)
∧ 1.

This biases the walk against moving to higher degree vertices, giving a uniform
stationary distribution. Note that it is not necessary to know the size of the ver-
tex set to perform this modification, which can be an important consideration in
applications.

3.3. Glauber Dynamics

We will study many chains whose state spaces are contained in a set of the form
SV , where V is the vertex set of a graph and S is a finite set. The elements of SV ,
called configurations, are the functions from V to S. We visualize a configuration
as a labeling of vertices with elements of S.

Given a probability distribution π on a space of configurations, the Glauber
dynamics for π, to be defined below, is a Markov chain which has stationary dis-
tribution π. This chain is often called the Gibbs sampler , especially in statistical
contexts.

3.3.1. Two examples. As we defined in Section 3.1, a proper q-coloring of
a graph G = (V,E) is an element x of {1, 2, . . . , q}V , the set of functions from V
to {1, 2, . . . , q}, such that x(v) 6= x(w) for all edges {v, w}. We construct here a
Markov chain on the set of proper q-colorings of G.

For a given configuration x and a vertex v, call a color j allowable at v if j is
different from all colors assigned to neighbors of v. That is, a color is allowable at
v if it does not belong to the set {x(w) : w ∼ v}. Given a proper q-coloring x, we
can generate a new coloring by

• selecting a vertex v ∈ V at random,
• selecting a color j uniformly at random from the allowable colors at v,

and
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which is a useful identity.

Remark 4.4. From Proposition 4.2 and the triangle inequality for real num-
bers, it is easy to see that total variation distance satisfies the triangle inequality:
for probability distributions µ, ν and η,

‖µ− ν‖TV ≤ ‖µ− η‖TV + ‖η − ν‖TV . (4.6)

Proposition 4.5. Let µ and ν be two probability distributions on X . Then the
total variation distance between them satisfies

‖µ− ν‖TV =
1

2
sup

{∑
x∈X

f(x)µ(x)−
∑
x∈X

f(x)ν(x) : max
x∈X
|f(x)| ≤ 1

}
. (4.7)

Proof. If maxx∈X |f(x)| ≤ 1, then

1

2

∣∣∣∣∣∑
x∈X

f(x)µ(x)−
∑
x∈X

f(x)ν(x)

∣∣∣∣∣ ≤ 1

2

∑
x∈X
|µ(x)− ν(x)| = ‖µ− ν‖TV .

Thus, the right-hand side of (4.7) is at most ‖µ− ν‖TV.
For the other direction, define

f?(x) =

{
1 if µ(x) ≥ ν(x),

−1 if µ(x) < ν(x).

Then

1

2

[∑
x∈X

f?(x)µ(x)−
∑
x∈X

f?(x)ν(x)

]
=

1

2

∑
x∈X

f?(x)[µ(x)− ν(x)]

=
1

2

 ∑
x∈X

µ(x)≥ν(x)

[µ(x)− ν(x)] +
∑
x∈X

ν(x)>µ(x)

[ν(x)− µ(x)]

 .
Using (4.5) shows that the right-hand side above equals ‖µ− ν‖TV. Hence the
right-hand side of (4.7) is at least ‖µ− ν‖TV. �

4.2. Coupling and Total Variation Distance

A coupling of two probability distributions µ and ν is a pair of random vari-
ables (X,Y ) defined on a single probability space such that the marginal distribu-
tion of X is µ and the marginal distribution of Y is ν. That is, a coupling (X,Y )
satisfies P{X = x} = µ(x) and P{Y = y} = ν(y).

Coupling is a general and powerful technique; it can be applied in many differ-
ent ways. Indeed, Chapters 5 and 14 use couplings of entire chain trajectories to
bound rates of convergence to stationarity. Here, we offer a gentle introduction by
showing the close connection between couplings of two random variables and the
total variation distance between those variables.

Example 4.6. Let µ and ν both be the “fair coin” measure giving weight 1/2
to the elements of {0, 1}.

(i) One way to couple µ and ν is to define (X,Y ) to be a pair of independent
coins, so that P{X = x, Y = y} = 1/4 for all x, y ∈ {0, 1}.
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(ii) Another way to couple µ and ν is to let X be a fair coin toss and define
Y = X. In this case, P{X = Y = 0} = 1/2, P{X = Y = 1} = 1/2, and
P{X 6= Y } = 0.

Given a coupling (X,Y ) of µ and ν, if q is the joint distribution of (X,Y ) on
X × X , meaning that q(x, y) = P{X = x, Y = y}, then q satisfies∑

y∈X
q(x, y) =

∑
y∈X

P{X = x, Y = y} = P{X = x} = µ(x)

and ∑
x∈X

q(x, y) =
∑
x∈X

P{X = x, Y = y} = P{Y = y} = ν(y).

Conversely, given a probability distribution q on the product space X × X which
satisfies ∑

y∈X
q(x, y) = µ(x) and

∑
x∈X

q(x, y) = ν(y),

there is a pair of random variables (X,Y ) having q as their joint distribution – and
consequently this pair (X,Y ) is a coupling of µ and ν. In summary, a coupling
can be specified either by a pair of random variables (X,Y ) defined on a common
probability space or by a distribution q on X × X .

Returning to Example 4.6, the coupling in part (i) could equivalently be spec-
ified by the probability distribution q1 on {0, 1}2 given by

q1(x, y) =
1

4
for all (x, y) ∈ {0, 1}2.

Likewise, the coupling in part (ii) can be identified with the probability distribution
q2 given by

q2(x, y) =

{
1
2 if (x, y) = (0, 0), (x, y) = (1, 1),

0 if (x, y) = (0, 1), (x, y) = (1, 0).

Any two distributions µ and ν have an independent coupling. However, when µ
and ν are not identical, it will not be possible for X and Y to always have the same
value. How close can a coupling get to having X and Y identical? Total variation
distance gives the answer.

Proposition 4.7. Let µ and ν be two probability distributions on X . Then

‖µ− ν‖TV = inf {P{X 6= Y } : (X,Y ) is a coupling of µ and ν} . (4.8)

Remark 4.8. We will in fact show that there is a coupling (X,Y ) which attains
the infimum in (4.8). We will call such a coupling optimal .

Proof. First, we note that for any coupling (X,Y ) of µ and ν and any event
A ⊂ X ,

µ(A)− ν(A) = P{X ∈ A} −P{Y ∈ A} (4.9)

≤ P{X ∈ A, Y 6∈ A} (4.10)

≤ P{X 6= Y }. (4.11)

(Dropping the event {X 6∈ A, Y ∈ A} from the second term of the difference gives
the first inequality.) It immediately follows that

‖µ− ν‖TV ≤ inf {P{X 6= Y } : (X,Y ) is a coupling of µ and ν} . (4.12)
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I
II

III

Μ
Ν

Figure 4.2. Since each of regions I and II has area ‖µ− ν‖TV
and µ and ν are probability measures, region III has area 1 −
‖µ− ν‖TV.

It will suffice to construct a coupling for which P{X 6= Y } is exactly equal to
‖µ− ν‖TV. We will do so by forcing X and Y to be equal as often as they possibly
can be. Consider Figure 4.2. Region III, bounded by µ(x)∧ν(x) = min{µ(x), ν(x)},
can be seen as the overlap between the two distributions. Informally, our coupling
proceeds by choosing a point in the union of regions I and III, and setting X to be
the x-coordinate of this point. If the point is in III, we set Y = X and if it is in I,
then we choose independently a point at random from region II, and set Y to be
the x-coordinate of the newly selected point. In the second scenario, X 6= Y , since
the two regions are disjoint.

More formally, we use the following procedure to generate X and Y . Let

p =
∑
x∈X

µ(x) ∧ ν(x).

Write ∑
x∈X

µ(x) ∧ ν(x) =
∑
x∈X ,

µ(x)≤ν(x)

µ(x) +
∑
x∈X ,

µ(x)>ν(x)

ν(x).

Adding and subtracting
∑
x :µ(x)>ν(x) µ(x) to the right-hand side above shows that∑

x∈X
µ(x) ∧ ν(x) = 1−

∑
x∈X ,

µ(x)>ν(x)

[µ(x)− ν(x)].

By equation (4.5) and the immediately preceding equation,∑
x∈X

µ(x) ∧ ν(x) = 1− ‖µ− ν‖TV = p. (4.13)

Flip a coin with probability of heads equal to p.

(i) If the coin comes up heads, then choose a value Z according to the probability
distribution

γIII(x) =
µ(x) ∧ ν(x)

p
,

and set X = Y = Z.
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(ii) If the coin comes up tails, choose X according to the probability distribution

γI(x) =

{
µ(x)−ν(x)
‖µ−ν‖TV

if µ(x) > ν(x),

0 otherwise,

and independently choose Y according to the probability distribution

γII(x) =

{
ν(x)−µ(x)
‖µ−ν‖TV

if ν(x) > µ(x),

0 otherwise.

Note that (4.5) ensures that γI and γII are probability distributions.
Clearly,

pγIII + (1− p)γI = µ,

pγIII + (1− p)γII = ν,

so that the distribution of X is µ and the distribution of Y is ν. Note that in the
case that the coin lands tails up, X 6= Y since γI and γII are positive on disjoint
subsets of X . Thus X = Y if and only if the coin toss is heads. We conclude that

P{X 6= Y } = ‖µ− ν‖TV .

�

4.3. The Convergence Theorem

We are now ready to prove that irreducible, aperiodic Markov chains converge
to their stationary distributions—a key step, as much of the rest of the book will be
devoted to estimating the rate at which this convergence occurs. The assumption
of aperiodicity is indeed necessary—recall the even n-cycle of Example 1.4.

As is often true of such fundamental facts, there are many proofs of the Conver-
gence Theorem. The one given here decomposes the chain into a mixture of repeated
independent sampling from the stationary distribution and another Markov chain.
See Exercise 5.1 for another proof using two coupled copies of the chain.

Theorem 4.9 (Convergence Theorem). Suppose that P is irreducible and ape-
riodic, with stationary distribution π. Then there exist constants α ∈ (0, 1) and
C > 0 such that

max
x∈X

∥∥P t(x, ·)− π∥∥
TV
≤ Cαt. (4.14)

Proof. Since P is irreducible and aperiodic, by Proposition 1.7 there exists
an r such that P r has strictly positive entries. Let Π be the matrix with |X | rows,
each of which is the row vector π. For sufficiently small δ > 0, we have

P r(x, y) ≥ δπ(y)

for all x, y ∈ X . Let θ = 1− δ. The equation

P r = (1− θ)Π + θQ (4.15)

defines a stochastic matrix Q.
It is a straightforward computation to check that MΠ = Π for any stochastic

matrix M and that ΠM = Π for any matrix M such that πM = π.
Next, we use induction to demonstrate that

P rk =
(
1− θk

)
Π + θkQk (4.16)
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i.e., we change the ith component from xi to yi. Note that some of the edges may be
loops (if xi = yi). To compute ¯̺, fix attention on a particular (oriented) edge

t = (w,w′) =
(
(w0, . . . , wi, . . . wn−1), (w0, . . . , w

′
i, . . . wn−1)

)
,

and consider the number of canonical paths γxy that include t. The number of possible
choices for x is 2i, as the final n− i positions are determined by xj = wj , for j ≥ i; and
by a similar argument the number of possible choices for y is 2n−i−1. Thus the total
number of canonical paths using a particular edge t is 2n−1; furthermore, Q(w,w′) =
π(w)P (w,w′) ≥ 2−n(2n)−1, and the length of every canonical path is exactly n. Plugging
all these bounds into the definition of ρ̄ yields ρ̄ ≤ n2. Thus, by Theorem 2.2.4, the
mixing time of Wn is τ(ε) ≤ n2(n ln q + ln ε−1).

2.2.4 Comparison Theorems

2.2.5 Decomposition Theorem

2.3 Coupling

A coupling C(M) for M is a stochastic process (Xt, Yt) on Ω× Ω such that each of Xt,
Yt is marginally a copy of M,

Pr(Xt = σ1 | Xt−1 = ω1) = P (ω1, σ1),
Pr(Yt = σ2 | Yt−1 = ω2) = P (ω2, σ2),

(∀t > 0). (2.18)

The following simple but powerful inequality then follows easily from these definitions.

Lemma 2.3.1 (Coupling Lemma) Let Xt, Yt be a coupling for M such that Y0 has
the stationary distribution π. Then, if Xt has distribution pt,

Dtv(pt, π) ≤ Pr(Xt 6= Yt). (2.19)

Proof Suppose At ⊆ Ω maximizes in (1.3). Then, since Yt has distribution π,

Dtv(pt, π) = Pr(Xt ∈ At)−Pr(Yt ∈ At)

≤ Pr(Xt ∈ At, Yt /∈ At)

≤ Pr(Xt 6= Yt).

2

It is important to remember that the Markov chain Yt is simply a proof construct, and
Xt the chain we actually observe. We also require that Xt = Yt implies Xt+1 = Yt+1,
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since this makes the right side of (2.19) nonincreasing. Then the earliest epoch T at
which XT = YT is called coalescence, making T a random variable. A successful coupling
is such that limt−→∞ Pr(Xt 6= Yt) = 0. Clearly we are only interested in successful
couplings.

As an example consider our random walk on the cube Qn. We can define a coupling as
follows: Given (Xt, Yt) we

(a) Choose i uniformly at random from [n].

(b) Put Xt+1,j = Xt,j and Yt+1,j = Yt,j for j 6= i.

(c) If Xt,i = Yt,i then

Xt+1,i = Yt+1,i =




Xt,i prob 1

2

1−Xt,i prob 1
2

(d) otherwise

(Xt+1,i, Yt+1,i) =





(Xt,i, 1− Yt,i) prob 1
2

(1−Xt,i, Yt,i) prob 1
2

It should hopefully be clear that this is a coupling i.e. the marginals are correct and
Xt = Yt implies Xt+1 = Yt+1.

Now let It = {j : i is chosen in (a) of steps 1, 2, . . . , t. Then It = [n] implies that
Xτ = Yτ for τ ≥ t. So

Pr(Xt 6= Yt) ≤ Pr(It 6= [n])

= Pr(Īt 6= ∅)
≤ E(|Īt|)
= n

(
1− 1

n

)t
.

So if t = n(log n+ log ǫ−1) we have dTV (pt, π) ≤ ǫ.

A coupling is a Markovian coupling if the process C(M) is a Markov chain on Ω × Ω.
There always exists a maximal coupling, which gives equality in (2.19). This maximal
coupling is in general non-Markovian, and is seemingly not constructible without know-
ing pt (t = 1, 2, . . .). But coupling has little algorithmic value if we already know pt.
More generally, it seems difficult to prove mixing properties of non-Markovian couplings
in our setting. Therefore we restrict attention to Markovian couplings, at the (probable)
cost of sacrificing equality in (2.19).

Let C(M) be a Markovian coupling, with Q its transition matrix, i.e. the probability of
a joint transition from (ω1, ω2) to (σ1, σ2) is Qω1ω2

σ1σ2
. The precise conditions required of
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Q are then

Qω ω
σ1σ2
6= 0 implies σ1 = σ2 (∀ω ∈ Ω), (2.20)

∑

σ2∈Ω

Qω1ω2
σ1σ2

= P ω1
σ1

(∀ω2 ∈ Ω),
∑

σ1∈Ω

Qω1ω2
σ1σ2

= P ω2
σ2

(∀ω1 ∈ Ω). (2.21)

Here (2.20) implies equality after coalescence, and (2.21) implies the marginals are copies
of M. Our goal is to design Q so that Pr(Xt 6= Yt) quickly becomes small. We need
only specify Q to satisfy (2.21) for ω1 6= ω2. The other entries are completely determined
by (2.20) and (2.21).

In general, to prove rapid mixing using coupling, it is usual to map C(M) to a process
on N by defining a function ψ : Ω × Ω −→ N such that ψ(ω1, ω2) = 0 implies ω1 = ω2.
We call this a proximity function. Then Pr(Xt 6= Yt) ≤ E(ψ(Xt, Yt)), by Markov’s
inequality, and we need only show that E(ψ(Xt, Yt)) converges quickly to zero.

2.4 Path coupling

A major difficulty with coupling is that we are obliged to specify it, and show improve-
ment in the proximity function, for every pair of states. The idea of path coupling, where
applicable, can be a major saving in this respect. We describe the approach below.

As a simple example of this approach consider a Markov chain where Ω ⊆ Sm for some
set S and positive integer m. Suppose also that if ω, σ ∈ Ω and h(ω, σ) = d (Hamming
distance) then there exists a sequence ω = x0, x1, . . . , xd = σ of members of Ω such that
(i) {x0, x1, . . . , xd} ⊆ Ω, (ii) h(xi, xi+1) = 1, i = 0, 1, . . . , d− 1 and (iii) P (xi, xi+1) > 0.

Now suppose we define a coupling of the chains (Xt, Yt) only for the case where h(Xt, Yt) =
1. Suppose then that

E(h(Xt+1, Yt+1) | h(Xt, Yt) = 1) ≤ β (2.22)

for some β < 1. Then

E(h(Xt+1, Yt+1)) ≤ βh(Xt, Yt), (2.23)

in all cases. It then follows that

dTV (pt, π) ≤ Pr(Xt 6= Yt) ≤ nβt.

Equation (2.23) is shown by choosing a sequence Xt = Z0, Z1, . . . , Zd = Yt, d = h(Xt, Yt)
Z0, Z1, . . . , Zd satisfy (i),(ii),(iii) above. Then we can couple Zi and Zi+1, 1 ≤ i < d
so that Xt+1 = Z ′

0, Z
′
1, . . . , Z

′
d = Yt+1 and (i) Pr(Z ′

i = σ | Zi = ω) = P (ω, σ) and (ii)
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E(h(Z ′
i, Z

′
i+1)) ≤ β. Therefore

E(h(Xt+1, Yt+1)) ≤
d∑

i=1

E(h(Z ′
i, Z

′
i+1)) ≤ βd

and (2.23) follows.

As an example, let G = (V,E) be a graph with maximum degree ∆ and let k ≥ 2∆ + 1
be an integer. Let Ωk be the set of proper k- vertex colourings of G i.e. {c : V → [k]}
such that (v, w) ∈ E implies c(v) 6= c(w). We describe a chain which provides a good
sampler for the uniform distribution over Ωk. We let Ω = V k be all k-colourings,
including improper ones and describe a chain on Ω for which only proper colourings
have a positive steady state probability.

To describe a general step of the chain asume Xt ∈ Ω. Then

Step 1 Choose w uniformly from V and x uniformly from [k].

Step 2 Let Xt+1(v) = Xt(v) for v ∈ V \ {w}.

Step 3 If no neighbour of w in G has colour x then put Xt+1(w) = x, otherwise put
Xt+1(w) = x.

Note that P (ω, σ) = P (σ, ω) = 1
nk

for two proper colourings which can be obtained from
each other by a single move of the chain. It follows from (1.15) that the steady state is
uniform over Ωk.

We first describe a coupling which is extremely simple but needs k > 3∆ in order for
(2.22) to be satisfied. Let h(Xt, Yt) = 1 and let v0 be the unique vertex of V such that
Xt(v) 6= Yt(v). In our coupling we choose w, x as in Step 1 and try to colour w with x
in both chains.

We claim that

E(h(Xt+1, Yt+1) ≤ 1− 1

n

(
1− ∆

k

)
+

∆

n

2

k
= 1− k − 3∆

kn
. (2.24)

and so we can take β ≤ 1− 1
kn

in (2.23) if k > 3∆.

The term 1
n

(
1− ∆

k

)
in (2.24) lower bounds the probability that w = v0 and that x is

not used in the neighbourhood of v0. In which case we will have Xt+1 = Yt+1. Next
let cX 6= cY be the colours of v0 in Xt, Yt respectively. The term ∆

n
2
k

in (2.24) is an
upper bound for the probability that w is in the neighbourhood of v0 and x ∈ {cX , cY }
and in which case we might have h(Xt+1, Yt+1) = 2. In all other cases we find that
h(Xt+1, Yt+1) = h(Xt, Yt) = 1.
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A better coupling gives the desired result. We proceed as above except for the case
where w is a neighbour of v0 and x ∈ {cX , cY }. In this case with probability 1

2
we try

to colour w with cX in Xt and colour w with cY in Yt, and fail in both cases. With
probability 1

2
we try to colour w with cY in Xt and colour w with cX in Yt, in which case

the hamming distance may increase by one. Thus for this coupling we have

E(h(Xt+1, Yt+1) ≤ 1− 1

n

(
1− ∆

k

)
+

1

2

∆

n

2

k
= 1− k − 2∆

kn

and we can take β ≤ 1− 1
kn

in (2.23) if k > 2∆.

We now give a more general framework for the definition of path coupling. Recall
that a quasi-metric satisfies the conditions for a metric except possibly the symmetry
condition. Any metric is a quasi-metric, but a simple example of a quasi-metric which
is not a metric is directed edge distance in a digraph.

Suppose we have a relation S ⊆ Ω × Ω such that S has transitive closure Ω × Ω, and
suppose that we have a proximity function defined for all pairs in S, i.e. ψ : S −→ N.
Then we may lift ψ to a quasi-metric φ(ω, ω′) on Ω as follows. For each pair (ω, ω′) ∈
Ω× Ω, consider the set P(ω, ω′) of all sequences

ω = ω1, ω2, . . . , ωr−1, ωr = ω′ with (ωi, ωi+1) ∈ S (i = 1, . . . , r − 1). (2.25)

Then we set

φ(ω, ω′) = min
P(ω,ω′)

r−1∑

i=1

ψ(ωi, ωi+1). (2.26)

It is easy to prove that φ is a quasi-metric. We call a sequence minimizing (2.26)
geodesic. We now show that, without any real loss, we may define the (Markovian)
coupling only on pairs in S. Such a coupling is a called a path coupling. We give a
detailed development below. Clearly S = Ω × Ω is always a relation whose transitive
closure is Ω×Ω, but path coupling is only useful when we can define a suitable S which
is “much smaller” than Ω× Ω. A relation of particular interest is Rσ from Section 1.4,
but this is not always the best choice.

As in Section 2.3, we use σ (or σi) to denote a state obtained by performing a single
transition of the chain from the state ω (or ωi). Let P ω

σ denote the probability of
a transition from state ω to state σ in the Markov chain, and let Qωω′

σσ′ denote the
probability of a joint transition from (ω, ω′) to (σ, σ′), where (ω, ω′) ∈ S, as specified by
the path coupling. Since this coupling has the correct marginals, we have

∑

σ′∈Ω

Qωω′

σσ′ = P ω
σ ,

∑

σ∈Ω

Qωω′

σσ′ = P ω′

σ′ (∀(ω, ω′) ∈ S). (2.27)

We extend this to all pairs (ω, ω′) ∈ Ω × Ω, as follows. For each pair, fix a sequence
(ω1, ω2, . . . , ωr) ∈ P(ω, ω′). We do not assume the sequence is geodesic here, or indeed
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the existence of any proximity function, but this is our eventual purpose. The implied
global coupling Q̄ω1ωr

σ1σr
is then defined along this sequence by successively conditioning

on the previous choice. Using (2.27), this can be written explicitly as

Q̄ω1ωr
σ1σr

=
∑

σ2∈Ω

∑

σ3∈Ω

· · ·
∑

σr−1∈Ω

Qω1ω2
σ1σ2

Qω2ω3
σ2σ3

P ω2
σ2

. . .
Qωr−1ωr

σr−1σr

P
ωr−1
σr−1

. (2.28)

Summing (2.28) over σr or σ1, and again applying (2.27), causes the right side to suc-
cessively simplify, giving

∑

σr∈Ω

Q̄ω1ωr
σ1σr

= P ω1
σ1

(∀ωr ∈ Ω),
∑

σ1∈Ω

Q̄ω1ωr
σ1σr

= P ωr
σr

(∀ω1 ∈ Ω). (2.29)

Hence the global coupling satisfies (2.21), as we would anticipate from the properties of
conditional probabilities.

Now suppose the global coupling is determined by geodesic sequences. We bound the
expected value of φ(σ1, σr). This is

E(φ(σ1, σr)) =
∑

σ1

· · ·
∑

σr

φ(σ1, σr)
Qω1ω2

σ1σ2
Qω2ω3

σ2σ3
· · ·Qωr−1ωr

σr−1σr

P ω2
σ2 · · ·P ωr−1

σr−1

≤
∑

σ1

· · ·
∑

σr

r−1∑

i=1

φ(σi, σi+1)
Qω1ω2

σ1σ2
Qω2ω3

σ2σ3
· · ·Qωr−1ωr

σr−1σr

P ω2
σ2 · · ·P ωr−1

σr−1

=
r−1∑

i=1

∑

σ1

· · ·
∑

σr

φ(σi, σi+1)
Qω1ω2

σ1σ2
Qω2ω3

σ2σ3
· · ·Qωr−1ωr

σr−1σr

P ω2
σ2 · · ·P ωr−1

σr−1

=
r−1∑

i=1

∑

σi

∑

σi+1

φ(σi, σi+1)Q
ωiωi+1
σiσi+1

, (2.30)

where we have used the triangle inequality for a quasi-metric and the same observation
as that leading from (2.28) to (2.29).

Suppose we can find β ≤ 1, such that, for all (ω, ω′) ∈ S,

E(φ(σ, σ′)) =
∑

σ

∑

σ′

φ(σ, σ′)Qωω′

σσ′ ≤ β φ(ω, ω′). (2.31)

Then, from (2.30), (2.31) and (2.26) we have

E(φ(σ1, σr)) ≤
r−1∑

i=1

β φ(ωi, ωi+1) = β
r−1∑

i=1

φ(ωi, ωi+1) = β φ(ω1, ωr). (2.32)

Thus we can show (2.31) for every pair, merely by showing that this holds for all pairs
in S. To apply path coupling to a particular problem, we must find a relation S and
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proximity function ψ so that this is possible. In particular we need φ(ω, ω′) for (ω, ω′) ∈
S to be easily deducible from ψ.

Suppose that Ω has diameter D, i.e. φ(ω, ω′) ≤ D for all ω, ω′ ∈ Ω. Then, Pr(Xt 6=
Yt) ≤ βtD and so if β < 1 we have, since log β−1 ≥ 1− β,

Dtv(pt, π) ≤ ε for t ≥ log(Dε−1)/(1− β). (2.33)

This bound is polynomial even when D is exponential in the problem size. It is also
possible to prove a bound when β = 1, provided we know the quasi-metric cannot “get
stuck”. Specifically, we need an α > 0 (inversely polynomial in the problem size) such
that, in the above notation,

Pr(φ(σ, σ′) 6= φ(ω, ω′)) ≥ α (∀ω, ω′ ∈ Ω). (2.34)

Observe that it is not sufficient simply to establish (2.34) for pairs in S. However, the
structure of the path coupling can usually help in proving it. In this case, we can show
that

Dtv(pt, π) ≤ ε for t ≥ ⌈eD2/α⌉⌈ln(ε−1)⌉. (2.35)

This is most easily shown using a martingale argument. Here we needD to be polynomial
in the problem size.

Consider a sequence (ω0, ω
′
0), (ω1, ω

′
1) . . . , (ωt, ω

′
t) and define the random time T ω,ω′

=
min {t : φ(ωt, ω

′
t) = 0}, assuming that ω0 = ω, ω′

0 = ω′. We prove that

E(T ω,ω′

) ≤ D2/α. (2.36)

Let
Z(t) = φ(ωt, ω

′
t)

2 − 2Dφ(ωt, ω
′
t)− αt

and let
δ(t) = φ(ωt+1, ω

′
t+1)− φ(ωt, ω

′
t).

Then

E(Z(t+ 1) | Z(0), Z(1), . . . , Z(t))− Z(t) =

2(φ(ωt, ω
′
t)−D)E(δ(t) | ωt, ω

′
t) + (E(δ(t)2 | ωt, ω

′
t)− α) ≥ 0.

Hence Z(t) is a submartingale. The stopping time T ω,ω′

has finite expectation and
|Z(t + 1) − Z(t)| ≤ D2. We can therefore apply the Optional Stopping Theorem for
submartingales to obtain

E(Z(T ω,ω′

)) ≥ Z(0).

This implies
−αE(T ω,ω′

) ≥ δ(0)2 − 2Dδ(0)

and (2.36) follows.
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So for any ω, ω′

Pr(T ω,ω′ ≥ eD2/α) ≤ e−1

and by considering k consecutive time intervals of length k we obtain

Pr(T ω,ω′ ≥ keD2/α) ≤ e−k

and (2.35) follows.

2.5 Hitting Time Lemmas

For a finite Markov chainM let Pri,Ei denote probability and expectation, given that
X0 = i.

For a set A ⊆ Ω let
TA = min {t ≥ 0 : Xt ∈ A} .

Then for i 6= j the hitting time
Hi,j = Ei(Tj)

is the expected number of steps needed to get from state i to state j.

The commute time
Ci,j = Hi,j +Hj,i.

Lemma 2.5.1 Assume X0 = i and S is a stopping time with XS = i. Let j be an
arbitrary state. Then

Ei(number of visits to state j before time S) = πjEi(S).

Proof Consider the renewal process whose inter-renewal time is distributed as S.
The reward-renewal theorem states that the asymptotic proportion of time spent in state
j is given by

Ei(number of visits to j before time S)/Ei(S).

This also equal to πj, by the ergodic theorem. 2

Lemma 2.5.2
Ej(number of visits to j before Ti) = πjCi,j.

Proof Let S be the time of the first return to i after the first visit to j. Apply
Lemma 2.5.1. 2

The cover time C(M) ofM is maxi Ci(M) where Ci(M) = Ei(maxj Tj) is the expected
time to visit all states starting at i.
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=

P

N�1

i=0

�

t

i

E

(i)

. Hen
e

P

t

= D

�1=2

S

t

D

1=2

=

N�1

X

i=0

�

t

i

(D

�1=2

e

(i)

))(e

(i)

T

D

1=2

)

= 1

N

�

T

+

N�1

X

i=1

�

t

i

(D

�1=2

e

(i)

))(e

(i)

T

D

1=2

);

where 1

N

is the N -ve
tor all of whose 
omponents are 1. In 
omponent form, we get

with the help of the Cau
hy-S
hwartz inequality:

jP

t

(j; k)� �

k

j =

�

�

�

�

�

r

�

k

�

j

N�1

X

i=1

�

t

i

e

(i)

j

e

(i)

k

�

�

�

�

�

�

r

�

k

�

j

�

t

max

 

N�1

X

i=0

e

(i)

j

2

!

1=2

 

N�1

X

i=0

e

(i)

k

2

!

1=2

=

r

�

k

�

j

�

t

max

: (2.1)

The theorem follows by substitution of the above inequality in the de�nition of �

U

. 2

In terms of mixing time we have

Corollary 2.1.1

�(") �

�

log "�

min

log �

max

�

:

Proof For A � 
 we have

p

t

(A)� �(A) �

�

t

max

�

min

�(A) �

�

t

max

�

min

:

2

As an example we 
onsider random walk W

n

on the unit hyper
ube. Here the graph

is the n-
ube Q

n

= (X

n

= f0; 1g

n

; E

n

) where x; y 2 X

n

are adja
ent in Q

n

if their

Hamming distan
e is one i.e. if jfi 2 [n℄ : x

i

6= y

i

gj = 1. We add n self loops to ea
h

vertex to make the 
hain lazy.

If G is a d-regular graph without loops and A

G

is its adja
en
y matrix then the proba-

bility transition matrix P

G

of a random walk on G satis�es P

G

= d

�1

A

G

.

For graphs G

i

= (V

i

; E

i

); i = 1; 2 we 
an de�ne their produ
t G = G

1

� G

2

= (V;E)

where V = V

1

� V

2

and E = f((v

1

; v

2

); (w

1

; w

2

)) : v

1

= w

1

and (v

2

; w

2

) 2 E

2

or v

2

=

w

2

and (v

1

; w

1

) 2 E

1

g. Then

Q

n

= K

2

�K

2

� � � � �K

2

(n fold produ
t): (2.2)
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Theorem 2.1.2 If �

i

; i = 1; 2; : : : ;m and �

i

; i = 1; 2; : : : ; n are the eigenvalues of ma-

tri
es A

G

1

; A

G

2

respe
tively, then the eigenvalues of A

G

are f�

i

+ �

j

: 1 � i � m; 1 �

j � ng.

Proof A

G


an be obtained from A

G

1

by repla
ing ea
h 1 by the jV

2

j identity matrix

I

2

, the o�-diagonal 0's by the jV

2

j � jV

2

j matrix of 0's and repla
ing ea
h diagonal entry

by A

G

2

. So if p

G

(�) = det(�I � A

G

) then

p

G

(�) = det p

G

1

(�I

2

� A

G

2

):

This follows from the following: Suppose the mn � mn matrix A is de
omposed into

an m � m matrix of n � n blo
ks A

i;j

. Suppose also that the A

i;j


ommute among

themselves. Then

detA = det

 

X

�

(�1)

sign(�)

m

Y

i=1

A

i;�(i)

!

;

i.e. one 
an produ
e an m�m matrix by a \determinant" 
al
ulation and then take its

determinant. Needs a proof

So

p

G

(�) = det

n

Y

i=1

(�I

2

� A

G

2

� �

i

I

2

) =

n

Y

i=1

p

G

2

(�� �

i

) =

n

Y

i=1

n

Y

j=1

(�� �

i

� �

j

):

2

The eigenvalues of K

2

are f1;�1g and applying (2.2) we see that the eigenvalues of Q

n

are f0;�1;�2; : : : ;�ng (ignoring multipli
ities). To get the eigenvalues for our random

walk we (i) divide by n and then (ii) repla
e ea
h eigenvalue � by

1+�

2

to a

ount for

adding loops. Thus the se
ond eigenvalue of the walk is 1�

1

2n

.

Applying Corollary 2.1.1 we obtain �(") � log("

�1

) + O(n

2

). This is a poor estimate,

due to our use of the Cau
hy-S
hwartz inequality in the proof of Theorem 2.1.1. We get

an easier and better estimate by using 
oupling.

2.1.1 De
omposition Theorem

2.2 Condu
tan
e

The 
ondu
tan
e � of M is de�ned by

� = minf�

S

: S � 
; 0 < �(S) � 1=2g

where if Q(!; �) = �(!)P (!; �) and

�

S = 
 n S,

�

S

= �(S)

�1

Q(S;

�

S):
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Thus �

S

is the steady state probability of moving from S to

�

S in one step of the 
hain,


onditional on being in S.

Clearly � �

1

2

if M is lazy.

Note that

�

S

�(S) = Q(S;

�

S) = Q(

�

S; S) = �

�

S

�(

�

S): (2.3)

Indeed,

Q(S;

�

S) = Q(
;

�

S)�Q(

�

S;

�

S) = �(

�

S)�Q(

�

S;

�

S) = Q(

�

S; S):

Let �

min

= min f�(!) : ! 2 
g > 0 and �

max

= max f�(!) : ! 2 
g.

2.2.1 Reversible Chains

In this se
tion we show how 
ondu
tan
e gives us an estimate of the spe
tral gap of a

reversible 
hain.

Lemma 2.2.1 If M is lazy and ergodi
 then all eigenvalues are positive.

Proof Q = 2P�I � 0 is sto
hasti
 and has eigenvalues �

i

= 2�

i

�1; i = 0; 1; : : : N�

1. The result follows from �

i

> �1; i = 0; 1; : : : N � 1. 2

For y 2 R

N

let

E(y; y) =

X

i<j

�

i

P

i;j

(y

i

� y

j

)

2

:

Lemma 2.2.2 If M is reversible then

1� �

1

= min

�

T

y=0

E(y; y)

P

i

�

i

y

2

i

:

Proof Let D;S; e

(0)

be as in Se
tion 2.1. Then by the Rayleigh prin
iple,

�

1

= max

�

T

D

�1=2

x=0

x

T

D

1=2

PD

�1=2

x

x

T

x

:

Thus

1� �

1

= min

�

T

D

�1=2

x=0

x

T

D

1=2

(I � P )D

�1=2

x

x

T

x

= min

�

T

y=0

y

T

D(I � P )y

y

T

Dy

: (2.4)
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Now

y

T

D(I � P )y = �

X

i 6=j

y

i

y

j

�

i

P

i;j

+

X

i

�

i

(1� P

i;i

)y

2

i

= �

X

i 6=j

y

i

y

j

�

i

P

i;j

+

X

i 6=j

�

i

P

i;j

y

2

i

+ y

2

j

2

=

X

i<j

�

i

P

i;j

(y

i

� y

j

)

2

= E(y; y);

and the lemma follows from (2.4). 2

Theorem 2.2.1 If M is a reversible 
hain then

1� �

1

�

�

2

2

:

Proof Assume now that �

T

y = 0, y

1

� y

2

� � � � � y

N

and that

�

1

+ �

2

+ � � � + �

r�1

�

1

2

< �

1

+ �

2

+ � � �+ �

r

:

Let z

i

= y

i

� y

r

for i = 1; 2; : : : ; n. Then

z

1

� z

2

� � � � � z

r

= 0 � z

r+1

� � � � � z

N

;

and

E(y; y)

P

i

�

i

y

2

i

=

E(z; z)

�y

2

r

+

P

i

�

i

z

2

i

�

E(z; z)

P

i

�

i

z

2

i

: (2.5)

=

�

P

i<j

�

i

P

i;j

(z

i

� z

j

)

2

��

P

i<j

�

i

P

i;j

(jz

i

j+ jz

j

j)

2

�

(

P

i

�

i

z

2

i

)

�

P

i<j

�

i

P

i;j

(jz

i

j+ jz

j

j)

2

�

=

A

B

; say:

Now,

A �

 

X

i<j

�

i

P

i;j

jz

i

� z

j

j(jz

i

j+ jz

j

j)

!

2

by Cau
hy-S
hwartz

�

 

X

i<j

�

i

P

i;j

j�1

X

k=i

jz

2

k+1

� z

2

k

j

!

2

: (2.6)
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We verify (2.6) later. Also,

X

i<j

�

i

P

i;j

(jz

i

j+ jz

j

j)

2

� 2

X

i<j

�

i

P

i;j

(z

2

i

+ z

2

j

) � 2

X

i

�

i

z

2

i

:

So,

E(y; y)

P

i

�

i

y

2

i

�

A

B

�

�

P

i<j

�

i

P

i;j

P

j�1

k=i

jz

2

k+1

� z

2

k

j

�

2

2 (

P

i

�

i

z

2

i

)

2

:

Now let S

k

= f1; 2; : : : ; kg and C

k

= f(i; j) : i � k < jg. Then

X

i<j

�

i

P

i;j

j�1

X

k=i

jz

2

k+1

� z

2

k

j =

N�1

X

k=1

jz

2

k+1

� z

2

k

j

X

(i;j)2C

k

�

i

P

i;j

� �

 

r�1

X

k=1

(z

2

k

� z

2

k+1

)�(S

k

) +

N�1

X

k=r

(z

2

k+1

� z

2

k

)(1� �(S

k

))

!

= �

 

N�1

X

k=1

(z

2

k

� z

2

k+1

)�(S

k

) + (z

2

N

� z

2

r

)

!

= �

 

N

X

k=1

�

k

z

2

k

!

sin
e z

r

= 0.

Thus if �

T

y = 0 then

E(y; y)

P

i

�

i

y

2

i

�

�

2

2

and Theorem 2.2.1 follows.

Proof of (2.6)

We show that if i < j then

jz

i

� z

j

j(jz

i

j+ z

j

j) �

j�1

X

k=i

jz

2

k+1

� z

2

k

j: (2.7)

If r 62 fi; i+1; : : : ; jg i.e. if z

i

; z

j

have the same sign then LHS(2.7)=RHS(2.7)=jz

2

i

�z

2

j

j.

Otherwise LHS(2.7)=(jz

i

j+ jz

j

j)

2

and RHS(2.7)=z

2

i

+ z

2

j

. 2

In terms of mixing time we obtain from Corollary 2.1.1,

Corollary 2.2.1 If M is a lazy ergodi
 
hain then

�(") �

�

2j log "�

min

j

�

2

�

:
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Proof Lemma 2.2.1 implies that �

1

= �

max

and then

1

log �

�1

max

�

1

log(1� �

2

=2)

�1

�

2

�

2

:

2

Now 
onsider the 
ondu
tan
e of a random walk on a graph G = (V;E). For S; T � V

let E(S; T ) = f(v; w) 2 E : v 2 S;w 2 Tg and e(S; T ) = jE(S; T ). Then, by de�nition,

�

S

=

X

(v;w)2E(S;

�

S)

d

v

2jEj

1

d

v

X

v2S

d

v

2jEj

=

e(S;

�

S)

X

v2S

d

v

:

In parti
ular when G is an r-regular graph

� = r

�1

min

jSj�

1

2

jV j

e(S;

�

S)

jSj

: (2.8)

The minimand above is referred to as the expansion of G. This graphs with good

expansion (expander graphs) have large 
ondu
tan
e and random walks on them mix

rapidly.

As an example 
onsider the n-
ube Q

n

. For S � X

n

let in(S) denote the number of

edges of Q

n

whi
h are wholly 
ontained in S.

Lemma 2.2.3 If ; 6= S � X

n

then in(S) �

1

2

jSj log

2

jSj.

Proof We prove this by indu
tion on n. It is trivial for n = 1. For n > 1 let

S

i

= fx 2 S : x

n

= ig for i = 1; 2. Then

in(S) � in(S

0

) + in(S

1

) + minfjS

0

j; jS

1

jg

sin
e the term minfjS

0

j; jS

1

jg bounds the number of edges whi
h are 
ontained in S and

join S

0

; S

1

. The lemma follows from the inequality

x log

2

x+ y log

2

y + 2y � (x+ y) log

2

(x+ y)

for all x � y � 0. The proof is left as a simple exer
ise in 
al
ulus. 2

By summing the degrees at ea
h vertex of S we see that

e(S;

�

S) + 2in(S) = njSj:

By the above lemma we have

e(S;

�

S) � njSj �

1

2

jSj log

2

jSj � jSj


