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Chapter 1

Two good counting algorithms

Counting problems that can be solved exactly in polynomial time are few and far be-
tween. Here are two classical examples whose solution makes elegant use of linear al-
gebra. Both algorithms predate the now commonplace distinction between polynomial
and exponential time, which is often credited (with justification) to Edmonds in the mid
1960s; indeed our first example dates back over 150 years!

1.1 Spanning trees

Basic graph-theoretic terminology will be assumed. Let G = (V,E) be a finite undirected
graph with vertex set V and edge set E. For convenience we identify the vertex set V
with the first n natural numbers [n] = {0, 1, . . . , n − 1}. The adjacency matrix A of G
is the n × n symmetric matrix whose ij’th entry is 1 if {i, j} ∈ E, and 0 otherwise.
Assume G is connected. A spanning tree in G is a maximum (edge) cardinality cycle-
free subgraph (equivalently, a minimum cardinality connected subgraph that includes
all vertices). Any spanning tree has n− 1 edges.

Theorem 1.1 (Kirchhoff). Let G = (V,E) be a connected, loop-free, undirected graph
on n vertices, A its adjacency matrix and D = diag(d0, . . . , dn−1) the diagonal matrix
with the degrees of the vertices of G in its main diagonal. Then, for any i, 0 ≤ i ≤ n−1,

# spanning trees of G = det(D −A)ii,

where (D − A)ii is the (n − 1) × (n − 1) principal submatrix of D − A resulting from
deleting the i’th row and i’th column.

Since the determinant of a matrix may be be computed in time O(n3) by Gaussian
elimination, Theorem 1.1 immediately implies a polynomial-time algorithm for counting
spanning trees in an undirected graph.

Example 1.2. Figure 1.1 shows a graph G with its associated “Laplacian” D −A and
principal minor (D−A)11. Note that det(D−A)11 = 3 in agreement with Theorem 1.1.

Remark 1.3. The theorem holds for unconnected graphs G, as well, because then
the matrix D − A associated with G is singular. To see this, observe that the rows
and columns of a connected graph add up to 0 and, similarly, those of any submatrix
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
1 −1 0 0
−1 3 −1 −1

0 −1 2 −1
0 −1 −1 2


D −A

 1 0 0
0 2 −1
0 −1 2



(D −A)11

Figure 1.1: Example illustrating Theorem 1.1.

corresponding to a connected component add up to 0. Now choose vertex i and a
connected component C such that i /∈ C. Then, the columns of (D−A)ii that correspond
to C are linearly dependent, and (D −A)ii is singular.

Our proof of Theorem 1.1 follows closely the treatment of van Lint and Wilson [79],
and relies on the following expansion for the determinant, the proof of which is deferred.

Lemma 1.4 (Binet-Cauchy). Let A be an (r ×m)- and B an (m× r)-matrix. Then

detAB =
∑
S⊆[m],
|S|=r

detA∗S detBS∗,

where A∗S is the square submatrix of A resulting from deleting all columns of A whose
index is not in S, while, similarly, BS∗ is the square submatrix of B resulting from B by
deleting those rows not in S.

Remark 1.5. Typically, r is smaller than m. However, the lemma is also true for
r > m. Then the sum on the right is empty and thus 0. But also AB is singular, since
rankAB ≤ rankA ≤ m < r.

Let H be a directed graph on n vertices with m edges. Then the incidence matrix
of H is the (n×m)-matrix N = (νve) where

νve =


+1, if vertex v is the head of edge e;

−1, if v is the tail of e;

0, otherwise.

The weakly connected components of H are the connected components of the underlying
undirected graph, i.e., the graph obtained from H by ignoring the orientations of edges.

Fact 1.6.
rankN = |V (H)| − |C(H)| = n− |C(H)|,

where V (H) is the vertex set of H and C(H) ⊆ 2V (H) is the set of (weakly) connected
components of H.

Proof. Consider the linear map represented by N>, the transpose of N . It is easy to see
that, if h is a vector of length n, then

N>h = 0 ⇔ h is constant on connected components,

i.e., i, j ∈ C ⇒ hi = hj , for all C ∈ C(H). This implies that dim kerN> = |C(H)|,
proving the claim, since rankN = rankN> = n− dim kerN>.
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Fact 1.7. Let B be a square matrix with entries in {−1, 0,+1} such that in each column
there is at most one +1 and at most one −1. Then, detB ∈ {−1, 0,+1}.

Proof. We use induction on the size n of B. For n = 1, the claim in trivial. Let n > 1. If
B has a column which equals 0, or if each column has exactly one +1 and one −1, then
B is singular. Otherwise there is a column j with either one +1 or one −1, say in its i’th
entry bij , and the rest 0’s. Developing detB by this entry yields detB = ±bij detBij ,
where Bij is the minor of B obtained by deleting row i and column j. By the induction
hypothesis, the latter expression equals −1, 0 or +1.

The ingredients for the proof of the Kirchhoff’s result are now in place.

Proof of Theorem 1.1. Let
→
G be an arbitrary orientation of G, N its incidence matrix,

and S ⊆ E be a set of edges of
→
G with |S| = n− 1. Then, by Fact 1.6,

(1.1) rank(N∗S) = n− 1 ⇔ S is the edge set of a tree.

(The condition that S is the edge set of a tree again ignores the orientation of edges
in S.) If N ′ results from N by deleting one row, then

(1.2) rank(N ′∗S) = rank(N∗S).

This is because the deleted row is a linear combination of the others, since the rows of N
add up to 0. Combining (1.1) and (1.2) with Fact 1.7 gives us

(1.3) detN ′∗S =

{
±1, if S is a spanning tree;

0, otherwise.

Now observe that D −A = NN>, since

(NN>)ij =
∑
e∈E

νieνje =


−1, if {i, j} ∈ E;

di, if i = j;

0, otherwise.

Clearly, (D −A)ii = N ′(N ′)> where N ′ results from N by deleting any row i. Thus,

det(D −A)ii = det(N ′(N ′)>)

=
∑

|S|=n−1

detN ′∗S det((N ′)>)S∗ by Lemma 1.4

=
∑

|S|=n−1

detN ′∗S det(N ′∗S)>

= # spanning trees of G by (1.3).

It only remains to prove the key lemma on expanding determinants.
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Proof of Lemma 1.4. We prove a more general claim, namely

detA∆B =
∑
S⊆[m],
|S|=r

detA∗S detBS∗
∏
i∈S

ei,

where ∆ = diag(e0, . . . , em−1). The lemma follows by setting all ei to 1. Observe that
entries of A∆B are linear forms in e0, . . . , em−1. Thus, detA∆B is a homogeneous
polynomial of degree r in e0, . . . , em−1, i.e., all monomials have degree r. Comparing co-
efficients will yield the desired result. First we observe that every monomial in detA∆B
must have r distinct variables. For if not, consider a monomial with the fewest number
of distinct variables, and suppose this number is less than r. Setting all other variables
to 0 will result in detA∆B = 0, since rankA∆B ≤ rank∆ < r and A∆B is singular.
But detA∆B = 0 implies that the coefficient of the monomial is 0. Now look at a
monomial with exactly r distinct variables, say

∏
i∈S ei. Set these variables to 1 and all

others to 0. Then, A∆B evaluates to A∗SBS∗, and hence the coefficient of
∏
i∈S ei is

detA∗SBS∗ = detA∗S detBS∗.

It is possible to generalise Theorem 1.1 to directed graphs G = (V,E), where a
directed spanning tree (or arborescence) is understood to be a subgraph (V, T⊆E) where
(i) (V, T ) with the orientation of edges ignored forms a spanning tree of the unoriented
version of G, and (ii) the orientations of edges in T are consistently directed towards
some distinguished vertex or root r. Equivalently, it is an acyclic subgraph in which
every vertex other than the distinguished root r has outdegree 1, and the root itself
has outdegree 0. (There does not seem to be agreement on whether edges should be
directed towards or away from the root; towards seems more natural — corresponding
as it does to functions on [n] with a unique fixed point — and in any case better suits
our immediate purpose.)

An Eulerian circuit in a directed graph G is a closed path (i.e., one that returns to
its starting point) that traverses every edge of G exactly once, respecting the orientation
of edges. (The path with not in general be simple, that is to say it will visit vertices
more than once.) The number of Eulerian circuits in a directed graph is related in a
simple way to the number of arborescences, so these structures also can be counted in
polynomial time. For details see Tutte [74, §VI.3, §VI.4].

Open Problem. To the best of my knowledge, it is not known whether there exists a
polynomial-time algorithm for counting Eulerian circuits in an undirected graph. Note
that the usual strategy of viewing an undirected graph as a directed graph with paired
anti-parallel edges does not work here.

Exercise 1.8. Exhibit an explicit (constant) many-one relation between the Eulerian
circuits in a directed graph G and the arborescences in G. Hint: use the arborescence
to define an “escape route” or “edge of final exit” from each vertex.

1.2 Perfect matchings in a planar graph

Let G = (V,E) be an undirected graph on n vertices (V = [n], for convenience). A
matching in G is a subset M ⊆ E of pairwise vertex-disjoint edges. A matching M is
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called perfect if it covers V , i.e.,
⋃
M = V . Note that n must be even for a perfect

matching to exist.
Around 1960, Kasteleyn discovered a beautiful method for counting perfect match-

ings in a certain class of “Pfaffian orientable” graphs, which includes all planar graphs
as a strict subclass. Linear algebra is again the key.

Fact 1.9. If M,M ′ are two perfect matchings in G, then M ∪M ′ is a collection of single
edges and even (i.e., even length) cycles.

Let G = (V,E) be an undirected graph, C an even cycle in G, and
→
G an orientation

of G. We say that C is oddly oriented by
→
G if, when traversing C in either direction,

the number of co-oriented edges (i.e., edges whose orientation in
→
G and in the traversal

is the same) is odd. (Observe that the direction in which we choose to traverse C is not

significant, since the parity in the other direction is the same.) An orientation
→
G of G is

Pfaffian (also called admissible) if the the following condition holds: for any two perfect

matchings M,M ′ in G, every cycle in M ∪M ′ is oddly oriented by
→
G. Note that all

cycles in M ∪M ′ are even.

Remark 1.10. The definition of Pfaffian orientation given above is not equivalent to

requiring that all even cycles in G be oddly oriented by
→
G, since there may be even

cycles that cannot be obtained as the union of two perfect matchings.

Let
→
G be any orientation of G. Define the skew adjacency matrix As(

→
G) = (aij : 0 ≤

i, j ≤ n− 1) of G by

aij =


+1, if (i, j) ∈ E(

→
G);

−1, if (j, i) ∈ E(
→
G);

0, otherwise.

Theorem 1.11 (Kasteleyn). For any Pfaffian orientation
→
G of G,

# perfect matchings in G =

√
detAs(

→
G) .

Our proof of Theorem 1.11 borrows from Kasteleyn [52] and Lovász and Plum-

mer [56]. Denote by
↔
G the directed graph obtained from G by replacing each undirected

edge {i, j} by the anti-parallel pair of directed edges (i, j), (j, i). An even cycle cover

of
↔
G is a collection C of even directed cycles C ⊆ E(

↔
G) such that every vertex of G is

contained in exactly one cycle in C.

Lemma 1.12. There is a bijection between (ordered) pairs of perfect matchings in G

and even cycle covers in
↔
G.

Proof. Let (M,M ′) be a pair of perfect matchings in G. For each edge in M ∩M ′ (i.e,

each edge in M ∪M ′ that does not lie in an even cycle) take both directed edges in
↔
G.

Now orient each cycle C in M ∪M ′ (with length ≥ 4) according to some convention
fixed in advance. For example, take the vertex with lowest number in C and orient the
incident M -edge away from it. The resulting collection C of directed cycles is an even

cycle cover of
↔
G.
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The edge set of M ∪M ′

Pairs of matchings (M,M ′) Even cycle covers of
↔

G

Figure 1.2: Bijection between pairs of matchings in G and even cycle covers of
↔
G.

The procedure may be reversed. First, each oriented 2-cycle in C must correspond
to an edge that is in both M and M ′. Then, each even cycle C ∈ C of length at least
four may be decomposed into alternating M -edges and M ′-edges; the convention used
to determine the orientation of C will indicate which of the two possible decompositions
is the correct one.

Proof of Theorem 1.11. In view of the previous lemma, we just need to show that

detAs(
→
G) counts even cycle covers in

↔
G. Now,

(1.4) detAs(
→
G) :=

∑
π∈Sn

sgnπ

n−1∏
i=0

ai,π(i),

where Sn is the set of all permutations of [n], and sgnπ is the sign of permutation π.1

Consider a permutation π and its (unique) decomposition into disjoint cycles π =
γ1 · · · γk. Each γj acts on a certain subset Vj ⊆ V . The corresponding product

∏
i∈Vj ai,π(i)

is non-zero if and only if the edges {(i, π(i)) : i ∈ Vj} form a directed cycle in G, since
otherwise one of the ai,π(i) would be 0. Thus, there is a one-to-one correspondence be-
tween permutations π with non-zero (i.e., ±1) contributions to (1.4) and cycle covers in
↔
G.

We now claim that sum (1.4) is unchanged if we restrict it to permutations with only
even length cycles. To see this, consider a permutation π and an odd length cycle γj
in π, say the first in some natural ordering on cycles. Let π′ = γ1 · · · (γj)−1 · · · γk be
identical to π except that γj is reversed. Then,

∏n−1
i=0 ai,π(i) = −

∏n−1
i=0 ai,π′(i). Moreover,

since both π and π′ are products of cycles of the same lengths, sgnπ = sgnπ′. Thus, the
contributions of π and π′ cancel out in (1.4). (Note that for this part of the argument,

we do not need that
→
G is Pfaffian.) Thus we may pair up permutations with odd cycles

so that they cancel each other.

1The sign of π is +1 if the cycle decomposition of π has an even number of even length cycles, and
−1 otherwise.
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33
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Figure 1.3: Example graph illustrating various quantities in the proof.

Now consider a permutation π which consists only of even length cycles and does not

vanish in (1.4). As remarked above, π corresponds to an even cycle cover of
↔
G, which,

by Lemma 1.12, corresponds to a pair of perfect matchings in G. Because
→
G is Pfaffian,

each cycle Cj corresponding to a cycle γj of π is oddly oriented by
→
G. Thus, each γj

contributes a factor −1 to
∏n−1
i=0 ai,π(i) while it also contributes a factor −1 to sgnπ,

being an even cycle. Therefore, overall, π contributes 1 to the sum (1.4).

Theorem 1.11 provides a polynomial-time algorithm for counting perfect matchings
in a graph G, provided G comes equipped with a Pfaffian orientation. But which graphs
admit a Pfaffian orientation?

Lemma 1.13. Let
→
G be a connected planar digraph, embedded in the plane. Suppose

every face, except the (outer) infinite face, has an odd number of edges that are oriented
clockwise. Then, in any simple cycle C, the number of edges oriented clockwise is of

opposite parity to the number of vertices of
→
G inside C. In particular,

→
G is Pfaffian.

Proof. First, let’s see why the condition on simple cycles implies
→
G is Pfaffian. Consider

a cycle C created by the union of a pair of perfect matchings in G. Then C has an even
number of vertices inside it, since otherwise there would be a vertex inside C which is
matched with a vertex outside C, contradicting planarity. Thus, the number of edges

in C oriented clockwise is odd, implying that
→
G is Pfaffian.

We now prove the main part of the lemma. Take a cycle C. We need the following
definitions:

v = # vertices inside C,

k = # edges on C = # vertices on C,

c = # edges on C oriented clockwise,

f = # faces inside C,

e = # edges inside C,

ci = # clockwise edges on the boundary of face i for i = 0, . . . , f − 1.

In the example graph illustrated in Figure 1.3, the cycle C is denoted in bold face. Here,
v = 1, k = 8, c = f = e = 4, and the various ci are included in the figure.

According to Euler’s formula,

(v + k)︸ ︷︷ ︸
# vertices

+ (f + 1)︸ ︷︷ ︸
# faces

− (e+ k)︸ ︷︷ ︸
# edges

= 2,
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G \ e

e

Figure 1.4: Orient e according to the condition of Lemma 1.13.

which implies

(1.5) e = v + f − 1.

Now, for all i, by assumption, ci ≡ 1 (mod 2), and thus f ≡
∑f−1

i=0 ci (mod 2). On the

other hand,
∑f−1

i=0 ci = c + e, since each interior edge borders two faces, and in exactly
one of these it is oriented clockwise. So,

f ≡ c+ e

≡ c+ v + f − 1 (mod 2) by (1.5),

and hence c+ v is odd.

Theorem 1.14. Every planar graph has a Pfaffian orientation.

Proof. Without loss of generality, we may assume G is connected, since we may otherwise
treat each connected component separately. We prove the theorem by induction on m,
the number of edges. As the base of our induction we take the case when G is a tree,
and any orientation is Pfaffian. Now, look at a planar graph G with m ≥ n edges, and
fix an edge e on the exterior (i.e., e borders the infinite face of G). By the induction
hypothesis, G\e has a Pfaffian orientation. Adding e creates just one more face; orient e
in such a way that this face has an odd number of edges oriented clockwise. (Figure 1.4
illustrates the situation.) Then, by Lemma 1.13, the orientation is Pfaffian.

Open Problem. The computational complexity of deciding, for an arbitrary input
graph G, whether G has a Pfaffian orientation is open. It is neither known to be in P
nor to be NP-complete. The restriction of this decision problem to bipartite graphs was
recently shown to be decidable by Robertson, Seymour and Thomas [68], and indepen-
dently by McCuaig.

Note however, that the proof of Theorem 1.14 gives us a polynomial algorithm for
finding a Pfaffian orientation of a planar graph G, and hence for counting the number
of perfect matchings in G.

Exercise 1.15. In the physics community, perfect matchings are sometimes known as
“dimer covers.” It is of some interest to know the number of dimer covers of a graph G
when G has a regular structure that models, for example, a crystal lattice. Let Λ to be
the L × L square lattice, with vertex set V (Λ) = {(i, j) : 0 ≤ i, j < L} and edge set
E(Λ) =

{
{(i, j), (i′, j′)} : |i − i′| + |j − j′| = 1

}
. Exhibit a (nicely structured!) Pfaffian

orientation of Λ.
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Exercise 1.16. Exhibit a non-planar graph that admits a Pfaffian orientation.

Exercise 1.17. Exhibit a (necessarily non-planar) graph that does not admit a Pfaffian
orientation.

Exercise 1.18. The dimer model is one model from statistical physics; another is the
Ising model. Computing the “partition function” of an Ising system with underlying
graph G in the absence of an external field is essentially equivalent to counting “closed
subgraphs” of G: subgraphs (V,A⊆E) such that the degree of every vertex i ∈ V in
(V,A) is even (possibly zero). Show that the problem of counting closed subgraphs in a
planar graph is efficiently reducible to counting perfect matchings (or dimer covers) in a
derived planar graph. The bottom line is that the Ising model for planar systems with
no applied field is computationally feasible.

Valiant observes that in the few instances where a counting problem is known to be
tractable, it is generally on account of the problem being reducible to the determinant.
All the examples presented in this chapter are of this form. This empirical observation
remains largely a mystery, though a couple of results in computational complexity give
special status to the determinant. For example, around 1991, various authors (Damm,
Toda, Valiant, and Vinay) independently discovered that the determinant of an integer
matrix is complete for the complexity class GapL under log-space reduction [60, §6].2

Although this is certainly an interesting result, it does beg the question: why do natural
tractable counting problems tend to cluster together in the class GapL? For a further
universality property of the determinant, see Valiant [75, §2].

In the other direction, Colbourn, Provan and Vertigan [18] have discovered an inter-
esting, purely combinatorial approach to at least some of the tractable counting problems
on planar graphs. In a sense, their result questions the centrality of the determinant.

2A function f : Σ∗ → N is in the class #L if there is a log-space non-deterministic Turing machine M
such that the number of accepting computations of M on input x is exactly f(x), for all x ∈ Σ∗. A
function g : Σ∗ → N is in GapL if it can be expressed as g = f1 − f2 with f1, f2 ∈ #L.





Chapter 2

#P-completeness

Classical complexity theory is mainly concerned with complexity of decision problems,
e.g., “Is a given graph G Hamiltonian?”1 Formally, a decision problem is a predicate ϕ :
Σ∗ → {0, 1}, where Σ is some finite alphabet in which problem instances are encoded.2

Thus, x ∈ Σ∗ might encode a graph Gx (as an adjacency matrix, perhaps) and ϕ(x) is
true iff Gx is Hamiltonian.

The most basic distinction in the theory of computational complexity is between
predicates that can be decided in time polynomial in the size |x| of the instance, and
those that require greater (often exponential) time. This idea is formalised in the com-
plexity class P of polynomial-time predicates. A predicate ϕ belongs to the complexity
class P (and we say that ϕ is polynomial time) if it can be decided by a deterministic
Turing machine in time polynomial in the size of the input; more precisely, there is a
deterministic Turing machine T and a polynomial p such that, for every input x ∈ Σ∗,
T terminates after at most p(|x|) steps, accepting if ϕ(x) is true and rejecting otherwise.3

Before proceeding, a few vaguely philosophical remarks addressed to readers who have
only a passing acquaintance with computational complexity, with the aim of making
the chapter more accessible. One motivation for using a robust class of time bounds
(namely, all polynomial functions) in the above definition is to render the complexity
class P independent of the model of computation. We ought to be able to substitute any
“reasonable” sequential model of computation for the Turing machine T in the definition
and end up with the same class P. By sequential here, we mean that the model should
be able to perform just one atomic computational step in each time unit. The “Extended
Church-Turing Thesis” is the assertion that the class P is independent of the model of
computation used to define it. It is a thesis rather than a theorem, because we cannot
expect to formalise the condition that the model be “reasonable”. The upshot of all this
is that the reader unfamiliar with the Turing machine model should mentally replace it by
some more congenial model, e.g., that of C programs. (For a more expansive treatment
of the fundamentals of machine-based computational complexity, refer to standard texts
by Papadimitriou [67] or Garey and Johnson [36].)

The important complexity class NP is usually defined in terms of non-deterministic

1A closed path in G is one that returns to its starting point; a simple path is one in which no vertex
is repeated; a Hamilton cycle in G is a simple closed path that visits every vertex in G. A graph G is
Hamiltonian if it contains a Hamilton cycle.

2Σ∗ denotes the set of all finite sequences of symbols in Σ.
3Here, |x| denotes the length of the word x.

11
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Turing machines. Indeed, NP stands for “N[ondeterministic] P[olynomial time]”. In the
interests of accessibility, however, we take an alternative but equivalent approach. We
say that a predicate ϕ : Σ∗ → {0, 1} belongs to the class NP iff there exists a polynomial-
time “witness-checking” predicate χ : Σ∗ × Σ∗ → {0, 1} and a polynomial p such that,
for all x ∈ Σ∗,

(2.1) ϕ(x) ⇐⇒ ∃w ∈ Σ∗. χ(x,w) ∧ |w| ≤ p(|x|) .

(Since the term “polynomial time” has been defined only for monadic predicates, it can-
not strictly be applied to χ. Formally, what we mean here is that there is a polynomial-
time Turing machine T that takes an input of the form x$y — where x, y ∈ Σ∗ and
$ /∈ Σ is a special separating symbol — and accepts iff χ(x, y) is true. The machine T
is required to halt in a number of steps polynomial in |x$y|.)

Example 2.1. Suppose x encodes an undirected graph G, y encodes a subgraph H of G,
and χ(x, y) is true iff y is a Hamilton cycle in G. The predicate χ is easily seen to be
polynomial time: one only needs to check that H is connected, that H spans G, and that
every vertex of H has degree two. Since χ is clearly a witness-checker for Hamiltonicity,
we see immediately that the problem of deciding whether a graph is Hamiltonian is in
the class NP. Many “natural” decision problems will be seen, on reflection, to belong to
the class NP.

As is quite widely known, it is possible to identify within NP a subset of “NP-
complete” predicates which are computationally the “hardest” in NP. Since we shall
shortly be revisiting the phenomenon of completeness in the context of the counting
complexity class #P, just a rough sketch of how this is done will suffice. The idea is
to define a notion of reducibility between predicates — polynomial-time many-one (or
Karp) reducibility — that allows us to compare their relative computational difficulty.
A predicate ϕ is NP-hard if every predicate in NP is reducible to ϕ; it is NP-complete
if, in addition, ϕ ∈ NP.

Logically, there are two possible scenarios: either P = NP, in which case all predicates
in NP are efficiently decidable, or P ⊂ NP, in which case no NP-complete predicate is
decidable in polynomial time. Informally, this dichotomy arises because the complete
problems are the hardest in NP; formally, it is because the complexity class P is closed
under polynomial-time many-one reducibility. Since the former scenario is thought to be
unlikely, NP-completeness provides strong circumstantial evidence for intractability. The
celebrated theorem of Cook provides a natural example of an NP-complete predicate,
namely deciding whether a propositional formula Φ in CNF has a model, i.e., whether
Φ is satisfiable. For convenience, this decision problem is referred to as “Sat”.

2.1 The class #P

Now we are interested extending the above framework to counting problems — e.g.,
“How many Hamiltonian cycles does a given graph have?” — which can be viewed as
functions f : Σ∗ → N mapping (encodings of) problem instances to natural numbers.
The class P must be slightly amended to account for the fact we are dealing with functions
with codomain N rather than predicates. A counting problem f : Σ∗ → N is said to
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belong to the complexity class4 FP if it is computable by a deterministic Turing machine
transducer5 in time polynomial in the size of the input. As we saw in Chapter 1 (see
Theorems 1.1 and 1.11), the following problems are in FP:

Name. #SpanningTrees

Instance. A graph G.

Output. The number of spanning trees in G.

Name. #PlanarPM

Instance. A planar graph G.

Output. The number of perfect matchings in G.

The analogue of NP for counting problems was introduced by Valiant [76]. A counting
problem f : Σ∗ → N is said to belong to the complexity class #P if there exist a
polynomial-time predicate χ : Σ∗ × Σ∗ → {0, 1} and a polynomial p such that, for all
x ∈ Σ∗,

(2.2) f(x) =
∣∣{w ∈ Σ∗ : χ(x,w) ∧ |w| ≤ p(|x|)

}∣∣ .
The problem of counting Hamilton cycles in a graph is in #P by identical reasoning to
that used in Example 2.1. The complexity class #P is very rich in natural counting
problems. Note that elementary considerations entail FP ⊆ #P.

Now, how could we convince ourselves that a problem f is not efficiently solvable?
Of course, one possibility would be to prove that f /∈ FP. Unfortunately, such absolute
results are beyond the capabilities of the current mathematical theory. Still, as in the case
of decision problems, it is possible to provide persuasive evidence for the intractability
of a counting problem, based on the assumption that there is some problem in #P that
is not computable in polynomial time, i.e., that FP 6= #P.6 With this in mind, we are
going to define a class of “most difficult” problems in #P, the so-called #P-complete
problems, which have the property that if they are in FP, then #P collapses to FP. In
other words, if FP ⊂ #P then no #P-complete counting problem is polynomial-time
solvable. For this purpose, we seem to need a notion of reducibility that is more general
than the usual many-one reducibility.

Given functions f, g : Σ∗ → N, we say that g is polynomial-time Turing (or Cook)
reducible to f , denoted g ≤T f , if there is a Turing machine with an oracle7 for f that
computes g in time polynomial in the input size. The relation ≤T is transitive; moreover,

(2.3) f ∈ FP ∧ g ≤T f ⇒ g ∈ FP .

4Standing for “F[unction] P[olynomial time]” or something similar.
5That is, by a TM with a write-only output tape.
6This is clearly the counting analogue of the notorious P 6= NP conjecture. Note, however, that

FP 6= #P might hold even in the unlikely event that P = NP!
7An oracle for f is an addition to the Turing machine model, featuring a write-only query tape and a

read-only response tape. A query q ∈ Σ∗ is first written onto the query tape; when the machine goes into
a special “query state” the query and response tapes are both cleared and the response f(x) written to
the response tape. The oracle is deemed to produce the response in just one time step. In conventional
programming language terms, an oracle is a subroutine or procedure, where we discount the time spent
executing the body of the procedure.
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A function f is #P-hard if every function in #P is Turing reducible to f ; it is #P-
complete if, in addition, f ∈ #P. Just as with the class NP, we have a dichotomy: either
FP = #P or no #P-complete counting problem is polynomial-time solvable. Formally,
this follows from (2.3), which expresses the fact that FP is closed under polynomial-time
Turing reducibility.

What are examples of #P-complete problems? For one thing, the usual generic
reduction of a problem in NP to Sat used to prove Cook’s theorem is “parsimonious”,
i.e., it preserves the number of witnesses (satisfying assignments in the case of Sat). It
follows that #Sat is #P-complete:

Name. #Sat

Instance. A propositional formula Φ in conjunctive normal form (CNF).

Output. The number of models of (or satisfying assignments to) Φ.

More generally, it appears that NP-complete decision problems tend to give rise to #P-
complete counting problems. To be a little more precise: any polynomial-time witness
checking function χ gives rise to an NP decision problem Π via (2.1) and a corresponding
counting problem #Π via (2.2). Empirically, whenever the decision problem Π is NP-
complete, the corresponding counting problem #Π is #P-complete. Simon [70] lists
many examples of this phenomenon, and no counterexamples are known. What he
observes is that the existing reductions used to establish NP-completeness of decision
problems Π are often parsimonious and hence establish also #P-completeness of the
corresponding counting problem #Π. When the existing reduction is not parsimonious
it can be modified so that it becomes so.

Open Problem. Is it the case that for every polynomial-time witness-checking pred-
icate χ, the counting problem #Π is #P-complete whenever the decision problem Π
is NP-complete? I conjecture the answer is “no”, but resolving the question may be
difficult. Note that a negative answer could only reasonably be established relative to
some complexity theoretic assumption, since it would entail FP ⊂ #P. Indeed, if FP
were to equal #P then every function in #P would be trivially #P-complete.

2.2 A primal #P-complete problem

What makes the theory of #P-completeness interesting is that the converse to the above
conjecture is definitely false; that is, there are #P-complete counting problems #Π
corresponding to easy decision problems Π ∈ P. A celebrated example [76] is #Bipar-
titePM, that has an alternative formulation as 0,1-Perm:

Name. #BipartitePM

Instance. A bipartite graph G.

Output. The number of perfect matchings in G.

Name. 0,1-Perm

Instance. A square 0, 1-matrix A = (aij : 0 ≤ i, j < n).
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Output. The permanent

perA =
∑
σ∈Sn

n−1∏
i=0

ai,σ(i)

of A. Here, Sn denotes the symmetric group, i.e., the sum is over all
n! permutations of [n].

To see the correspondence, suppose, for convenience, that G has vertex set [n] + [n], and
interpret A as the adjacency matrix of G; thus aij = 1 if (i, j) is an edge of G and aij = 0
otherwise. Then perA is just the number of perfect matchings in G. In particular, the
following theorem implies that planarity (or some slightly weaker assumption) is crucial
for the Kasteleyn result (Theorem 1.11).

Theorem 2.2 (Valiant). 0,1-Perm (equivalently, #BipartitePM) is #P-complete.

It is clear that 0,1-Perm is in #P: the obvious “witnesses” are permutations σ
satisfying

∏
i ai,σ(i) = 1. To prove #P-hardness, we use a sequence of reductions starting

at #Exact3Cover and going via a couple of auxiliary problems #wBipartiteMatch
and #wBipartitePM.

Name. #Exact3Cover

Instance. A set X together with a collection T ⊆
(
X
3

)
of unordered triples8

of X.

Output. The number of subcollections S ⊆ T that cover X without overlaps;
that is every element of X should be contained in precisely one triple
in S.

Name. #wBipartiteMatch

Instance. A bipartite graph G with edge weights w : E(G)→ {1,−1,−5
3 ,

1
6}.

(Why exactly these weights are used will become clearer in the course
of the proof.)

Output. The “total weight” of matchings pmatch(G) =
∑

M w(M), where
M ranges over all matchings in G and the weight of a matching is
w(M) =

∏
e∈M w(e).

Name. #wBipartitePM

Instance. As for #wBipartiteMatch.

Output. As for #wBipartiteMatch, but with “perfect matchings” replac-
ing “matchings”.

Remark 2.3. More generally, we might consider a graph G with edge weighting w :
E(G) → Z ∪ C, where Z is a set of indeterminates. In this case the expression
pmatch(G) =

∑
M w(M) appearing in the definition of #wBipartiteMatch is a poly-

nomial in Z. If every edge is assigned a distinct indeterminate, then pmatch(G) is the
matching polynomial of G, i.e., the generating function for matchings in G.

8I’m not sure if
(
X
3

)
is a standard notation for “the set of all unordered triples from X”, but it seems

natural enough, given the notation 2X .
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Since #Exact3Cover is the counting version of an NP-complete problem, we ex-
pect it to be #P-complete via parsimonious reduction.

Fact 2.4. #Exact3Cover is #P-complete.

Exercise 2.5. (This exercise is mainly directed to readers with some exposure to com-
putational complexity.) Garey and Johnson [36, §7.3] note Fact 2.4 without proof. Since
I am not aware of any published proof, we should maybe pause to provide one. Garey
and Johnson’s reduction [36, §3.1.2] from 3Sat (the restriction of Sat to formulas with
three literals per clause) to Exact3Cover (actually a special case of Exact3Cover
called “3-dimensional matching”) is almost parsimonious. The “truth setting compo-
nent” is fine (each truth assignment corresponds to exactly one pattern of triples). The
“garbage collection component” is also fine (it is not strictly parsimonious, but the num-
ber of patterns of triples is independent of the truth assignment, which is just as good).
The “satisfaction testing component” needs some attention, as the number of patterns
of triples depends on the truth assignment. However, with a slight modification, this
defect may be corrected. Finally, to do a thorough job, we really ought to modify Garey
and Johnson’s reduction [36, §3.1.1] from Sat to 3Sat to make it parsimonious too.

In the light of Fact 2.4, Theorem 2.2 will follow from the following series of lemmas:

Lemma A. #Exact3Cover ≤T #wBipartiteMatch.

Lemma B. #wBipartiteMatch ≤T #wBipartitePM.

Lemma C. #wBipartitePM ≤T #BipartitePM (≡ 0,1-Perm).

Proof of Lemma A. Our construction is based on the weighted bipartite graph H (de-
picted in Figure 2.1), where the weights of the edges on the left are as indicated, and the
edges labelled a1, a2 and a3 will presently all be assigned weight 1. Initially, however,
to facilitate discussion, we assign to these edges distinct indeterminates z1, z2 and z3,
respectively.

a1

a2

a3

v1

v2

v3

1

1

1

1

1

6

1

6
1

6

−

5

3

Figure 2.1: The graph H.

By direct computation, the matching polynomial of H, with weights as specified, is

(2.4) pmatch(H) = (1 + z1z2z3)/3.

Let us see how to verify (2.4) by calculating the coefficient of z1z2z3; the other coefficients
can be calculated similarly. (Note that there there are only four calculations since, by
symmetry, only the degree of the monomial is significant.) So suppose we include all
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three edges a1, a2 and a3, as we must do in order to get a matching that contributes to
the coefficient of z1z2z3. Then we can either add no further edge at all, or add the lower
left edge with weight 1, or the upper left edge with weight −5

3 . Thus, the total weight
of such matchings is (1 + 1− 5

3)z1z2z3 = 1
3z1z2z3.

Equation (2.4) succinctly expresses the key properties of H that we use. Suppose
that H is an (induced) subgraph of a larger graph G, and that H is connected to the rest
of G only via the vertices v1, v2 and v3; more precisely, there are no edges of G incident
to vertices V (H) \ {v1, v2, v3} other than the ones depicted. Consider some matching
M ′ ⊆ E(G) \ (E(H) \ {a1, a2, a3}) in G, i.e., one that does not use edges from H except
perhaps a1, a2 and a3. We call a matching M ⊇ M ′ in G an extension of M ′ if it
agrees with M ′ on the edge set E(G) \ (E(H) \ {a1, a2, a3}). If M ′ includes all three
edges ai, then the total weight of extensions of M ′ to a matching M on the whole of G
is 1

3w(M ′); a similar claim holds if M ′ excludes all three edges ai. In contrast, if M
includes some edges ai and excludes others, then the total weight of extensions of M ′ is
zero. Informally, H acts as a “coordinator” of the three edges ai.

Using the facts encapsulated in (2.4), we proceed with the reduction of #Exact-
3Cover to #wBipartiteMatch. An instance of #Exact3Cover consists of an
underlying set X, and a collection T ⊆

(
X
3

)
of triples; for convenience set n := |X| and

m := |T |. We construct a bipartite graph G as follows. Take a separate copy Ht of H
for each triple t = {α, β, γ} ∈ T and label the three pendant edges of Ht with atα, atβ,

and atγ , respectively. Furthermore, for each α ∈ X, introduce vertices vα and uα, and
connect them by an edge {vα, uα} of weight −1. Finally, identify the right endpoint of
the edge atα with the vertex vα whenever α ∈ t (see Figure 2.2).

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Hs

s = {α, γ, δ}

Ht

t = {α, β, γ}

asδ

asα

asγ

atα

atβ

atγ

vδ uδ

vε uε

vα uα

vβ uβ

vγ uγ

−1

−1

−1

−1

−1

−1

−1

Figure 2.2: A sketch of the graph G.

Recall that the matching polynomial of G is a sum over matchings M in G of the
weight w(M) of M . We partition this sum according to the restriction A = M ∩ I of M
to I, where I := {atα : t ∈ T ∧ α ∈ t}. Computing the total weight of extensions of A to
a matching in G is straightforward. For each of the subgraphs Ht, equation (2.4) gives
the total weight of extensions of A to that subgraph. For each of the edges {vα, uα},
the total weight of extensions of A to that edge is simply 1 if vα is covered by A and
(1− 1) = 0 otherwise. Expressing these considerations symbolically yields the following
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expression for the matching polynomial of G:

(2.5) pmatch(G) =
∑
M

w(M) =
∑
A⊆I

∏
t∈T

ϕt(A)
∏
α∈X

ψα(A) ,

where

ϕt(A) =


1
3 , if atα ∈ A for all α ∈ t;
1
3 , if atα /∈ A for all α ∈ t;
0, otherwise,

and

ψα(A) =

{
1, if atα ∈ A for some t 3 α
0, otherwise.

.

Each edge subset A contributing a non-zero term to the sum (2.5) corresponds to
an exact 3-cover of X: no element α of X is covered twice (property of a matching),
no element of X is uncovered (property of ψα), and no triple t is subdivided (property
of ϕt). Since every exact 3-cover contributes (13)m to (2.5), we obtain

(2.6) pmatch(G) =

(
1

3

)m ∣∣{ exact 3-covers of X by triples in T }
∣∣.

Thus, assuming we have an oracle for the left hand side of (2.6), we can compute the
number of exact three covers in time polynomial in m and n, and hence polynomial in
the size of the #Exact3Cover instance (X,T ).

Proof of Lemma B. Let G be an instance of #wBipartiteMatch, that is, a bipartite
graph with vertex set V = R ∪ B and edge set E, where

(
R
2

)
∩ E =

(
B
2

)
∩ E = ∅, and

edge weights from {1,−1, 16 ,−
5
3}. Set r := |R| and b := |B|, so that r + b = n := |V |.

For 0 ≤ k ≤ min{r, b} (the maximal possible cardinality of a matching in G), we
construct a bipartite graph graph Gk as follows. Take a set R′ and a set B′ of new
vertices, |R′| = b − k and |B′| = r − k and connect each vertex in R with each vertex
in B′ and each vertex in R with each vertex in R′ by new edges of weight 1 (see Figure
2.3).

G

B′
R′

B
R

Figure 2.3: The graph Gk.

In a similar vein to the proof of Lemma A, we observe that∑
M ′ is a perfect
matching in Gk

w(M ′) = (r − k)! (b− k)!
∑

M is a k-
matching in G

w(M) .

Thus, we can compute the total weight of matchings in G by invoking our oracle for
#wBipartitePM on every Gk and summing over k.
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Proof of Lemma C. Let G = (V,E) be an instance of #BipartitePM, with |V | = n.
We get rid of the weights one by one using interpolation. Consider a certain weight
ζ ∈ {16 ,−1,−5

3}. If we replace it by an indeterminate z, then

p(z) :=
∑

M is a perfect
matching in G

w(M)

is a polynomial of degree d ≤ 1
2n. If we can evaluate p at d + 1 distinct points, say at

k = 1, . . . , d+ 1, we can interpolate to find p(ζ). (Refer to Valiant [78] for a discussion
of efficient interpolation.) In order to find p(k) for fixed k, we construct a graph Gk
from G by replacing each edge {u, v} of weight z by k disjoint paths of length 3 between
u and v such that each edge on these paths has weight 1 (see Figure 2.4).

.

.

.

z = k

1

1

1

1

1

1

1

1

1

1

1

1
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





















k

Figure 2.4: Substituting k disjoint paths for an edge.

Then p(k) =
∣∣{perfect matchings in Gk}

∣∣, and we can determine the right hand side
by means of our oracle for #BipartitePM. This completes the proof of the last lemma,
and hence of the theorem.

Remarks 2.6. (a) The intermediate problems in the above proof are not in #P; how-
ever, they are “#P-easy”, i.e., Turing reducible to a function in #P.

(b) #P-hard counting problems are ubiquitous. In fact, the counting problems in
FP are very much the exceptions. The ones we encountered in Chapter 1 —
counting trees in directed and undirected graphs (and the related Eulerian circuits
in a directed graph), and perfect matchings in a graph (and the related partition
function of a planar ferromagnetic Ising system) — are pretty much the only non-
trivial examples.

(c) Our reduction from #Exact3Cover to #BipartitePM used polynomial in-
terpolation in an essential way. Indeed, interpolation features prominently in a
majority of #P-completeness proofs. The decision to define #P-completeness
with respect to Turing reducibility rather than many-one reducibility is largely
motivated by the need to perform many polynomial evaluations (which equate to
oracle calls) rather than just one. It is not clear whether the phenomenon of #P-
completeness would be as ubiquitous if many-one reducibility were to be used in
place of Turing.

(d) Following from the previous observation: Polynomial interpolation is not numer-
ically stable, and does not preserve closeness of approximation. Specifically, we
may need to evaluate a polynomial to very great accuracy in order to know some
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coefficient even approximately. Thus we cannot deduce from the reductions in Lem-
mas A–C above that approximating the permanent is computationally hard, even
though approximating #Exact3Cover is. We exploit this loophole in Chapter 5.

(e) Every problem in NP is trivially #P-easy. It is natural to ask how much bigger
#P is than NP. The answer seems to be that it is much bigger. The complexity
class PH (Polynomial Hierarchy) is defined similarly to NP, except that arbitrary
quantification is allowed in equivalence (2.1), in place of simple existential quantifi-
cation. PH seems intuitively to be “much bigger” than NP. Yet it is a consequence
of Toda’s theorem (see [73]) that every problem in PH is #P-easy!

2.3 Computing the permanent is hard on average

While many NP-complete problems are easy to decide on random instances, this does
not seem to be the case for counting problems. For example, consider an (imperfect)
algorithm A for computing the permanent of n× n matrices A over the field GF(p), for
all n ∈ N and all primes p, with the following specification:

1. A has runtime polynomial in n and p;

2. For each n and each p, A must give the correct result except on some fraction
1

3(n+1) of all n× n matrices over GF(p).

Theorem 2.7. No algorithm A with the above specification exists unless every problem
in #P admits a polynomial-time randomised algorithm with low9 error probability.10

Proof. It suffices to show that some particular #P-complete problem, namely 0,1-Perm,
admits a polynomial-time randomised algorithm with low error probability. Given an
n × n matrix A with entries from {0, 1}, if we know perA (mod pi) for a sequence
p1, p2, . . . , pn of n distinct primes larger than n + 1, then we can use “Chinese remain-
dering” to evaluate perA. The method is as follows. If a and b are relatively coprime
natural numbers, we can write 1 = ca + db with integer coefficients c, d, which can
be found by means of the Euclidian algorithm. Now suppose we know the residues
r = x mod a and s = x mod b of an integer x. If we set y := rdb + sca, we have x ≡ y
(mod a) and x ≡ y (mod b), and hence x ≡ y (mod ab), by relative primality. Thus,
inductively, we can compute (perA) mod p1p2 . . . pn from the n values (perA) mod pi.
But since perA is a natural number not larger than n! < p1p2 . . . pn, it is uniquely deter-
mined by its residue modulo p1p2 . . . pn. Moreover, the Prime Number Theorem ensures
that we may take the pi’s to be no larger than O(n lnn); in particular, we can find them
by brute force in time polynomial in n.

Thus, it remains to show how, for a fixed prime n+2 ≤ p ≤ O(n lnn), we can employ
A to compute (perA) mod p with low error probability. For this purpose, we select a

9We can take “low” to mean 1
3
, since this may be reduced to an arbitrarily small value by repeatedly

running A and taking a majority vote. Note that the error probability decreases to zero exponentially
as a function of the number of trials.

10The error probability is with respect to random choices made by the algorithm. The input is assumed
non-random.
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matrix R u.a.r. from all n × n matrices over GF(p). Let z be an indeterminate and
consider

p(z) := per(A+ zR),

regarded as a polynomial of degree at most n with coefficients in GF(p). Using A,
we evaluate (in time polynomial in n and p, hence in n) p(z) at n + 1 points z =
1, 2, . . . , n + 1. Observe that, since the numbers 1, . . . , n + 1 are invertible modulo p,
A+R, A+ 2R, . . . , A+ (n+ 1)R are again random matrices (over GF(p)). Thus, with
probability at least 1− (n+ 1) 1

3(n+1) = 2
3 , A will give the correct answer in all instances.

Now we interpolate to find p(0) = (perA) mod p.

Remarks 2.8. (a) Feige and Lund [33] have considerably sharpened Theorem 2.7
using techniques from the theory of error-correcting codes.

(b) The property (of a problem) of being as hard on average as in the worst case
holds quite generally in high enough complexity classes. Refer to Feigenbaum and
Fortnow [34] for a discussion of this phenomenon.

Open Problem. What is the complexity of computing the permanent of a random 0, 1-
matrix? It is reasonable to conjecture that computing the permanent of a 0, 1-matrix
exactly is as hard on average as it is in the worst case. However, this purely combinatorial
version of the problem leaves no space for the interpolation that was at the heart of the
proof of Theorem 2.7.





Chapter 3

Sampling and counting

Accumulated evidence of the kind described in the previous chapter suggests that exact
counting of combinatorial structures is rarely possible in polynomial time. However, it
is in the nature of that evidence1 that it does not rule out the possibility of approximate
counting (within arbitrarily small specified relative error). Nor does it rule out the
possibility of sampling structures at random from an almost uniform distribution, or even
from the precisely uniform distribution (in a suitably defined model of computation),
come to that. Indeed these two quests — approximate counting and almost uniform
sampling — are intimately related, as we’ll see presently.

The aim of this chapter is to illustrate, by means of a concrete example, how almost
uniform sampling can be employed for approximate counting, and, after that, how almost
uniform sampling can be achieved using Markov chain simulation. But first, let’s make
precise the various notions we’ve been talking about informally until now.

3.1 Preliminaries

Consider the problem: given a graph G, return a matching M chosen uniformly at
random (u.a.r.) from the set of all matchings in G. In order to discuss sampling problems
such as this one we obviously need a model of computation that allows random choices.
Less obviously, we also need such a model to discuss approximate counting problems:
e.g., given a graph G, compute an estimate of the number of matchings in G that is
accurate to within ±10%.

A probabilistic Turing machine is a Turing machine T equipped with special coin
tossing states. Each coin-tossing state q has two possible successor states qh and qt.
When T enters state q, it moves on the next step to state qh with probability 1

2 and
to state qt with probability 1

2 . Various notions of what it means for a probabilistic
Turing machine to decide a predicate or approximate a function (in each case, with high
probability) are possible, leading to various randomised complexity classes.

The probabilistic Turing machine is the usual basis for defining randomised complex-
ity classes, but, more pragmatically, we can alternatively take as our model a random
access machine (RAM) equipped with coin-tossing instructions, or a simple programming
language that incorporates a random choice statement with two outcomes (themselves

1Specifically, the property of it described Remark 2.6(d).
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statements) that are mutually exclusive and each executed with probability 1
2 . All of

these possible models are equivalent, modulo polynomial transformations in run-time.
So when the phrase “randomised algorithm” is used in this and subsequent chapters, we
are usually free to think in terms of any of the above models. However, when specific
time bounds are presented (as opposed to general claims that some algorithm is polyno-
mial time) we shall be taking a RAM or conventional programming language view. For
a more expansive treatment of these issues, see Papadimitriou’s textbook [67, Chaps 2
& 11].

A randomised approximation scheme for a counting problem f : Σ∗ → N (e.g.,
the number of matchings in a graph) is a randomised algorithm that takes as input
an instance x ∈ Σ∗ (e.g., an encoding of a graph G) and an error tolerance ε > 0, and
outputs a number N ∈ N (a random variable of the “coin tosses” made by the algorithm)
such that, for every instance x,

(3.1) Pr
[
e−εf(x) ≤ N ≤ eεf(x)

]
≥ 3

4
.

We speak of a fully polynomial randomised approximation scheme, or FPRAS, if the
algorithm runs in time bounded by a polynomial in |x| and ε−1.

Remarks 3.1. (a) The number 3
4 appearing in (3.1) could be replaced by any number

in the open interval (12 , 1).

(b) To first order in ε, the event described in 3.1 is equivalent to (1 − ε)f(x) ≤ N ≤
(1 + ε)f(x), and this is how the requirement of a “randomised approximation
scheme” is more usually specified. However the current definition is equivalent,
and has certain technical advantages; specifically, a sequence of approximations of
the form e−εξi+1 ≤ ξi ≤ eεξi+1 compose gracefully.

For two probability distributions π and π′ on a countable set Ω, define the total
variation distance between π and π′ to be

(3.2) ‖π − π′‖TV :=
1

2

∑
ω∈Ω
|π(ω)− π′(ω)| = max

A⊆Ω
|π(A)− π′(A)| .

A sampling problem is specified by a relation S ⊆ Σ∗×Σ∗ between problem instances x
and “solutions” w ∈ S(x).2 For example, x might be the encoding of a graph G, and
S(x) the set of encodings of all matchings in G. An almost uniform sampler for a
solution set S ⊆ Σ∗ × Σ∗ (e.g., the set of all matchings in a graph) is a randomised
algorithm that takes as input an instance x ∈ Σ∗ (e.g., an encoding of a graph G) and
an sampling tolerance δ > 0, and outputs a solution W ∈ S(x) (a random variable of
the “coin tosses” made by the algorithm) such that the variation distance between the
distribution of W and the uniform distribution on S(x) is at most δ.3 An almost uniform
sampler is fully polynomial if it runs in time bounded by a polynomial in x and log δ−1.
We abbreviate “fully-polynomial almost uniform sampler” to FPAUS.

2We write S(x) for the set {w : xS w} to avoid awkwardness.
3If S(x) = ∅ we allow the almost uniform sampler to return a special undefined symbol ⊥, otherwise

it cannot discharge its obligation.
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Remarks 3.2. (a) The definitions of FPRAS and FPAUS have obvious parallels.
Note however that the dependence of the run-time on the “tolerance” (ε or δ,
respectively) is very different: polynomial in ε−1 versus log δ−1 respectively. This
difference is deliberate. As we shall see, the relative error in the estimate for f(x)
can be improved only at great computational expense, whereas the sampling dis-
tribution on S(x) can be made very close to uniform relatively cheaply.

(b) For simplicity, the definitions have be specialised to the case of a uniform distri-
bution on the solution set S(x). However, one could easily generalise the notion of
“almost uniform sampler” to general distributions.

The “witness checking predicate” view of the classes NP and #P presented in Chap-
ter 2 carries across smoothly to sampling problems. A witness checking predicate
χ ⊆ Σ∗ ×Σ∗ and polynomial p define a sampling problem S ⊆ Σ∗ ×Σ∗ via

(3.3) S(x) = {w ∈ Σ∗ : χ(x,w) ∧ |w| ≤ p(|x|)},

where particular attention focuses on polynomial-time predicates χ (c.f. (2.1) and (2.2)).
If χ is the “Hamilton cycle” checker of Chapter 2, then the related sampling problem S(x)
is that of sampling almost uniformly at random a Hamilton cycle in the graph G encoded
by x. So we see that each combinatorial structure gives rise to a trio of related problems:
decision, counting and sampling. Furthermore, the second of these at least may be
considered in exact (FP) and approximate (FPRAS) forms.

Remark 3.3. The distinction between exactly and almost uniform sampling seems less
crucial, and, in any case, technical complications arise when one attempts to define
exactly uniform sampling: think of the problem that arises when |S(x)| = 3 and we
are using the probabilistic Turing machine as our model of computation (or refer to
Sinclair [72]).

3.2 Reducing approximate counting
to almost uniform sampling

Fix a witness-checking predicate χ and consider the associated counting and sampling
problems, f : Σ∗ → N and S ⊆ Σ∗ × Σ∗ defined by (2.2) and (3.3), respectively. It
is known — under some quite mild condition on χ termed “self-reducibility,” which
often holds in practice — that the computational complexity of approximating f(x) and
sampling almost uniformly from S(x) are closely related. In particular, f admits an
FPRAS if and only if S admits an FPAUS. For full details, refer to Jerrum, Valiant
and Vazirani [49]. Here we shall explore this relationship in only one direction (FPAUS
implies FPRAS) and then only in the context of a specific combinatorial structure,
namely matchings in a graph. This reduces the technical complications while retaining
the main ideas.

Let M(G) denote the set of matchings (of all sizes) in a graph G.

Proposition 3.4. Let G be a graph with n vertices and m edges, where m ≥ 1 to avoid
trivialities. If there is an almost uniform sampler for M(G) with run-time bounded by
T (n,m, ε), then there is a randomised approximation scheme for |M(G)| with run-time
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bounded by cm2ε−2 T (n,m, ε/6m), for some constant c. In particular, if there is an
FPAUS for M(G) then there is an FPRAS for |M(G)|.

Proof. Denote the postulated almost uniform sampler by S. The approximation scheme
proceeds as follows. Given G with E(G) = {e1, . . . , em} (in any order), we consider
the graphs Gi := (V (G), {e1, . . . , ei}) for 0 ≤ i ≤ m. Thus, Gi−1 is obtained from Gi
by deleting the edge ei. The quantity |M(G)| which we would like to estimate can be
expressed as a product

(3.4) |M(G)| = (%1%2 . . . %m)−1

of ratios

%i :=
|M(Gi−1)|
|M(Gi)|

.

(Here we use the fact that |M(G0)| = 1.) Observe that M(Gi−1) ⊆ M(Gi) and that
M(Gi) \M(Gi−1) can be mapped injectively into M(Gi−1) by sending M to M \ {ei}.
Hence,

(3.5)
1

2
≤ %i ≤ 1 .

We may assume 0 < ε ≤ 1 and m ≥ 1. In order to estimate the %i’s, we run
our sampler S on Gi with δ = ε/6m and obtain a random matching Mi from M(Gi).
Let Zi be the indicator variable of the event that Mi is, in fact, in M(Gi−1), and set
µi := EZi = Pr[Zi = 1]. By choice of δ and the definition of the variation distance,

(3.6) %i −
ε

6m
≤ µi ≤ %i +

ε

6m
,

or, from (3.5),

(3.7)
(

1− ε

3m

)
%i ≤ µi ≤

(
1 +

ε

3m

)
%i ;

so the sample mean of a sufficiently large number s of independent copies4 Z
(1)
i , . . . , Z

(s)
i

of the random variable Zi will provide a good estimate for %i. Specifically, let s :=

d74ε−2me ≤ 75ε−2m, and Zi := s−1
∑s

j=1 Z
(j)
i .

Note that VarZi = E[(Zi − µi)2] = Pr[Zi = 1](1 − µi)2 + Pr[Zi = 0]µ2i = µi(1 − µi)
and that inequalities (3.5) and (3.7) imply µi ≥ 1/3. Thus, µ−2i VarZi = µ−1i − 1 ≤ 2,
and hence

(3.8)
VarZi
µ2i

≤ 2

s
≤ ε2

37m
.

As our estimator for |M(G)|, we use the random variable

N :=

( m∏
i=1

Zi

)−1
.

4Obtained from s independent runs of S on Gi.
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Note that E[Z1Z2 . . . Zm] = µ1µ2 . . . µm, and furthermore

Var[Z1Z2 . . . Zm]

(µ1µ2 . . . µm)2
=

E[Z
2
1 Z

2
2 . . . Z

2
m]

µ21µ
2
2 . . . µ

2
m

− 1

=

m∏
i=1

E[Z
2
i ]

µ2i
− 1 since r.v’s Zi are independent

=

m∏
i=1

(
1 +

VarZi
µ2i

)
− 1

≤
(

1 +
ε2

37m

)m
− 1 by (3.8)

≤ exp

(
ε2

37

)
− 1

≤ ε2

36
,

since ex/(k+1) ≤ 1 + x/k for 0 ≤ x ≤ 1 and k ∈ N+. Thus, by Chebychev’s Inequality,

(3.9)
(

1− ε

3

)
µ1µ2 . . . µm ≤ Z1Z2 . . . Zm ≤

(
1 +

ε

3

)
µ1µ2 . . . µm,

with probability at least 1 − (ε/3)−2(ε2/36) = 3
4 . Since e−x/k ≤ 1 − x/(k + 1) for

0 ≤ x ≤ 1 and k ∈ N+, we have the following weakening of inequality (3.9):

e−ε/2µ1µ2 . . . µm ≤ Z1Z2 . . . Zm ≤ eε/2µ1µ2 . . . µm.

But from (3.7), using again the fact about the exponential function, we have

e−ε/2%1%2 . . . %m ≤ µ1µ2 . . . µm ≤ eε/2%1%2 . . . %m ,

which combined with the previous inequality implies

e−ε%1%2 . . . %m ≤ Z1Z2 . . . Zm ≤ eε%1%2 . . . %m

with probability at least 3
4 . Since Z1Z2 . . . Zm = N−1 and %1%2 . . . %m = |M(G)|−1, our

estimator N for |M(G)| satisfies requirement (3.1). Thus the algorithm that computes
computes N as above is an FPRAS for |M(G)|.

The run-time of the algorithm is dominated by the number of samples required,
which is sm ≤ 75ε−2m2, multiplied by the time-per-sample, which is T (n,m, ε); the
claimed time-bound is immediate.

Exercise 3.5. Prove a result analogous to Proposition 3.4 with (proper vertex) q-
colourings of a graph replacing matchings. Assume that the number of colours q is
strictly greater than the maximum degree ∆ of G. There is no need to repeat all the
calculation, which is in fact identical. The key thing is to obtain an inequality akin
to (3.5), but for colourings in place of matchings.

In light of the connection between approximate counting and almost uniform sam-
pling, methods for sampling from complex combinatorially defined sets gain additional
significance. The most powerful technique known to us is Markov chain simulation.
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3.3 Markov chains

We deal exclusively in this section with discrete-time Markov chains on a finite state
space Ω. Many of the definitions and claims extend to countable state spaces with
only minor complication. In Chapter 6 we shall need to employ Markov chains with
continuous state spaces, but the corresponding definitions and basic facts will be left until
they are required. See Grimmett and Stirzaker’s textbook [39] for a more comprehensive
treatment.

A sequence (Xt ∈ Ω)∞t=0 of random variables (r.v’s) is a Markov chain (MC), with
state space Ω, if

(3.10) Pr[Xt+1 = y | Xt = xt, Xt−1 = xt−1, . . . , X0 = x0] = Pr[Xt+1 = y | Xt = xt],

for all t ∈ N and all xt, xt−1, . . . , x0 ∈ Ω. Equation (3.10) encapsulates the Markovian
property whereby the history of the MC prior to time t is forgotten. We deal only
with (time-) homogeneous MCs, i.e., ones for which the right-hand side of (3.10) is
independent of t. In this case, we may write

P (x, y) := Pr[Xt+1 = y | Xt = x],

where P is the transition matrix of the MC. The transition matrix P describes single-
step transition probabilities; the t-step transition probabilities P t are given inductively
by

P t(x, y) :=

{
I(x, y), if t = 0;∑

y′∈Ω P
t−1(x, y′)P (y′, y), if t > 0,

where I denotes the identity matrix I(x, y) := δxy. Thus P t(x, y) = Pr[Xt = y | X0 = x].
A stationary distribution of an MC with transition matrix P is a probability distri-

bution π : Ω → [0, 1] satisfying

π(y) =
∑
x∈Ω

π(x)P (x, y).

Thus if X0 is distributed as π then so is X1 (and hence so is Xt for all t ∈ N). A finite MC
always has at least one stationary distribution. An MC is irreducible if, for all x, y ∈ Ω,
there exists a t ∈ N such that P t(x, y) > 0; it is aperiodic if gcd{t : P t(x, x) > 0} = 1
for all x ∈ Ω.5 A (finite-state) MC is ergodic if it is both irreducible and aperiodic.

Theorem 3.6. An ergodic MC has a unique stationary distribution π; moreover the MC
tends to π in the sense that P t(x, y)→ π(y), as t→∞, for all x ∈ Ω.

Informally, an ergodic MC eventually “forgets” its starting state. Computation of
the stationary distribution is facilitated by the following little lemma:

Lemma 3.7. Suppose P is the transition matrix of an MC. If the function π′ : Ω → [0, 1]
satisfies

π′(x)P (x, y) = π′(y)P (y, x), for all x, y ∈ Ω,(3.11)

and
5In the case of an irreducible MC, it is sufficient to verify the condition gcd{t : P t(x, x) > 0} = 1 for

just one state x ∈ Ω.
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∑
x∈Ω

π′(x) = 1,

then π′ is a stationary distribution of the MC. If the MC is ergodic, then clearly π′ = π
is the unique stationary distribution.

Proof. We just need to check that π′ is invariant. Suppose X0 is distributed as π′. Then

Pr[X1 = y] =
∑
x∈Ω

π′(x)P (x, y) =
∑
x∈Ω

π′(y)P (y, x) = π′(y).

Remark 3.8. Condition (3.11) is known as detailed balance. An MC for which it holds
is said to time reversible. Clearly, Lemma 3.7 cannot be applied to non-time-reversible
MCs. This is not a problem in practice, since all the MCs we consider are time reversible.
In fact, it is difficult in general to determine the stationary distribution of large non-time-
reversible MCs, unless there is some special circumstance, for example symmetry, that
can be taken into consideration. Furthermore, all the usual methods for constructing
MCs with specified stationary distributions produce time-reversible MCs.

Example 3.9. Here is a natural (time homogeneous) MC whose state space is the set
M(G) of all matchings (of all sizes) in a specified graph G = (V,E). The transition
matrix of the MC is defined implicitly, by an experimental trial. Suppose the initial
state is X0 = M ∈M(G). The next state X1 is the result of the following trial:

1. With probability 1
2 set X1 ←M and halt.

2. Otherwise, select e ∈ E(G) and set M ′ ←M ⊕ {e}.6

3. If M ′ ∈M(G) then X1 ←M ′ else X1 ←M .

Since the MC is time homogeneous, it is enough to describe the first transition; subse-
quent transitions follow an identical trial. Step 1 may seem a little unnatural, but we
shall often include such a looping transition to avoid a certain technical complication.
Certainly its presence ensures that the MC is aperiodic. The MC is also irreducible,
since it is possible to reach the empty matching from any state by removing edges (and
reach any state from the empty matching by adding edges). Thus the MC is ergodic and
has a unique stationary distribution.

Exercise 3.10. Demonstrate, using Lemma 3.7, that the stationary distribution of the
MC of Example 3.9 is uniform over M(G).

Exercise 3.10 and Proposition 3.4, taken together, immediately suggest an approach
to estimating the number of matchings in a graph. Simulate the MC on M(G) for
T steps, starting at some fixed state X0, say X0 = ∅, and return the final state XT . If
T is sufficiently large, this procedure will satisfy the requirements of an almost uniform
sampler for matchings in G. Then the method of Proposition 3.4 may be used to obtain
a randomised approximation scheme for the number of matchings |M(G)|. Whether

6The symbol ⊕ denotes symmetric difference.
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this approach is feasible depends crucially on the rate of convergence of the MC to
stationarity. We shall prove in Chapter 5 that a modification7 of the MC described in
Example 3.9 does in fact come “close” to stationarity in a polynomial number of steps
(in the size of the graph G), hence yielding an FPRAS for the number of matchings in
a graph.

7In fact, by comparing the original and modified MCs [22], one can show that the MC as presented
in Example 3.9 also converges in polynomially many steps.
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Coupling and colourings

The outline of our programme is now clear: in order to count (approximately) it is
enough to be able to sample (almost) uniformly; in order to sample we may simulate
an appropriately defined MC. For this approach to be feasible, however, it is important
that the MC in question is “rapidly mixing,” i.e., that it converges to near-equilibrium
in time polynomial (hopefully of small degree) in the size of the problem instance. Since
the state space is usually of exponential size as a function of the problem size — think
of the number of matchings in a graph as a function of the size of the graph — this is a
distinctly non-trivial requirement. We shall presently formalise the rate of convergence
to equilibrium in terms of the “mixing time” of the MC. The classical theory of MCs
has little to say concerning non-asymptotic bounds on mixing time, and most of the
techniques we use have been specially developed for the task in hand. However, there is
one classical device, namely coupling, that can be applied in certain situations. As it is
the most elementary approach to bounding mixing times, we study it first.

4.1 Colourings of a low-degree graph

Anil Kumar and Ramesh [3] present persuasive evidence that the coupling argument
is not applicable to the MC on matchings that was defined at the end of the previous
chapter. We therefore use a somewhat simpler example, namely colourings of a low-
degree graph. Let G = (V,E) be an undirected graph, and Q a set of q colours. A
(proper) q-colouring of G is a an assignment σ : V → Q of colours to the vertices of G
such that σ(u) 6= σ(v) for all edges {u, v} ∈ E. In general, even deciding existence of
a q-colouring in G is computationally intractable, so we need to impose some condition
on G and q.

Denote by ∆ the maximum degree1 of any vertex in G. Brooks’ theorem asserts that
a q-colouring exists when q ≥ ∆, provided ∆ ≥ 3 and G does not contain K∆+1 as a
connected component [8, 10].2 The proof of Brooks’ theorem is effective, and yields a
polynomial-time algorithm for constructing a q-colouring. It is also best possible in the
(slightly restricted) sense that there are pairs, for example q = 3, ∆ = 4, which just fail
the condition of the theorem, and for which the problem of deciding q-colourability is
NP-complete, even when restricted to graphs of maximum degree ∆. So if we are aiming

1The degree of a vertex is the number of edges incident at that vertex.
2Kr denotes the complete graph on r vertices.
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1. Select a vertex v ∈ V , u.a.r.

2. Select a colour c ∈ Q \X0(Γ (v)), u.a.r.

3. X1(v)← c and X1(u)← X0(u) for all u 6= v.

Figure 4.1: Trial defining an MC on q-colourings.

at an efficient sampling procedure for q-colourings we should certainly assume q ≥ ∆.
Moreover, to approximate the number of q-colourings using the reduction of Exercise 3.5
we need to assume further that q > ∆. Before we complete the work of this section, we
shall need to strengthen this condition still further.

So let G = (V,E) be a graph of maximum degree ∆ and let Ω denote the set of all
q-colourings of G, for some q > ∆. Denote by Γ (v) = {u : {u, v} ∈ E(G)} the set of
vertices in G that are adjacent to v. Consider the (time-homogeneous) MC (Xt) on Ω
whose transitions are defined by the experimental trial presented in Figure 4.1. Here we
are considering a colouring as a function V → Q, so X0(u) denotes the colour of vertex u
in the initial state, and X0(Γ (v)) = {X0(u) : u ∈ Γ (v)} denotes the set of all colours
applied to neighbours of v. Note that the assumption q > ∆ makes it easy to construct
a valid initial state X0.

Exercises 4.1. 1. Prove that the above MC is irreducible (and hence ergodic) under
the (stronger) assumption q ≥ ∆ + 2. Further prove, using Lemma 3.7, that its
(unique) stationary distribution is uniform over Ω.

2. [Alan Sokal.] Exhibit a sequence of connected graphs of increasing size, with ∆ = 4,
such that the above MC fails to be irreducible when q = 5. (Hint: as a starting
point, construct a “frozen” 5-colouring of the infinite square lattice, i.e., the graph
with vertex set Z×Z and edge set

{
(i, j), (i′, j′) : |i−i′|+|j−j′| = 1

}
. The adjective

“frozen” applied to a state is intended to indicate that the only transition available
from the state is a loop (with probability 1) to the same state.)

3. Design an MC on q-colourings of an arbitrary graph G of maximum degree ∆ that
is ergodic, provided only that q ≥ ∆+ 1. The MC should be easily implementable,
otherwise there is no challenge! (Hint: use transitions based on edge updates rather
than vertex updates.)

We shall show that (Xt) is rapidly mixing, provided q ≥ 2∆ + 1, which we assume
from now on. (The reader may be assured that this is the very last time we shall
strengthen the lower bound on the number of colours!) This result will provide us with
a simple and efficient sampling procedure for q-colourings in low-degree graphs.

Suppose (Xt) is any ergodic MC on countable state space Ω, with transition matrix P
and initial state X0 = x ∈ Ω. For t ∈ N, the distribution of Xt (the t step distribution)
is naturally denoted P t(x, · ). Let π denote the the stationary distribution of the MC,
i.e., the limit of P t(x, · ) as t → ∞. Recall the definition of total variation distance
from (3.2). We measure the rate of convergence to stationarity of (Xt) by its mixing
time (from initial state x):

(4.1) τx(ε) := min
{
t : ‖P t(x, · )− π‖TV ≤ ε

}
.
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Lemma 4.2. The total variation distance ‖P t(x, · ) − π‖TV of the t-step distribution
from stationarity is a non-increasing function of t.

Exercise 4.3. Prove Lemma 4.2. (A proof is given at the end of the chapter.)

In the light of Lemma 4.2, the following definition of mixing time is equivalent
to (4.1):

τx(ε) := min
{
t : ‖P s(x, · )− π‖TV ≤ ε, for all s ≥ t

}
.

In other words, once the total variation distance becomes smaller than ε it stays smaller
than ε.

Often we would like to make a statement about mixing time that is independent of
the initial state, in which case we take a worst-case view and write

τ(ε) = max
x∈Ω

τx(ε);

we shall refer to τ(ε) simply as the mixing time.

Remark 4.4. Sometimes the further simplification of setting ε to some constant, say
ε = 1

4 , is made. The justification for this runs as follows. If τ is the first time t
at which ‖P t(x, · ) − π‖TV ≤ 1

4 , then it can be shown [2, Chap. 2, Lemma 20] that
‖P kτ (x, · )− π‖TV ≤ 2−k for every k ∈ N.

Our aim in the next section is to show that the mixing time τ(ε) of the MC on
colourings is bounded by a polynomial in n and log ε−1.

Proposition 4.5. Suppose G is a graph on n vertices of maximum degree ∆. Assuming
q ≥ 2∆+ 1, the mixing time τ(ε) of the MC of Figure 4.1 is bounded above by

τ(ε) ≤ q −∆
q − 2∆

n ln
(n
ε

)
.

Taking the instance size n into account is a prominent feature of applications of MCs
in computer science, especially as compared with classical Markov chain theory. Observe
that Proposition 4.5, combined with Proposition 3.4, implies the existence of an FPRAS
for q-colourings in graphs of low enough degree.

Corollary 4.6. Suppose G is a connected graph of maximum degree ∆, and q ≥ 2∆+1.
Then there is an FPRAS for counting q-colourings in G. Denote by n the number of
vertices in G and by m the number of edges. Then the running time of this FPRAS as
a function of n, m and the error tolerance ε (regarding ∆ and q as fixed) is bounded by
cnm2ε−2 max{ln(m/ε), 1} for some constant c.

4.2 Bounding mixing time using coupling

Coupling as a proof technique was discovered by Doeblin in the 1930s. However, its more
recent popularity as a tool for bounding mixing time owes much to Aldous. Actually,
we shall be using only a restricted form of coupling, namely Markovian coupling.
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We start with a ground (time homogeneous) MC (Zt) with state space Ω and tran-
sition matrix P . A (Markovian) coupling for (Zt) is an MC (Xt, Yt) on Ω × Ω, with
transition probabilities defined by:

Pr[X1 = x′ | X0 = x, Y0 = y] = P (x, x′),

Pr[Y1 = y′ | X0 = x, Y0 = y] = P (y, y′).
(4.2)

Equivalently, with P̂ : Ω2 → Ω2 denoting the transition matrix of the coupling,∑
y′∈Ω

P̂ ((x, y), (x′, y′)) = P (x, x′),

∑
x′∈Ω

P̂ ((x, y), (x′, y′)) = P (y, y′).

Thus, the sequence of r.v.’s (Xt) viewed in isolation forms an MC with transition ma-
trix P , as does the sequence (Yt).

The easy way to achieve (4.2) would be to assume independence of (Xt) and (Yt),
i.e., that

P̂ ((x, y), (x′, y′)) = P (x, x′)P (y, y′).

But this is not necessary, and for our application not desirable. Instead, we are after
some correlation that will tend to bring (Xt) and (Yt) together (whatever their initial
states) so that Xt = Yt for some quite small t. Note that once Xt = Yt, we can arrange
quite easily for Xs to be equal to Ys, for all s ≥ t, while continuing to satisfy (4.2): just
choose a transition from Xs and let Ys copy it.

The following simple lemma, which is the basis of the coupling method, was perhaps
first made explicit by Aldous [1, Lemma 3.6]; see also Diaconis [21, Chap. 4, Lemma 5].

Lemma 4.7 (Coupling Lemma). Let (Xt, Yt) be any coupling, satisfying (4.2), based on
a ground MC (Zt) on Ω. Suppose t : [0, 1] → N is a function satisfying the condition:
for all x, y ∈ Ω, and all ε > 0

Pr[Xt(ε) 6= Yt(ε) | X0 = x, Y0 = y] ≤ ε.

Then the mixing time τ(ε) of (Zt) is bounded above by t(ε).

Proof. Denote by P the transition matrix of (Zt). Let A ⊆ Ω be arbitrary. Let X0 =
x ∈ Ω be fixed, and Y0 be chosen according to the stationary distribution π of (Zt). For
any ε ∈ (0, 1) and corresponding t = t(ε),

P t(x,A) = Pr[Xt ∈ A]

≥ Pr[Xt = Yt ∧ Yt ∈ A]

= 1− Pr[Xt 6= Yt ∨ Yt /∈ A]

≥ 1− (Pr[Xt 6= Yt] + Pr[Yt /∈ A])

≥ Pr(Yt ∈ A)− ε
= π(A)− ε.

Hence, by the second part of definition (3.2), ‖P t(x, · )− π‖TV ≤ ε.
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1. Select a vertex v ∈ V u.a.r.

2. Select a pair of colours (cx, cy) from some joint distribution on
(
Q \X0(Γ (v))

)
×(

Q \ Y0(Γ (v))
)

that has the “correct” marginal distributions; specifically, the dis-
tribution of cx (respectively cy) should be uniform over Q \X0(Γ (v)) (respectively
Q \ Y0(Γ (v)). This joint distribution will be chosen so as to maximise Pr[cx = cy].

3. Set X1(v)← cx and Y1(v)← cy.

Figure 4.2: A coupling for the MC on colourings

Remark 4.8. Actually we established the stronger conclusion

‖P t(x, · )− P t(y, · )‖TV ≤ ε, for all pairs x, y ∈ Ω.

This slightly different notion of l1-convergence corresponds to a slightly different notion of
mixing time. This new mixing time has certain advantages, notably submultiplicativity:
see Aldous and Fill [2] for more detail.

Let’s now see how these ideas may be applied to the q-colouring MC of Figure 4.1.
We need to define a coupling on Ω2 such that the projections onto the first and second
coordinates are faithful copies of the original MC in the sense of (4.2). Moreover, we
wish the coupling to coalesce, i.e., reach a state where Xt = Yt, as soon as possible.
Figure 4.2 presents what seems at first sight to be a reasonable proposal. Note that if
you hide the random variable Y1 then the companion random variable X1 is distributed
exactly as if we had used the trial presented in Figure 4.1. (By symmetry, a similar
statement could be made about Y1.) Thus the coupling condition (4.2) is satisfied.

We have argued that the coupling in Figure 4.2 is correct, but how efficient is it?
Intuitively, provided we can arrange for Pr[cx = cy] in step 2 to be large, we ought to
reach a state with Xt = Yt (i.e., coalescence) in not too many steps. The Coupling
Lemma will then provide a good upper bound on mixing time. In order to understand
what is involved in maximising Pr[cx = cy], the following exercise may be useful.

Exercise 4.9. Suppose that Q = {0, 1, . . . , 6}, X0(Γ (v)) = {3, 6} and Y0(Γ (v)) =
{4, 5, 6}. Thus the sets of legal colours for v in X1 and Y1 are cx ∈ {0, 1, 2, 4, 5} and
cy ∈ {0, 1, 2, 3}, respectively. Construct a joint distribution for (cx, cy) such that cx is
uniform on {0, 1, 2, 4, 5}, cy is uniform on {0, 1, 2, 3}, and Pr[cx = cy] = 3

5 . Show that
your construction is optimal.

The best that can be done in general is as follows.

Lemma 4.10. Let U be a finite set, A,B be subsets of U , and Za, Zb be random variables,
taking values in U . Then there is a joint distribution for Za and Zb such that Za
(respectively Zb) is uniform and supported on A (respectively B) and, furthermore,

Pr[Za = Zb] =
|A ∩B|

max{|A|, |B|}

Exercise 4.11. Prove Lemma 4.10 and show that the result is best possible. (Assuming
your construction in Exercise 4.9 is reasonably systematic, it should be possible to adapt
it to the general situation.)
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d′(u)

d′(v)
At Dt

u

v

Figure 4.3: Two ways to count the edges spanning the cut (At, Dt).

Remark 4.12. The term “coupling” does not have a precise agreed meaning, but its
general sense is the following. A pair or perhaps a larger collection of r.v’s is given. A
coupling is a joint distribution of the several variables that has the correct marginals —
i.e., each r.v., when observed independently of the others, has the correct probability
distribution — but, taken together, the variables are seen to be correlated. Usually
the correlation aims to “bring the r.v’s closer together” in some sense. Lemma 4.10 is a
special example of an optimal coupling of two r.v’s that Lindvall calls the γ-coupling [53,
§I.5]. The coupling of MCs, as captured in condition (4.2), is another example of the
concept.

We are now well prepared for the main result of the chapter.

Proof of Proposition 4.5. We analyse the coupling of Figure 4.2 using the joint distribu-
tion for the colour-pair (cx, cy) that is implicit in Lemma 4.10. Thus, letting

ξ := |Q \X0(Γ (v))| (= # legal colours for v in X1),

η := |Q \ Y0(Γ (v))| (= # legal colours for v in Y1),

and

ζ :=
∣∣(Q \X0(Γ (v))

)
∩
(
Q \ Y0(Γ (v))

)∣∣ (= # common legal colours),

the probability that the same colour is chosen for both X1 and Y1 in step 2 is just

(4.3) Pr[cx = cy] =
ζ

max{ξ, η}
.

Consider the situation that obtains after the coupling has been run for t steps. Let
At ⊆ V be the set of vertices on which the colourings Xt and Yt agree, and Dt = V \At
be the set on which they disagree. Let d′(v) denote the number of edges incident at
vertex v that have one endpoint in At and one in Dt. Clearly,∑

v∈At

d′(v) =
∑
u∈Dt

d′(u) = m′,

where m′ is the number of edges of G that span At and Dt. (The situation is visualised
in Figure 4.3.) We want to prove that the disagreement set Dt tends to get smaller and
smaller.

In one transition, the size of the disagreement set Dt changes by at most one. We
therefore need to consider just three cases: increasing/decreasing by one or remaining
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constant. In fact, we just need to compute the probability of the first two, since the
third can be got by complementation.

Consider first the probability that |Dt+1| = |Dt| + 1. For this event to occur, the
vertex v selected in step 1 must lie in At, and the new colours cx and cy selected in step 2
must be different. Observing that the quantities ξ, η and ζ satisfy the linear inequalities

ξ − ζ ≤ d′(v),

η − ζ ≤ d′(v), and

ξ, η ≥ q −∆,
(4.4)

we deduce, from (4.3), that

Pr[cx = cy] ≥
max{ξ, η} − d′(v)

max{ξ, η}

≥ 1− d′(v)

q −∆
,

conditional on v being selected in step (1). Thus

Pr
[
|Dt+1| = |Dt|+ 1

]
=

1

n

∑
v∈At

Pr
[
cx 6= cy

∣∣ v selected
]

≤ 1

n

∑
v∈At

d′(v)

q −∆
=

m′

(q −∆)n
.(4.5)

Now consider the probability that |Dt+1| = |Dt| − 1. For this event to occur, the
vertex v selected in step 1 must lie in Dt, and the new colours cx and cy selected in
step 2 must be the same. The analogues of inequalities (4.4) in this case are

ξ − ζ ≤ ∆− d′(v),

η − ζ ≤ ∆− d′(v), and

ξ, η ≥ q −∆.

Proceeding as in the previous case,

Pr[cx = cy] ≥
max{ξ, η} −∆+ d′(v)

max{ξ, η}

= 1− ∆− d′(v)

max{ξ, η}

≥ q − 2∆+ d′(v)

q −∆
,

conditional on v being selected in step (1). Hence

Pr
[
|Dt+1| = |Dt| − 1

]
≥ 1

n

∑
v∈Dt

q − 2∆+ d′(v)

q −∆

≥ q − 2∆

(q −∆)n
|Dt|+

m′

(q −∆)n
(4.6)
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Define

a =
q − 2∆

(q −∆)n
and b = b(m′) =

m′

(q −∆)n
,

so that Pr
[
|Dt+1| = |Dt| + 1

]
≤ b and Pr

[
|Dt+1| = |Dt| − 1

]
≥ a |Dt| + b. Provided

a > 0, i.e., q > 2∆, the size of the set Dt tends to decrease with t, and hence, intuitively
at least, the event Dt = ∅ should occur with high probability for some t ≤ T with T
not too large. Since Dt = ∅ is precisely the event that coalescence has occurred, it only
remains to confirm this intuition, and quantify the rate at which Dt converges to the
empty set. From equations (4.5) and (4.6),

E
[
|Dt+1|

∣∣ Dt

]
≤ b(|Dt|+ 1) + (a|Dt|+ b)(|Dt| − 1)

+ (1− a|Dt| − 2b)|Dt|
= (1− a)|Dt|.

Thus E |Dt| ≤ (1 − a)t|D0| ≤ (1 − a)tn, and, because |Dt| is a non-negative integer
random variable, Pr[ |Dt| 6= 0] ≤ n(1− a)t ≤ ne−at. Note that Pr[Dt 6= ∅] ≤ ε, provided
t ≥ a−1 ln(nε−1), establishing the result.

Remark 4.13. With a little care, the argument can be pushed to q = 2∆, though the
bound on mixing time worsens by a factor of about n2. (The r.v. Dt behaves in the
boundary case rather like an unbiased random walk, and therefore its expected time to
reach the origin Dt = 0 is longer; refer, e.g., to Dyer and Greenhill [29], in particular
their Theorem 2.1.)

The (direct) coupling technique described here has been used in a number of other
applications, such as approximately counting independent sets in a low-degree graph
(Luby and Vigoda [57])3 and estimating the volume of a convex body (Bubley, Dyer and
Jerrum [16]).4 In practice, the versatility of the approach is limited by our ability to
design couplings that work well in situations of algorithmic interest. The next section
reports on a new technique that promises to extend the effective range of the coupling
argument by providing us with a powerful design tool.

4.3 Path coupling

The coupling technique described and illustrated in the previous section is conceptually
very simple and appealing. However, in applying the method to concrete situations we
face a technical difficulty, which began to surface even in §4.2: how do we encourage (Xt)
and (Yt) to coalesce, while satisfying the demanding constraints (4.2)? Path coupling is
an engineering solution to this problem, invented by Bubley and Dyer [12, 13]. Their
idea is to define the coupling only on pairs of “adjacent” states, for which the task of
satisfying (4.2) is relatively easy, and then to extend the coupling to arbitrary pairs of
states by composition of adjacent couplings along a path. The approach is not entirely
distinct from classical coupling, and the Coupling Lemma still plays a vital role.

3Though the subsequent journal article [58] uses the more sophisticated path coupling method, which
will be described presently.

4The latter application draws inspiration from Lindvall and Rodgers’s [54] idea of coupling diffusions
by reflection.
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1. Select p ∈ [n− 1] according to the distribution f , and r ∈ {0, 1} u.a.r.

2. If r = 1 and X0 ◦ (p, p+ 1) ∈ Ω, then X1 := X0 ◦ (p, p+ 1); otherwise, X1 := X0.

Figure 4.4: Trial defining an MC on linear extensions of a partial order ≺.

We illustrate path coupling in the context of a MC on linear extensions of a partial
order. We are given a partially ordered set (V,≺), where V = [n] = {0, 1, . . . , n − 1}.
Denote by SymV the symmetric group on V . We are interested in sampling, u.a.r., a
member of the set

Ω =
{
g ∈ SymV : g(i) ≺ g(j)⇒ i ≤ j, for all i, j ∈ V

}
of linear extensions of ≺. In forming a mental picture of the the set Ω, the following
characterisation may be helpful: g ∈ Ω iff the linear order

(4.7) g(0) < g(1) < · · · < g(n− 1)

extends, or is consistent with, the partial order ≺.
As usual, we propose to sample from Ω by constructing an ergodic MC on state

space Ω, whose stationary distribution is uniform. The transitions from one linear
extension to another are obtained by pre-composing the current linear extension with a
random transition (p, p+ 1). Instead of selecting p ∈ [n− 1] uniformly, we select p from
a probability distribution f on [n−1] that gives greater weight to values near the centre
of the range. It is possible that this refinement actually reduces the mixing time; in
any case, it leads to a simplification of the proof. Formally, the transition probabilities
of the MC are defined by the experimental trial presented in Figure 4.4. Note that
composition “◦” is to be read right to left, so that (assuming r = 1): X1(p) = X0(p+ 1),
X1(p+ 1) = X0(p) and X1(i) = X0(i), for all i /∈ {p, p+ 1}.

Provided the probability distribution f is supported on the whole interval [n−1], this
MC is irreducible and aperiodic. It is easy to verify, for example using Lemma 3.7, that
the stationary distribution of the MC is uniform. As in §3.3, the explicit loop probability
of 1

2 is introduced mainly for convenience in the proof. However, some such mechanism
for destroying periodicity is necessary in any case if we wish to treat the empty partial
order consistently.

Our analysis of the mixing time of the MC using path coupling will closely follow
that of Bubley and Dyer [14]. To apply path coupling, we need first to decide on an
adjacency structure for the state space Ω. In this instance we decree that two states g
and g′ (linear extensions of ≺) are adjacent iff g′ = g ◦ (i, j) for some transposition (i, j)
with 0 ≤ i < j ≤ n − 1; in this case, the distance d(g, g′) from g to g′ is defined to be
j − i. Note that the notions of adjacency and distance are symmetric with respect to
interchanging g and g′, so we can regard this imposed adjacency structure as a weighted,
undirected graph on vertex set Ω; let us refer to this structure as the adjacency graph.
It is easily verified that the shortest path in the adjacency graph between two adjacent
states is the direct one using a single edge. Thus d may be extended to a metric on Ω
by defining d(g, h), for arbitrary states g and h, to be the length of a shortest path from
g to h in the adjacency graph.
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1. Select p ∈ [n−1] according to the distribution f , and rx ∈ {0, 1} u.a.r. If j− i = 1
and p = i, set ry := 1− rx; otherwise, set ry := rx.

2. If rx = 1 and X0 ◦ (p, p + 1) ∈ Ω then set X1 := X0 ◦ (p, p + 1); otherwise, set
X1 := X0.

3. If ry = 1 and Y0 ◦ (p, p + 1) ∈ Ω then set Y1 := Y0 ◦ (p, p + 1); otherwise, set
Y1 := Y0.

Figure 4.5: A possible coupling for the MC on linear extensions.

couple
couple

X1 = Z(0) Z(ℓ) = Y1Z(1)
Z(2)

z(1)
z(2)

x0 = z(0) z(ℓ) = y0

Figure 4.6: Extending a coupling along a shortest path

Next we define the coupling. We need to do this just for adjacent states, as the
extension of the coupling via shortest paths to arbitrary pairs of states will be automatic.
Suppose that (X0, Y0) ∈ Ω2 is a pair of states related by Y0 = X0 ◦ (i, j) for some
transposition (i, j) with 0 ≤ i < j ≤ n − 1. then the transition to (X1, Y1) in the
coupling is defined by the experimental trial presented in Figure 4.5. We need to show:

Lemma 4.14. For adjacent states X0 and Y0,

(4.8) E
[
d(X1, Y1)

∣∣ X0, Y0
]
≤ % d(X0, Y0),

where % < 1 is a constant depending on f . For a suitable choice for f , one has % = 1−α,
where α = 6/(n3 − n).

Informally, Lemma 4.14 says that distance between pairs of states in the coupled
process tends to decrease: exactly the situation we encountered earlier in the context of
the MC on q-colourings. Before proceeding with the proof of Lemma 4.14, let us pause
to consider why it is sufficient to establish (4.8) just for adjacent states.

Lemma 4.15. Suppose a coupling (Xt, Yt) has been defined, as above, on adjacent pairs
of states, and suppose that the coupling satisfies the contraction condition (4.8) on ad-
jacent pairs. Then the coupling can be extended to all pairs of states in such a way
that (4.8) holds unconditionally.

Proof. Suppose X0 = x0 ∈ Ω and Y0 = y0 ∈ Ω are now arbitrary. Denote by P (· , ·) the
transition probabilities of the MC on linear extensions. Let x0 = z(0), z(1), . . . , z(`) = y0
be a shortest path from x0 to y0 in the adjacency graph. (Assume a deterministic choice
rule for resolving ties.) First select Z(0) ∈ Ω according to the probability distribution
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P (z(0), · ). Now select Z(1) according to the probability distribution induced by the
transition (z(0), z(1)) 7→ (Z(0), Z(1)) in the coupled process, conditioned on the choice
of Z(0); then select Z(2) according to the probability distribution induced by the transi-
tion (z(1), z(2)) 7→ (Z(1), Z(2)), conditioned on the choice of Z(1); and so on, ending with
Z(`). (The procedure is visualised in Figure 4.6.)

Let X1 = Z(0) and Y1 = Z(`). It is routine to verify, by induction on path length `,
that Y1 has been selected according to the (correct) distribution P (y0, · ). Moreover, by
linearity of expectation and (4.8),

E
[
d(X1, Y1)

∣∣ X0 = x0, Y0 = y0
]
≤

`−1∑
i=0

E d(Z(i), Z(i+1))

≤ %
`−1∑
i=0

d(z(i), z(i+1))

= % d(x0, y0).

So we see that it is enough to establish the contraction property (4.8) for adjacent
pairs of states.

Proof of Lemma 4.14. If p /∈ {i− 1, i, j − 1, j} then the tests made in steps (2) and (3)
either both succeed or both fail. Thus Y1 = X1 ◦ (i, j) and d(X1, Y1) = j− i = d(X0, Y0).
Summarising:

(4.9) d(X1, Y1) = d(X0, Y0), if p /∈ {i− 1, i, j − 1, j}.

Next suppose p = i − 1 or p = j. These cases are symmetrical, so we consider only
the former. With probability at least 1

2 , the tests made in steps (2) and (3) both fail,
since Pr[rx = ry = 0] = 1

2 . If this happens, clearly, d(X1, Y1) = j − i = d(X0, Y0).
Otherwise, with probability at most 1

2 , one or other test succeeds. If they both succeed,
then

Y1 = Y0 ◦ (i− 1, i)

= X0 ◦ (i, j) ◦ (i− 1, i)

= X1 ◦ (i− 1, i) ◦ (i, j) ◦ (i− 1, i)

= X1 ◦ (i− 1, j),

and d(X1, Y1) = j − i + 1 = d(X0, Y0) + 1; if only one (say the one in step 2) succeeds,
then Y1 = Y0 = X0◦(i, j) = X1◦(i−1, i)◦(i, j), and d(X1, Y1) ≤ j−i+1 = d(X0, Y0)+1.
Summarising:

(4.10) E
[
d(X1, Y1)

∣∣ X0, Y0, p = i− 1 ∨ p = j
]
≤ d(X0, Y0) +

1

2
.

Finally suppose p = i or p = j − 1. Again, by symmetry, we need only consider the
former. There are two subcases, depending on the value of j − i. The easier subcase is
j − i = 1. If rx = 1 then ry = 0 and

X1 = X0 ◦ (i, i+ 1) = Y0 ◦ (i, i+ 1) ◦ (i, i+ 1) = Y0 = Y1,



42 Chapter 4: Coupling and colourings

with a similar conclusion when rx = 0. Thus d(X1, Y1) = 0 = d(X0, Y0) − 1. The
slightly harder subcase is the complementary j − i ≥ 2. The crucial observation is that
X0 ◦ (i, i + 1), Y0 ◦ (i, i + 1) ∈ Ω and hence the tests in steps (2) and (3) either both
succeed or both fail, depending only on the value of rx = ry. To see this, observe that

X0(i) 6� X0(i+ 1) = Y0(i+ 1) 6� Y0(j) = X0(i),

from which we may read off the fact that X0(i) and X0(i + 1) are incomparable in ≺.
The same argument applies equally to Y0(i) and Y0(i+ 1). If rx = 0 there is no change
in state; otherwise, if rx = 1,

X1 = X0 ◦ (i, i+ 1)

= Y0 ◦ (i, j) ◦ (i, i+ 1)

= Y1 ◦ (i, i+ 1) ◦ (i, j) ◦ (i, i+ 1)

= Y1 ◦ (i+ 1, j),

and d(X1, Y1) = j− i− 1 = d(X0, Y0)− 1. Summarising both the j− i = 1 and j− i ≥ 2
subcases:

(4.11) E
[
d(X1, Y1)

∣∣ X0, Y0, p = i ∨ p = j − 1
]
≤ e(X0, Y0),

where

e(X0, Y0) =

{
0, if d(X0, Y0) = 1;

d(X0, Y0)− 1
2 , otherwise.

Note that, in the case j − i = 1, inequality (4.11) covers just one value of p, namely
p = i = j − 1, instead of two; however, this effect is exactly counterbalanced by an
expected reduction in distance of 1 instead of just 1

2 . Combining (4.9)–(4.11) we obtain

E
[
d(X1, Y1)

∣∣ X0, Y0
]
≤ d(X0, Y0)−

−f(i− 1) + f(i) + f(j − 1)− f(j)

2
.

Specialising the probability distribution f(·) to be f(i) := α(i+ 1)(n− i− 1) — where
α := 6/(n3−n) is the appropriate normalising constant — we have, by direct calculation,
−f(i− 1) + f(i) + f(j − 1)− f(j) = 2α(j − i). Since d(X0, Y0) = j − i, we obtain (4.8)
with % = 1− α.

From Lemmas 4.14 and 4.15 it is now a short step to:

Proposition 4.16 (Bubley and Dyer). The mixing time of the MC on linear extensions
(refer to Figure 4.4) is bounded by

τ(ε) ≤ (n3 − n)(2 lnn+ ln ε−1)/6.

Proof. By iteration, E
[
d(Xt, Yt)

∣∣ X0, Y0
]
≤ %td(X0, Y0). For any pair of linear exten-

sions g and h, there is a path in the adjacency graph using only adjacent transposi-
tions (i.e., length one edges) that swaps each incomparable pair at most once. Thus
d(X0, Y0) ≤

(
n
2

)
≤ n2, and

Pr[Xt 6= Yt] ≤ E d(Xt, Yt) ≤ (1− α)tn2.

The latter quantity is less than ε, provided t ≥ (n3 − n)(2 lnn + ln ε−1)/6. The result
follows directly from Lemma 4.7.
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David Wilson has recently derived a similar O(n3 log n) bound on mixing time when
f is uniform, i.e, when the transposition (p, p+ 1) is selected u.a.r.

Exercises 4.17. 1. Use Proposition 4.16 to construct an FPRAS for linear exten-
sions of a partial order.

2. Reprove Proposition 4.5 using path coupling. Note the significant simplification
over the direct coupling proof.

New applications of path coupling are regularly being discovered. Bubley, Dyer and
Greenhill [15] have presented an FPRAS for q-colourings of a low degree graph that
extends the range of applicability of the one described earlier. They were able, for
example, to approximate in polynomial time the number of 5-colourings of a graph of
maximum degree 3, thus “beating the 2∆ bound” that appeared to exist following the
result described in §4.1. Vigoda [80], in a path-coupling tour de force, was able to beat
the 2∆ bound uniformly over all sufficiently large ∆; specifically, he proved rapid mixing
whenever q > 11

6 ∆. It is fair to say that neither of these improvements would have been
possible without the aid of path coupling.

Dyer and Greenhill have also considered independent sets in a low degree graph [30],
and obtained a result similar to, but apparently incomparable with, that of Luby and
Vigoda [58]. Bubley and Dyer (again) applied path coupling to establish rapid mixing of
a natural Markov chain on sink-free orientations of an arbitrary graph [11]. McShine [62]
presents a particularly elegant application of path coupling to sampling tournaments.
One further example must suffice: Cooper and Frieze [19] have applied path coupling to
analyse the “Swendsen-Wang process,” which is commonly used to sample configurations
of the “random cluster” or ferromagnetic Potts model in statistical physics.

Finally, for those who skipped Exercise 4.3, here is the missing proof.

Proof of Lemma 4.2. The claim is established by the following sequence of (in)equalities:

2 ‖P t+1(x, · )− π‖TV =
∑
y∈Ω

∣∣P t+1(x, y)− π(y)
∣∣

=
∑
y∈Ω

∣∣∣∣∑
z∈Ω

P t(x, z)P (z, y)−
∑
z∈Ω

π(z)P (z, y)

∣∣∣∣
≤
∑
y∈Ω

∑
z∈Ω

∣∣P t(x, z)− π(z)
∣∣P (z, y)(4.12)

=
∑
z∈Ω

∣∣P t(x, z)− π(z)
∣∣ ∑
y∈Ω

P (z, y)

= 2 ‖P t(x, · )− π‖TV,

where (4.12) is the triangle inequality.
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Canonical paths and matchings

Coupling, at least Markovian coupling, is not a universally applicable method for proving
rapid mixing. In this chapter, we define a natural MC on matchings in a graph G and
show that its mixing time is bounded by a polynomial in the size of G. Anil Kumar
and Ramesh [3] studied a very similar MC to this one, and demonstrated that every
Markovian coupling for it takes expected exponential time (in the size of G) to coalesce.
In the light of their result, it seems we must take an alternative approach, sometimes
called the “canonical paths” method.

5.1 Matchings in a graph

Consider an undirected graph G = (V,E) with vertex set V of size n, and edge set E
of size m. Recall that the set of edges M ⊆ E is a matching if the edges of M are
pairwise vertex disjoint. The vertices that occur as endpoints of edges of M are said to
be covered by M ; the remaining vertices are uncovered. For a given graph G = (V,E), we
are interested in sampling from the set of matchings of G according to the distribution

(5.1) π(M) =
λ|M |

Z

where Z :=
∑

M λ|M |, and the sum is over matchings M of all sizes. In statistical
physics, the edges in a matching are referred to as “dimers” and the uncovered vertices
as “monomers.” The probability distribution defined in (5.1) characterises the monomer-
dimer system specified by G and λ. The normalising factor Z is the partition function
of the system. The parameter λ ∈ R+ can be chosen to either favour smaller (λ < 1) or
larger (λ > 1) matchings, or to generate them from the uniform distribution (λ = 1).

Note that computing Z exactly is a hard problem. For if it could be done efficiently,
one could compute Z = Z(λ) at a sequence of distinct values of λ, and then extract
the coefficients of Z(λ) by interpolating the computed values. (Observe that Z(λ) is
a polynomial in λ.) But the highest-order coefficient is just the number of perfect
matchings in G. It follows from Theorem 2.2 that evaluating Z(λ) at (say) integer
points λ ∈ N is #P-hard. Indeed, with a little more work, one can show that evaluating
Z(λ) at the particular point λ = 1 (i.e., counting the number of matchings in G) is
#P-complete. Although it is unlikely that Z can be computed efficiently, nothing stops
us from having an efficient approximation scheme, in the FPRAS sense of §3.1.

45
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1. Select e = {u, v} ∈ E u.a.r.

2. There are three mutually exclusive (but not exhaustive) possibilities.

(↑) If u and v are not covered by X0, then M ← X0 ∪ {e}.
(↓) If e ∈ X0, then M ← X0 \ {e}.

(↔) If u is uncovered and v is covered by some edge e′ ∈ X0 (or vice versa, with
the roles of u and v reversed), then M ′ ←M ∪ {e} \ {e′}.

If none of the above situations obtain, then M ← X0.

3. With probability min
{

1, π(M)/π(X0)
}

set X1 ← M ; otherwise, set X1 ← X0.
(This form of acceptance probability is known as the Metropolis filter.)

Figure 5.1: An MC for sampling weighted matchings

We construct an MC for sampling from distribution (5.1) as shown in Figure 5.1. As
usual, denote the state space of the MC by Ω, and its transition matrix by P . Consider
two adjacent matchings M and M ′ with π(M) ≤ π(M ′). By adjacent we just mean
that P (M,M ′) > 0, which is equivalent to P (M ′,M) > 0. The transition probabilities
between M and M ′ may be written

P (M,M ′) =
1

m
, and

P (M ′,M) =
1

m

π(M)

π(M ′)
,

giving rise to the symmetric form

(5.2) π(M)P (M,M ′) = π(M ′)P (M ′M) =
1

m
min

{
π(M), π(M ′)

}
.

The above equality makes clear that the MC is time-reversible, and that its stationary
distribution (appealing Lemma 3.7) is π.

Remarks 5.1. (a) The transition probabilities are easy to compute: since a transition
changes the number of edges in the current matching by at most one, the acceptance
probability in step 3 is either 1 or min{λ, λ−1}, and it is easy to determine which.

(b) Broder [9] was the first to suggest sampling matching by simulating an appropriate
MC. His proposal was to construct an MC whose states are perfect matchings (i.e.,
covering all the vertices of G) and near-perfect matchings (i.e., leaving exactly
two vertices uncovered). The MC on all matchings presented in Figure 5.1 was
introduced by Jerrum and Sinclair [45].

(c) Time reversibility is a property of MCs that is frequently useful to us; in particular,
as we have seen on several occasions, it permits easy verification of the stationary
distribution of the MC. However, we shall not make use of the property in the
remainder of the chapter, and all the results will hold in the absence of time
reversibility.
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5.2 Canonical paths

The key to demonstrating rapid mixing using the “canonical paths” technique lies in
setting up a suitable multicommodity flow problem. For any pair x, y ∈ Ω, we imagine
that we have to route π(x)π(y) units of distinguishable fluid from x to y, using the
transitions of the MC as “pipes.” To obtain a good upper bound on mixing time we
must route the flow evenly, without creating particularly congested pipes. To formalise
this, we need a measure for congestion.

For any pair x, y ∈ Ω, define a canonical path γxy = (x = z0, z1, . . . , z` = y) from x
to y through pairs (zi, zi+1) of states adjacent in the MC, and let

Γ := {γxy | x, y ∈ Ω}

be the set of all canonical paths. The congestion % = %(Γ ) of the chain is defined by

(5.3) %(Γ ) := max
t=(u,v)

{
1

π(u)P (u, v)︸ ︷︷ ︸
(capacity of t)−1

∑
x,y: γxy uses t

π(x)π(y) |γxy|︸ ︷︷ ︸
total flow through t

}
.

where t runs over all transitions, i.e., all pairs of adjacent states of the chain, and |γxy|
denotes the length ` of the path γxy.

We want to show that if % is small then so is the mixing time of the MC. Consider
some arbitrary “test” function f : Ω → R. The variance of f (with respect to π) is

(5.4) Varπ f :=
∑
x∈Ω

π(x)
(
f(x)− Eπ f

)2
=
∑
x∈Ω

π(x)f(x)2 − (Eπ f)2,

where
Eπ f :=

∑
x∈Ω

π(x)f(x).

It is often convenient to work with an alternative, possibly less familiar expression for
variance, namely

(5.5) Varπ f =
1

2

∑
x,y∈Ω

π(x)π(y)
(
f(x)− f(y)

)2
.

Equivalence of (5.4) and (5.5) follows from the following sequence of identities:

1

2

∑
x,y∈Ω

π(x)π(y)
(
f(x)− f(y)

)2
=
∑
x,y∈Ω

[
π(x)π(y)f(x)2 − π(x)π(y)f(x)f(y)

]
=
∑
x∈Ω

π(x)f(x)2
∑
y∈Ω

π(y)−
∑
x∈Ω

π(x)f(x)
∑
y∈Ω

π(y)f(y)

=
∑
x∈Ω

π(x)f(x)2 − (Eπ f)2

= Varπ f.
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The variance Varπ f measures the “global variation” of f over Ω. By contrast, the
Dirichlet form

(5.6) EP (f, f) :=
1

2

∑
x,y∈Ω

π(x)P (x, y)
(
f(x)− f(y)

)2
measures the “local variation” of f with respect to the transitions of the MC. The key
result relating the congestion % to local and global variation is the following.

Theorem 5.2 (Diaconis and Stroock; Sinclair). For any function f : Ω → R,

(5.7) EP (f, f) ≥ 1

%
Varπ f.

where % = %(Γ ) is the congestion, defined in (5.3), with respect to any set of canonical
paths Γ .

Remarks 5.3. (a) An inequality such as (5.7), which bounds the ratio of the local to
the global variation of a function, is often termed a Poincaré inequality.

(b) If the congestion % is small, then high global variation of a function entails high
local variation. This in turn entails, as we shall see presently, short mixing time.

Proof of Theorem 5.2. We follow Sinclair [71, Thm. 5] whose proof in turn is inspired
by Diaconis and Stroock [23].

2 Varπ f =
∑
x,y∈Ω

π(x)π(y)
(
f(x)− f(y)

)2
=
∑
x,y∈Ω

π(x)π(y)

( ∑
(u,v)∈γxy

1 ·
(
f(u)− f(v)

))2

(5.8)

≤
∑
x,y∈Ω

π(x)π(y) |γxy|
∑

(u,v)∈γxy

(
f(u)− f(v)

)2
(5.9)

=
∑
u,v∈Ω

∑
x,y:

(u,v)∈γxy

π(x)π(y) |γxy|
(
f(u)− f(v)

)2
=
∑
u,v∈Ω

(
f(u)− f(v)

)2 ∑
x,y:

(u,v)∈γxy

π(x)π(y) |γxy|

≤
∑
u,v∈Ω

(
f(u)− f(v)

)2
π(u)P (u, v) %(5.10)

= 2% EP (f, f).

Equality (5.8) is a “telescoping sum,” inequality (5.9) is Cauchy-Schwarz, and inequal-
ity (5.10) is from the definition of %.

For the following analysis, we modify the chain by making it “lazy.” In each step,
the lazy MC stays where it is with probability 1

2 , and otherwise makes the transition
specified in Figure 5.1. Formally, the transition matrix of the lazy MC is Pzz := 1

2(I+P ),
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where I is the identity matrix. It is straightforward to show that the lazy MC is ergodic
if the original MC is, in which case the stationary distribution of the two is identical.
(In fact, irreducibility of the original MC is enough to guarantee ergodicity of the lazy
MC.)

Exercise 5.4. Verify these claims about the lazy MC.

Remarks 5.5. (a) This laziness doubles the mixing time, but ensures that the eigen-
values of the transition matrix are all non-negative, and avoids possible parity
conditions that would lead to the MC being periodic or nearly so. In an imple-
mentation, to simulate 2t steps of the lazy MC, one would generate a sample T
from the binomial distribution Bin(2t, 1

2), and then simulate T steps of the original,
non-lazy MC. Thus, in practice, efficiency would not be compromised by laziness.

(b) The introduction of the lazy chain may seem a little unnatural. At the expense
of setting up a little machinery, it can be avoided by using a continuous-time
MC rather than a discrete-time MC as we have done. Some other parts of our
development would also become smoother in the continuous-time setting. We
shall return to this point at the end of the chapter.

Before picking up the argument, some extra notation will be useful. If f is any
function f : Ω → R then Pzzf : Ω → R denotes the function defined by

[Pzzf ](x) :=
∑
y∈Ω

Pzz(x, y)f(y).

The function Pzzf is the “one-step averaging” of f . Similarly, P tzzf , defined in an analo-
gous way, is the “t-step averaging” of f : it specifies the averages of f over t-step evolu-
tions of the MC, starting at each of the possible states. If the MC is ergodic (as here),
then P tzzf tends to the constant function Eπ f as t→∞. (Observe that Eπ(Pzzf) = Eπ f
and hence Eπ(P tzzf) = Eπ f ; in other words, t-step averaging preserves expectations.)
Thus we can investigate the mixing time of the MC by seeing how quickly Varπ(P tzzf)
tends to 0 as t→∞. This is the idea we shall now make rigorous.

Theorem 5.6. For any function f : Ω → R,

(5.11) Varπ(Pzzf) ≤ Varπ f −
1

2
EP (f, f).

Proof. We follow closely Mihail’s [63] derivation. Consider the one-step averaging of f
with respect to the lazy chain:

[Pzzf ](x) =
∑
y∈Ω

Pzz(x, y)f(y)

=
1

2
f(x) +

1

2

∑
y∈Ω

P (x, y)f(y)

=
1

2

∑
y∈Ω

P (x, y)
(
f(x) + f(y)

)
.(5.12)
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For convenience, assume1 Eπ f = 0, and hence Eπ(Pzzf) = 0. Then the left-hand side
of (5.11) is bounded above as follows:

Varπ(Pzzf) =
∑
x∈Ω

π(x)
{

[Pzzf ](x)
}2

=
1

4

∑
x∈Ω

π(x)

(∑
y∈Ω

P (x, y)
(
f(x) + f(y)

))2

(5.13)

≤ 1

4

∑
x,y∈Ω

π(x)P (x, y)
(
f(x) + f(y)

)2
,(5.14)

where step (5.13) uses (5.12), and step (5.14) relies on the fact that the square of the
expectation of a r.v. is no greater than the expectation of its square. To get at the
right-hand side of (5.11) we use yet another expression for the variance of f :

Varπ f =
1

2

∑
x∈Ω

π(x)f(x)2 +
1

2

∑
y∈Ω

π(y)f(y)2

=
1

2

∑
x,y∈Ω

π(x)f(x)2P (x, y) +
1

2

∑
x,y∈Ω

π(x)P (x, y)f(y)2

=
1

2

∑
x,y∈Ω

π(x)P (x, y)
(
f(x)2 + f(y)2).(5.15)

Subtracting (5.14) from (5.15) yields

Varπ f −Varπ(Pzzf) ≥ 1

4

∑
x,y∈Ω

π(x)P (x, y)
(
f(x)− f(y)

)2
=

1

2
EP (f, f),

as required.

Combining Theorem 5.2 and Theorem 5.6 gives:

Corollary 5.7. For any function f : Ω → R,

Varπ(Pzzf) ≤
(

1− 1

2%

)
Varπ f,

where % = %(Γ ) is the congestion, defined in (5.3), with respect to any set of canonical
paths Γ .

Remark 5.8. The algebraic manipulation in the proof of Theorem 5.6 seems mysterious.
The discussion of the continuous-time setting at the end of the chapter will hopefully
clarify matters a little.

1Otherwise add or subtract a constant, an operation that leaves unchanged the quantities of interest,
namely Varπ f , Varπ(Pzzf) and EP (f, f).
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We can now use Corollary 5.7 to bound the mixing time of the chain, by using a
special function f . For a subset A ⊆ Ω of the state space, we consider its indicator
function

f(x) :=

{
1, if x ∈ A;

0, otherwise.

Then we have Varπ f ≤ 1 and therefore

Varπ(P tzzf) ≤
(

1− 1

2%

)t
≤ exp

{
−t
2%

}
,

where P tzzf is the t-step averaging of f . Fix some starting state x ∈ Ω and set

t =
⌈
2%
(
2 ln ε−1 + lnπ(x)−1

)⌉
.

This gives
Varπ(P tzzf) ≤ exp

{
−2 ln ε−1 − lnπ(x)−1

}
= ε2π(x).

On the other hand,

Varπ(P tzzf) ≥ π(x)
(
[P tzzf ](x)− Eπ(P tzzf)

)2
= π(x)

(
[P tzzf ](x)− Eπ f

)2
,

which implies
ε ≥

∣∣[P tzzf ](x)− Eπ f
∣∣ =

∣∣P tzz(x,A)− π(A)
∣∣

for all A. This in turn means that the total variation distance ‖P tzz(x, · ) − π‖TV is
bounded by ε, and we obtain the following corollary:

Corollary 5.9. The mixing time of the lazy MC is bounded by

τx(ε) ≤ 2%
(
2 ln ε−1 + lnπ(x)−1

)
,

where % = %(Γ ) is the congestion, defined in (5.3), with respect to any set of canonical
paths Γ .

Remark 5.10. The factor 2 in front of the bound on mixing time is an artifact of using
the lazy MC.

5.3 Back to matchings

In the previous section, we saw how a general technique (canonical paths) can be used
to bound the Poincaré constant of an MC, and how that constant in turn bounds the
mixing time. Let’s apply this machinery to the matching chain presented in Figure 5.1.
Our ultimate goal is to derive a polynomial upper bound on mixing time:

Proposition 5.11. The mixing time τ of the MC on matchings of a graph G (refer to
Figure 5.1) is bounded by

τ(ε) ≤ nmλ̄2
(
4 ln ε−1 + 2n lnn+ n |lnλ|

)
,

where n and m are the number of vertices and edges of G, respectively, and λ̄ =
max{1, λ}.
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I:

F :

t

M :

M
′:

P1 · · ·

· · ·

· · ·· · ·

· · ·

· · ·· · ·

· · ·

...

...

Pi Pi+1
Pi−1 Pr

Start vertex of (closed) path Pi

Figure 5.2: A step in a canonical path between matchings

Remark 5.12. It is possible, with a little extra work, to improve the upper bound in
Proposition 5.11 by a factor of λ̄: see Exercise 5.17.

The first step is to define the set Γ of canonical paths. Given two matchings I (initial)
and F (final), we need to connect I and F by a canonical path γIF in the adjacency
graph of the matching MC. Along this path, we will have to lose or gain at least the
edges in the symmetric difference I ⊕ F ; these edges define a graph of maximum degree
two, which decomposes into a collection of paths and even-length cycles, each of them
alternating between edges in I and edges in F . If we fix some ordering of the vertices
in V , we obtain a unique ordering of the connected components of (V, I⊕F ), by smallest
vertex. Within each connected component we may identify a unique “start vertex”: in
the case of a cycle this will be the smallest vertex, and the case of a path the smaller of
the two endpoints. We imagine each path to be oriented away from its start vertex, and
each cycle to be oriented so that the edge in I adjacent to the start vertex acquires an
orientation away from the start vertex. In Figure 5.2 — which focuses on a particular
transition t = (M,M ′) on the canonical path from I to F — the r connected components
of I ⊕ F are denoted P1, . . . , Pr.

To get from I to F , we now process the components of (V, I ⊕ F ) in the order
P1, . . . , Pr. In each cycle, we first remove the edge in I incident to the start vertex
using a ↓-transition; with a sequence of ↔-transitions following the cycle’s orientation,
we then replace I- by F -edges; finally, we perform a ↑-transitions to add the edge in F
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P1 · · · · · ·Pi Pi+1Pi−1 Pr

Figure 5.3: The corresponding encoding ηt(X,Y ).

incident to the start vertex. In every path, if the start vertex is incident to an F -edge,
we use ↔-transitions along the path and finish by a ↑-transition in case the path has
odd length. If the start vertex is incident to an I-edge, we start with a ↓-transition, then
use ↔-transitions along the path, and finish with an ↑-transition in case the path has
even length. This concludes the description of the canonical path γIF . Each transition t
on a canonical path γIF can be thought of as contributing to the processing of a certain
connected component of I ⊕F ; we call this the current component (or cycle, or path, if
we want to be more specific).

Denote by
cp(t) :=

{
(I, F ) | t ∈ γIF

}
the set of pairs (I, F ) ∈ Ω whose canonical path γIF uses transition t. To bound the
mixing time of the MC, we need to bound from above the congestion

(5.16) % = max
t=(M,M ′)

{
1

π(M)P (M,M ′)

∑
(I,F )∈cp(t)

π(I)π(F ) |γIF |

}

(c.f. (5.3)), where the maximum is over all transitions t = (M,M ′). It is not immediately
clear how to do this, as the sum is over a set we don’t have a ready handle on. Suppose,
however, that were able to construct, for each transition t = (M,M ′), an injective
function ηt : cp(t)→ Ω such that

(5.17) π(I)π(F ) / π(M)P (M,M ′)π(ηt(I, F )),

for all (I, F ) ∈ cp(t), where the relational symbol “/ ” indicates that the left-hand side
is larger than the right-hand side by at most a polynomial factor in the “instance size,”
i.e., some measure of G and λ. Then it would follow that

% / max
t

{ ∑
(I,F )∈cp(t)

π(ηt(I, F )) |γIF |

}
from (5.16) and (5.17)

/ max
t

{ ∑
(I,F )∈cp(t)

π(ηt(I, F ))

}
since |γIF | ≤ n

≤ 1 since ηt is injective.

In other words, the congestion % (and hence the mixing time of the MC) is polynomial
in the instance size, as we should like.

We now complete the programme by defining an encoding ηt with the appropriate
properties, and making exact the calculation just performed. To this end, fix a transition
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t = (M,M ′). If t is a ↔-transition, (I, F ) ∈ cp(t), and the current component (with
respect to the canonical path γIF ) is a cycle, then we say that t is troublesome (with
respect to the path γIF ). If t is troublesome, then we denote by eIF t ∈ I the (unique)
edge in I that is adjacent to the start vertex of the cycle being processed by t. For all
(I, F ) ∈ cp(t), define

ηt(I, F ) =

{(
I ⊕ F ⊕ (M ∪M ′)

)
\ {eIF t}, if t is troublesome;

I ⊕ F ⊕ (M ∪M ′), otherwise.

Roughly speaking, the encoding C = ηt(I, F ) agrees with I on the components that have
been completely processed, and with F on the components that have not been touched
yet. Moreover, C agrees with I and F on the edges common to both. (See Figure 5.3.)
The crucial properties of ηt are described in the following sequence of claims.

Claim 5.13. For all transitions t and all pairs (I, F ) ∈ cp(t), the encoding C = ηt(I, F )
is a matching; thus ηt is a function with range Ω, as required.

Proof. Consider the set of edges A = I ⊕ F ⊕ (M ∪M ′), and suppose that some vertex,
u say, has degree two in A. (Since A ⊆ I ∪ F , no vertex degree can exceed two.) Then
A contains edges {u, v1}, {u, v2} for distinct vertices v1, v2, and since A ⊆ I ∪ F , one of
these edges must belong to I and the other to F . Hence both edges belong to I ⊕ F ,
which means that neither can belong to M ∪M ′. Following the form of M ∪M ′ along
the canonical path, however, it is clear that there can be at most one such vertex u;
moreover, this happens precisely when t is a troublesome transition and u is the start
vertex of the current cycle. Our definition of ηt removes one of the edges adjacent to u in
this case, so all vertices in C have degree at most one, i.e., C is indeed a matching.

Claim 5.14. For every transition t, the function ηt : cp(t)→ Ω is injective.

Proof. Let t be a transition, and (I, F ) ∈ cp(t). We wish to show that the pair (I, F )
can be uniquely reconstructed from a knowledge only of t and ηt(I, F ). It is immediate
from the definition of ηt that the symmetric difference I ⊕ F can be recovered from
C = ηt(I, F ) using the relation

I ⊕ F =

{(
C ⊕ (M ∪M ′)

)
∪ {eIF t}, if t is troublesome;

C ⊕ (M ∪M ′), otherwise.

Of course, we don’t know, a priori, the identity of the edge eIF t. However, once we
have formed the set C ⊕ (M ∪M ′) we can see that eIF t is the unique edge that forms a
cycle when added to the current path. There is a slightly delicate issue here: how do we
know whether we are in the troublesome case or not? In other words, how to we know
whether the current component is a cycle or a path? The answer lies in the convention
for choosing the start vertex. It can be checked that choosing the lowest vertex as start
vertex leads to a path being oriented in the opposite sense to a cycle in this potentially
ambiguous situation.

Given I ⊕ F , we can at once infer the sequence of paths P1, P2, . . . , Pr that have
to be processed along the canonical path from I to F , and the transition t tells us
which of these, Pi say, is the current one. The partition of I ⊕ F into I and F is
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now straightforward: I agrees with C on paths P1, . . . , Pi−1, and with M on paths
Pi+1, . . . , Pr. On the current path, Pi, the matching I agrees with C on the already
processed part, and with M on the rest. (If t is troublesome, then the edge eIF t also
belongs to I.) Finally, the reconstruction of I and F is completed by noting that
I∩F = M \(I⊕F ), which is immediate from the definition of the paths. Hence I and F
can be uniquely recovered from C = ηt(I, F ), so ηt is injective.

Claim 5.15. For all transitions t = (M,M ′) and all pairs (I, F ) ∈ cp(t),

π(I)π(F ) ≤ mλ̄2π(M)P (M,M ′)π(ηt(I, F )),

where λ̄ := max{1, λ}.

Proof. Let C = ηt(I, F ), and consider the expressions

λ|I|λ|F | and λ|M∪M
′|λ|C|,

which are closely related to the quantities

π(I)π(F ) and π(M)P (M,M ′)π(ηt(I, F ))

of interest. Each edge e ∈ E contributes a factor 1, λ or λ2 to λ|I|λ|F |, according to
whether e is in neither, exactly one, or both of I and F . A similar observation can be
made about λ|M∪M

′|λ|C|. If e /∈ I and e /∈ F then e /∈ M ∪M ′ and e /∈ C, and the
contribution to both expressions is 1. If e ∈ I and e ∈ F then e ∈M ∪M ′ and e ∈ C and
the contribution to both expressions is λ2. If e ∈ I ⊕ F then e ∈ (M ∪M ′)⊕C and the
contribution to both expressions is λ, with one possible exception: if t is troublesome
and e = eIF t then there is a contribution λ to λ|I|λ|F | and 1 to λ|M∪M

′|λ|C|. Thus,

λ|I|λ|F | ≤ λ̄ λ|M∪M ′|λ|C|.

Dividing by Z2, the square of the partition function, it follows that

π(I)π(F ) ≤ λ̄2π(M)π(C) and π(I)π(F ) ≤ λ̄2π(M ′)π(C),

where we have used the fact that |M |, |M ′| ≥ |M ∪M ′| − 1. Then

π(I)π(F ) ≤ λ̄2 min
{
π(M), π(M ′)

}
π(C)

= mλ̄2π(M)P (M,M ′)π(C) by (5.2),

yielding the required inequality.

Now we are ready to evaluate the congestion %.

Proposition 5.16. With a set of canonical paths Γ defined as in this section, the con-
gestion % = %(Γ ) of the MC on matchings of a graph G (refer to Figure 5.1) is bounded
by % ≤ nmλ̄2, where n and m are the number of vertices and edges of G, respectively,
and λ̄ = max{1, λ}.
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· · ·

(k hexagons)
u v

Figure 5.4: A graph with many “near perfect” matchings.

Proof. We just need to make precise the rough calculation following (5.17).

% = max
t=(M,M ′)

{
1

π(M)P (M,M ′)

∑
(I,F )∈cp(t)

π(I)π(F ) |γIF |

}

≤ mλ̄2
∑

(I,F )∈cp(t)

π(ηt(I, F )) |γIF | by Claim 5.15

≤ nmλ̄2
∑

(I,F )∈cp(t)

π(ηt(I, F )) since |γIF | ≤ n

≤ nmλ̄2 by Claim 5.14.

The sought-for bound on mixing time follows immediately.

Proof of Proposition 5.11. Combine Corollary 5.9 and Proposition 5.16, noting the crude
bound lnπ(x)−1 ≤ n lnn+ 1

2n |lnλ|, which holds uniformly over x ∈ Ω.

Exercise 5.17. Show how to tighten the upper bound in Proposition 5.11 by a factor λ̄.
Since Claim 5.15 is essentially tight when t is troublesome, it is necessary to improve
somehow the inequality ∑

(I,F )∈cp(t)

π(ηt(I, F )) ≤ 1,

by studying carefully the range of ηt. See Jerrum and Sinclair [45], specifically the proof
of their Proposition 12.4.

5.4 Extensions and further applications

Let G be a graph with at least one perfect matching (i.e., matching that covers all vertices
of G). In the limit, as λ→∞, the partition function Z(λ) counts the number of perfect
matchings in G. However, the bound on mixing time provided by Proposition 5.11 grows
unboundedly with increasing λ, so it is not clear whether the MC we have studied in
this chapter provides us with a FPAUS for perfect matchings in G. At first we might
hope that it is not necessary to set λ very large; perhaps the distribution (5.1) already
places sufficient probability on the totality of perfect matchings at some quite modest λ.
(According to Proposition 5.11, we need λ to be bounded by a polynomial in n, the
number of vertices in G, to achieve a FPAUS/FPRAS for perfect matchings.)

Unfortunately, there are graphs (see Figure 5.4) for which the perfect matchings
make an insignificant contribution to distribution (5.1) unless λ is exponentially large
in n. This claim follows from the these easily verified properties of the illustrated graph:
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(i) it has a unique perfect matching, and (ii) it has 2k matchings that cover all vertices
apart from u and v. The question of whether there exists an FPRAS (equivalently, by
the observations of Chapter 3, an FPAUS) for perfect matchings in a general graph is
still open at the time of writing. However, progress has been made in some special cases,
that of bipartite graphs being perhaps the most interesting.

The problem of counting perfect matchings in a bipartite graph is of particular sig-
nificance, since is is equivalent to evaluating the permanent of a 0, 1-matrix. (Refer to
problems #BipartitePM and 0,1-Perm of Chapter 2.) Recently, Jerrum, Sinclair and
Vigoda [46] presented an FPRAS for the permanent of a 0, 1-matrix (in fact a general
matrix with non-negative entries) using MC simulation. Noting that the counterexample
of Figure 5.4 is bipartite, it is clear that we need to introduce a more sophisticated MC
to achieve this result. In very rough terms, it is necessary to weight matchings according
not just to the number of uncovered vertices but also their locations. In this way it is
possible to access perfect matchings from near-perfect ones via a “staircase” of relatively
small steps. Full details may be found in [46].

The canonical paths technique has also been applied by Jerrum and Sinclair to the
ferromagnetic Ising model [44] and by Morris and Sinclair to “knapsack solutions” [64].
The latter application is particularly interesting for its use of random canonical paths.

5.5 Continuous time

It is possible to gain a better understanding of Theorem 5.6 and Corollary 5.7 by moving
to continuous time.

Associated with any discrete-time MC (Xt : t ∈ N) is a “continuised” MC (X̃t :
t ∈ R+). (We use tilde to distinguish continuous-time notions from their discrete-time
analogues.) The MC (X̃t) makes jumps at times (t1, t2, t3, . . .) where the time increments
ti+1− ti, for i ∈ N, are independent r.v’s that are exponentially distributed with mean 1.
(Here we use the convention t0 = 0.) Between the jumps, i.e., in the intervals [ti, ti+1),
for i ∈ N, the value of X̃t is constant. The jumps, when they occur, are governed by
the same transition matrix P as the original MC (Xt). Informally, we have replaced
deterministic time-1 holds between jumps by random, exponential, mean-1 holds. See
Norris [65] for a proper treatment of continuous-time MCs.

The continuous-time MC has an “infinitesimal description” Pr(X̃t+dt = y | X̃t =
x) = P (x, y) dt for all x 6= y. As a consequence, the distribution of X̃t has a particularly
pleasant form:

P̃ t(x, y) := Pr(X̃t = y | X̃0 = x) = exp{(P − I)t},
where I is the identity matrix.2 As in the discrete-time case, we aim to bound the rate
of convergence of (X̃t) to stationarity by analysing the decay of the variance

(5.18) Varπ(P̃ tf) :=
∑
x∈Ω

π(x)
{

[P̃ tf ](x)
}2
,

where the function P̃ tf : Ω → R is defined by

(5.19) [P̃ tf ](x) :=
∑
y∈Ω

P̃ t(x, y)f(y),

2The exponential function applied to matrices can be understood as a convergent sum expQ :=
I +Q+Q2/2! +Q3/3! + · · · .
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and f : Ω → R is any test function with Eπ f = 0.
By calculus, starting with (5.18) and (5.19), we may derive (calculation left to the

reader):

d

dt
Varπ(P̃ tf) = 2

∑
x,y∈Ω

π(x)
(
P (x, y)− I(x, y)

)
[P̃ tf ](x) [P̃ tf ](y).

Hence, setting t = 0, we obtain

d

dt
Varπ(P̃ tf)

∣∣∣∣
t=0

= 2
∑
x,y∈Ω

π(x)
(
P (x, y)− I(x, y)

)
f(x)f(y)

= 2
∑
x,y∈Ω

π(x)P (x, y)f(x)f(y)− 2 Varπ f

= −2 EP (f, f),

a continuous-time analogue of Theorem 5.6.
Applying Theorem 5.2, we see that Varπ(P̃ tf) is bounded by the solution of the

differential equation v̇ = −(2/%)v, and hence

(5.20) Varπ(P̃ tf) ≤ exp

{
− 2t

%

}
Varπ f,

a continuous-time analogue of Corollary 5.7.

Exercise 5.18. Follow through in detail the calculations sketched above.

Remarks 5.19. (a) The rate of decay of variance promised by (5.20) is faster than
Corollary 5.7 by a factor 4. A factor 2 is explained by the avoidance of the lazy
MC, but the remaining factor 2 is “real.” This suggests that the calculation in
Theorem 5.6 is not only a little mysterious, but also gives away a constant factor.

(b) Simulating the continuised MC is unproblematic, and can be handled by a device
similar to that employed in the case of the lazy MC (c.f. Remarks 5.5). To obtain
a sample from the distribution of X̃t: (i) generate a sample T from the Poisson
distribution with mean t, and then (ii) simulate the discrete-time MC for T steps.
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Volume of a convex body

We arrive at one of the most important applications of the Markov chain Monte Carlo
method: the estimation of the volume of a convex body. For a convex body K in low di-
mensional Euclidean space, say two or three dimensions, it is not too difficult to estimate
the volume of K within reasonable relative error using a direct Monte Carlo approach.
Depending on how K is presented, it may even be possible to find the volume exactly
without too much difficulty. In this chapter, therefore, we imagine the dimension n of
the space to be large, and certainly greater than 3.

There are two related problems:

• sample uniformly at random a point from the convex body K;

• estimate the volume volnK of K.

We will first look at the problem of random sampling in K. Since volume is the limit of
a sum, it is not surprising, in the light of examples contained in previous chapters, that
the second problem can be reduced to the first. We shall look first at the problem of
random sampling in K; the reduction of volume estimation to sampling will be covered
at the end of the chapter.

The convex body is given as an oracle which, for a point x ∈ Rn, tells whether or
not x ∈ K (see Figure 6.1). This oracle model subsumes several possible conventions
for describing inputs. For example, in the case of a convex polytope defined by a set
of linear inequalities it is of course easy to implement the oracle. A convex polytope
presented as the convex hull of its vertices it is a little harder, but it can still be done,
by linear programming. In some applications, the assumption of an exact oracle that
accurately decides whether x ∈ K may be unrealistic. In an implementation we would
almost certainly be using arithmetic with bounded precision, and we could not always
know for sure whether were in or out. In fact, it is possible to relax the definition
of oracle to incorporate some fuzziness at the boundary of K without loosing much
algorithmically. One of the many simplifications we shall make in this chapter is to
assume exact arithmetic and an exact oracle. For a much fuller picture, refer to Kannan,
Lovász and Simonovits [50].

The first thing to be noticed in this endeavour is that some intuitively appealing
approaches do not work very well. Let us consider a conventional application of the
Monte Carlo method to the problem. Say we shrink a box C around K as tightly as
possible (see Figure 6.2), sample a point x uniformly at random from C, and return x

59
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K

x ∈ K

x 6∈ K

Figure 6.1: Oracle for K.

K

C

Figure 6.2: Sampling by “direct” Monte Carlo.

if x ∈ K; otherwise repeat the sampling if x /∈ K. This simple idea works well in low
dimension, but not in high dimension, where the volume ratio volnK/ volnC can be
exponentially small. This phenomenon may be illustrated by a very simple example.
Let K = Bn(0, 1) be the unit ball, and C = [−1, 1]n the smallest enclosing cube. In
this instance the ratio in question may be calculated exactly, and is volnK/ volnC =
2πn/2/(2nnΓ(n/2)), which decays rapidly with n.1 In the light of this observation, it
seems that a random walk through K may provide a better alternative.

Dyer, Frieze and Kannan [28] were the first to propose a suitable random walk for
sampling random points in a convex body K and prove that its mixing time scales as a
polynomial in the dimension n. As a consequence, they obtained the first FPRAS for the
volume of a convex body. Needless to say, this result was a major breakthrough in the
field of randomised algorithms. Their approach was to divide K into a n-dimensional
grid of small cubes, with transitions available between cubes sharing a facet (i.e., an
(n − 1)-dimensional face). This proposal imposes a preferred coordinate system on K
leading to some technical complications. Here, instead, we use the coordinate-free “ball
walk” of Lovász and Simonovits [55].

Given a point Xt ∈ K, which is the position of the random walk at time t, we choose
Xt+1 uniformly at random from B(Xt, δ)∩K, where B(x, r) denotes the ball or radius r
centred at x, and δ is a small appropriately chosen constant.2 (Refer to Figure 6.3.) We
will show that this Markov chain has a stationary distribution that is nearly uniform
over K, and that its mixing time is polynomial in the dimension n, provided step size δ
is chosen judiciously, and that K satisfies certain reasonable conditions. The stochastic
process (Xt) is Markovian — the distribution of Xt+1 depends only on Xt and not on
the prior history (X0, . . . , Xt−1) — but unlike the Markov chains so far encountered has

1The Gamma function extends the factorial function to non-integer values. When n is even, Γ(n/2) =
(n/2− 1)!, so it is easy to see that the ratio voln K/ voln C tends to 0 exponentially fast.

2What is described here is a “heat-bath” version of the ball wall, which has been termed the “speedy
walk” in the literature. There is also a slower “Metropolis” version that we shall encounter presently.
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K
Xt

δ

Figure 6.3: One step of the Ball Walk

infinite, even uncountable state space. We therefore pause to look briefly into the basic
theory of Markov chains on Rn.

6.1 A few remarks on Markov chains
with continuous state space

Our object of study in this chapter is an MC whose state space, namely K, is a subset
of Rn. We cannot usefully speak directly of the probability of making a transition from
x ∈ K to y ∈ K, since this probability is generally 0. The solution is to speak instead of
the probability P (x,A) := Pr[X1 ∈ A | X0 = x] of being in a (measurable) set A ⊆ K
at time 1 conditioned on being at x at time 0. The t step transition probabilities can
then be defined inductively by P 1 := P and

(6.1) P t(x,A) :=

∫
K
P t−1(x, dy)P (y,A)

for t > 1. In the case of the ball walk,

P (x,A) =
voln(B(x, δ) ∩A)

voln(B(x, δ) ∩K)
,

for any (measurable) A ⊆ K, and

(6.2) P (x, dy) =
dy

voln(B(x, δ) ∩K)
,

provided y ∈ B(x, δ) ∩K.
A MC with continuous state space may have one or more invariant measures µ, which

by analogy with the finite case means that µ satisfies

µ(A) =

∫
K
P (x,A)µ(dx),

for all measurable sets A ⊆ K. As in the finite case, the MC may converge to a unique
invariant measure µ in the sense that P t(x,A) → µ(A) as t → ∞ for all x ∈ K and all
measurable A ⊆ K.

For compactness, we shall sometimes drop explicit reference to the variable of in-
tegration in situations where no ambiguity arises, and write, e.g.,

∫
K f dµ in place of∫

K f(x)µ(dx).
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6.2 Invariant measure of the ball walk

If we were to choose δ, the step-size of the ball walk, to be greater than the diameter
D := sup{‖x − y‖ : x, y ∈ K} of K, then the the ball walk would converge in one
step to the uniform measure on K. (For convenience, we’ll drop the subscript in the
Euclidean norm ‖ · ‖2.) There must be a catch! A moment’s reflection reveals that the
problem is one of implementability: to perform one step of the ball walk when δ ≥ D
we must sample a point uniformly at random from K, which is exactly the problem we
set ourselves at the outset. However, provided we choose δ small enough, specifically so
the ratio voln

(
B(Xt, δ) ∩K

)
/ volnB(Xt, δ) is not too small, we may obtain a random

sample from B(Xt, δ)∩K by repeatedly sampling from B(Xt, δ) until we obtain a point
in B(Xt, δ) ∩ K. This is the so-called “rejection sampling” method, which is efficient
provided that the probability of a successful trial is not too small.

This foregoing observation leads us to introduce a “Metropolis” version of the ball
walk (which should be compared with the heat-bath version specified earlier): select a
point y u.a.r. from B(Xt, δ); if y ∈ K then set Xt+1 ← y, else set Xt+1 ← Xt. The
Metropolis version of the ball walk has the advantage of implementability over the heat-
bath version. However, it has the disadvantage that it can get stuck in sharp corners.
Consider what would happen, for example, if the Metropolis walk ended up very close
(in relation to the step size δ) to the corner of an n-dimensional cube. To make progress,
the point y would have to move in the correct direction in each of the coordinate axes,
an event that occurs with probability close to 2−n. So the Metropolis walk cannot be
rapidly mixing in the usual sense. We could try to loosen the definition of mixing time by
somehow excluding sharp corners as possible initial states, and excluding them also from
the metric employed to measure distance from stationarity. But it is cleaner to argue
about the mixing time of the heat-bath version of the ball walk, and then separately
argue about the relationship of the heat-bath and Metropolis walks.

The primary aim of this chapter is to convey the key ideas underlying the analysis of
the ball walk, and not to obtain the most general theorems. We therefore simplify our
analysis by imposing a “curvature condition” on K that rules out sharp corners. This
condition radically simplifies certain technical aspects of the proof, while leaving intact
all the main insights. One immediate effect of this simplification is that the Metropolis
walk becomes only a constant factor slower than the heat-bath walk, so we have an easy
job relating the two. Towards the end of the section, we shall review the proof and
see what extra work needs to be done to eliminate the curvature condition. Provided
we are prepared to accept a bound on mixing time that is wrong by a factor of n, the
curvature condition may be dropped with little effort. Obtaining the correct mixing time
in the absence of the curvature condition requires an analysis of substantial additional
technical complexity, but requiring no further significant insights. This improvement
will therefore be sketched only.

In the light of the preceeding discussion, we cannot expect the mixing time of the
Metropolis version of the ball walk to be short if K is very long and thin. The small
“width” of K would dictate a small δ, but then very many steps would be required to
get from one end of K to the other. In the full strength version of the bound on mixing
time of the ball walk, this issue is resolved by expressing the mixing time in terms of
some measure of the “aspect ratio” of K. More precisely, it is supposed that K contains
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the unit ball B(0, 1) centred at the origin, and then the mixing time is expressed as a
function of the diameter of K.3 In fact, as already indicated, we simplify our presentation
by making a stronger assumption, namely that the curvature of K should not be too
large. We embody this simplifying assumption in the curvature condition:

For all points x ∈ K there is some point y ∈ K
such that x ∈ B(y, 1) and B(y, 1) ⊆ K.

(6.3)

By definition, all balls will be closed. Note that the curvature assumption is much
stronger that the “official” one, which merely asserts that B(0, 1) ⊆ K and, in particular,
rules out the interesting case of K a polytope. For the main body of this chapter, and
until further notice, “ball walk” will implicitly mean the heat-bath version, and the
curvature condition will be assumed.

Remark 6.1. What if we are presented with a body that is “thin”? It turns out that it
is always possible to apply a linear transformation to K to yield a new convex body which
contains a unit ball and whose diameter is quite reasonable. But this is another long
story, and we do not embark on it here. Refer to Kannan, Lovász and Simonovits [50].

The stationary measure of the ball walk — we shall see presently that the ball walk
is ergodic — is not uniform over K, but is close to uniform provided the step size δ is
not too large. To describe the stationary measure, we introduce a function ` : K → R
(called local conductance by Lovász and Simonovits) defined as

(6.4) `(x) :=
voln(B(x, δ) ∩K)

volnB(x, δ)
,

which may be interpreted as the probability of staying in K when choosing a random
point in a δ-ball around x. Note that `(x)−1 is the expected number of repetitions of
this trial in order produce a point lying in B(x, δ) ∩ K using rejection sampling. We
want to normalise `(x) in order to get a density which will turn out to be the density of
the stationary measure of the ball walk:

(6.5) µ(A) :=

∫
A `(x) dx

L
where L =

∫
K
`(x) dx.

Our first task is to verify that µ is an invariant measure for the ball walk. That it is
unique follows as a weak consequence of our rapid mixing proof.

Lemma 6.2. If X0 has distribution µ, then X1 does also.

3Note, as a by-product, we know that K contains the origin, so we have a suitable starting point for
the random walk.
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δ

δ2/2

1

x y

H1 H2

Figure 6.4: Bounding the volume of intersection

Proof. Let µ1 denote the distribution of X1. Then

µ1(A) =

∫
A
µ1(dy) =

∫
A

∫
K
P (x, dy)µ(dx)

=

∫
A
dy

∫
B(y,δ)∩K

µ(dx)

voln(B(x, δ) ∩K)
by (6.2)

=
1

L

∫
A
dy

∫
B(y,δ)∩K

`(x) dx

voln(B(x, δ) ∩K)
by (6.5)

=
1

L

∫
A
dy

∫
B(y,δ)∩K

dx

volnB(x, δ)
by (6.4)

=
1

L

∫
A
`(y) dy = µ(A) by (6.4, 6.5).

Hence µ is an invariant measure for the ball walk.

Exercise 6.3. Show that the uniform distribution on K is an invariant measure for the
Metropolis version of the ball walk.

It is clear that the distribution µ is not uniform over K, but for a suitable choice of
δ it is close to it.

Lemma 6.4. Assume the curvature condition (6.3), and suppose that δ ≤ c1/
√
n (where

c1 is a dimension-independent constant). Then 0.4 ≤ `(x) ≤ 1 for all x ∈ K.

Proof. The upper bound on `(x) is trivial from the definition of `. For the lower bound
we need an argument.

Recall that we assume that every x ∈ K lies in a 1-ball B(y, 1) ⊆ K. The inequality
above will follow from

voln(B(x, δ) ∩B(y, 1))

volnB(x, δ)
≥ 0.4.

It is enough to show the relation for a point x on the boundary of B(y, 1). Consider the
tangent plane H1 to B(y, 1) through x and its parallel plane H2 through the intersection



Mixing rate of the ball walk 65

of the boundaries of the two balls. (Refer to Figure 6.4.) Orient them such that their
positive side H+

i (i = 1, 2) contains the point y. Notice that

B(x, δ) ∩H+
2 ⊂ B(y, 1)

(δ is assumed to be smaller than 1). Therefore it is enough to show that the set B(x, δ)∩
H+

2 has volume at least 0.4 volnB(x, δ). We will do this by showing that B(x, δ)∩H−2 ∩
H+

1 has very small volume, i.e., at most a 0.1 fraction of the volume of B(x, δ). The set in
question is contained in the cylinder with ground face B(x, δ)∩H1 (which is an (n− 1)-
dimensional ball with radius δ) whose height is the distance apart of H1 and H2. A
simple computation reveals that this distance is exactly δ2/2. From the volume formula
of balls of dimensions n − 1 and n, and Stirling’s approximation for the Γ-function, we
obtain the following relation

voln−1(B(x, δ) ∩H1)

volnB(x, δ)
≤ c
√
n

δ
,

for some universal constant c. Hence the volume of the cylinder is at most a 1
2cδ
√
n

fraction of the volume of B(x, δ). Setting c1 = 1/5c gives the desired bound.

What this lemma also says is that we can implement one transition of the ball walk
efficiently: going from a point x ∈ K to a random point in B(x, δ) we have a probability
of at least 0.4 of ending up in K immediately; in other words, the Metropolis version of
the ball walk is only a factor 2.5 slower than the heat-bath version.

6.3 Mixing rate of the ball walk

We will show now that the ball walk mixes rapidly. The next lemma is a powerful
weapon and forms the basis of one of our standard techniques.

Lemma 6.5. Let f be a measurable function over a measurable set S. Partition S into
measurable sets S0, . . . , Sm−1. Then

(6.6)

∫
S
f2 dµ =

m−1∑
i=0

∫
Si

(f − f̄i)2 dµ+
m−1∑
i=0

µ(Si)f̄
2
i ,

where

f̄i :=
1

µ(Si)

∫
Si

f dµ.

Remark 6.6. Suppose that Eµ f :=
∫
K f dµ = 0. Then on the l.h.s. of the equality we

have simply Varµ f . The two terms on the r.h.s. of the equality may be interpreted as
(i) the sum of the variances of f within each of the regions Si, and (ii) the variance of f
between the regions, respectively.
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Proof of Lemma 6.5.∫
Si

(f − f̄i)2 dµ+ µ(Si)f̄
2
i =

∫
Si

f2 dµ+

∫
Si

f̄ 2
i dµ− 2

∫
Si

f̄if dµ+ µ(Si)f̄
2
i

=

∫
Si

f2 dµ+ µ(Si)f̄
2
i − 2µ(Si)f̄

2
i + µ(Si)f̄

2
i

=

∫
Si

f2 dµ.

As in the analysis of the matchings MC, our approach to bounding the mixing time
involves taking a (measurable) test function f : K → R (with E f = 0 for convenience)
and examining how the variance of f decays as a result of the averaging effect of the
ball-wall. To this end, introduce a function h : K → R given by

h(x) :=
1

2

∫
K
P (x, dy) (f(x)− f(y))2

=
1

2 voln(B(x, δ) ∩K)

∫
B(x,δ)∩K

(f(x)− f(y))2 dy,(6.7)

and define

Varµ f :=

∫
K
f2 dµ and EP (f, f) :=

∫
K
h dµ;

these are the now-familiar variance (global variation of f over K) and Dirichlet form
(local variation of f at the scale of the step size δ of the ball walk). As with the matching
MC, the key to the analysis of the ball walk lies in obtaining a sharp Poincaré inequality
linking Varµ f and EP (f, f). Our eventual goal is to show:

Theorem 6.7 (Poincaré inequality). Let K ⊂ Rn be a convex body of diameter D
satisfying the curvature condition (6.3), and suppose that δ is as in Lemma 6.4. For any
(measurable) function f : K → R,

EP (f, f) ≥ λVarµ f(6.8)

where

λ :=
c2δ

2

D2n

for some universal constant c2.

We apply the technique by Mihail (as we did with matchings in §5.2) and obtain from
λ a bound on mixing time. As before, we deal with periodicity by considering either a
continuised or lazy walk.

Corollary 6.8. For any ε > 0 let τ(ε) denote the time at which the ball walk (in either
its continuised or lazy variants) reaches within total variation distance ε of the stationary
distribution µ. Then, under the curvature condition (6.3),

τ(ε) ≤ O
(
λ−1

(
log ε−1 + i(µ0)

))
,

where λ is as in Theorem 6.7 and i(µ0) expresses the dependence on the initial distribu-
tion µ0.
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Remark 6.9. The expression i(µ0) is closely related to the term lnπ(x0)
−1 familiar

from the discrete case. But if we now start from a fixed point (in other words our
initial distribution µ0 is a single point mass at x0 ∈ K) no meaning can be attached to
lnπ(x0)

−1. To escape from this, imagine that we start at time −1 from a point x0 such
that B(x0, δ) ⊆ K, and consider the situation at time 0. Thus the initial distribution µ0
is uniform over some ball of radius δ. In this case, we may take i(µ0) = n ln(D/2δ).

Exercise 6.10. Verify Corollary 6.8. Doing this essentially involves translating Theo-
rem 5.6 to the setting of continuous state space. In case you skip this exercise, a full
derivation may be found in §6.8.

At an intuitive level, Theorem 6.7 seems to be close to the truth. With a step
size of δ, the distance travelled parallel to any axis fixed in advance (in particular, one
parallel to a diameter of K) is of order δ/

√
n. The time taken for the walk to “diffuse”

along a diameter is the square of the ratio of D to the typical distance moved along the
diameter in one step, namely (D

√
n/δ)2, which is of order λ−1. To minimise mixing time

we clearly wish to take δ as small as possible consistent with implementability, which
by Lemma 6.4 is of order n−1/2. With that step size, the Poincaré constant scales as
(nD)−2.

The next section is devoted to the proof of what is essentially the main result of this
chapter.

6.4 Proof of the Poincaré inequality (Theorem 6.7)

Assume the converse to (6.8), namely that there exists a function f : K → R with

(6.9) EP (f, f) < λVarµ f ;

informally, f sustains high global variation simultaneously with low local variation.

We will define smaller and smaller violating sets S such that the ratio

(6.10)

∫
S
h dµ

/∫
S

(f − f̄ )2 dµ

is small, where f̄ =
∫
S f dµ. Our starting point is of course S = K, where we know that

this ratio is less than λ. Eventually, S will be small even with respect to δ. Then the
function f will have to be almost constant in S since the local variation (as measured by
the numerator) is small; however the global variation (as measured by the denominator)
is large. Here we reach a contradiction. This in outline is our proof.

First we will shrink the violating set to a set K1 which is very small in all but one
dimension, a so-called “needle-like” body. It transpires that we can do this while keeping
ratio (6.10) bounded throughout by λ. It is only when we attempt to shrink along the
final dimension that we have to give something away. Before embarking on the process
of shrinking K to a needle-like body, we need a pair of geometrical lemmas, whose proofs
we defer to §6.5.

Lemma 6.11. Let R be a convex set in R2. There is a point x ∈ R such that every line
through x partitions R into pieces of area at least 1

3 of the area of R.
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x

H

Kj

Figure 6.5: The expectation of f is zero on both Kj ∩H+ and Kj ∩H−.

Remark 6.12. The bound 1
3 can in fact be replaced by 4

9 , which is tight as can been seen
by considering an equilateral triangle; see Egglestone [31, §6.4]. However, any strictly
positive bound is adequate for our purposes.

The width of a convex set R in R2 is the minimum, over all pairs of parallel supporting
lines sandwiching R, of the distance between those lines.4

Lemma 6.13. Let R be a convex set in R2 of area A. Then the width of R is at most√
2A.

Remark 6.14. Again, the bound is not the best possible, but is adequate for our
purposes. The extremal set (i.e., the one of given area that maximises width) is again
an equilateral triangle.

To resume: With the aim of establishing a contradiction we are assuming the exis-
tence of a function f : K → R satisfying (6.9). We may further assume (by adding an
appropriate constant function to f) that Eµ f = 0. This additional assumption will be
convenient on the first leg of our journey towards the contradiction.

Claim 6.15. Assume f : K → R satisfies inequality (6.9), and Eµ f = 0. Then, for
every ε > 0, there is a convex subset K1 ⊆ K satisfying∫

K1

h dµ < λ

∫
K1

f2 dµ as well as

∫
K1

f dµ = 0,

and such that K1 lies in the box [0, D]× [0, ε]n−1 in some Cartesian coordinate system.

Proof. Suppose, for some j ≥ 2, that Kj is a violating set which lies in [0, D]j× [0, ε]n−j ,
and that

∫
Kj
f dµ = 0; i.e., we have already shrunk our violating set down on n − j

coordinates. (The base case Kn = K is of course covered by (6.9).) To shrink along a
further coordinate we use a beautiful divide-and-conquer argument due to Payne and
Weinberger: see Bandle [4, Thm 3.24].

Let R be the projection of Kj onto the first two (i.e., “fat”) axes. Let x be a
point satisfying the conditions of Lemma 6.11. Consider all (n− 1)-dimensional planes
through x whose normals lie in the 2-dimensional plane spanned by the first two axes.

4In some sense, width it is the opposite of diameter, which may be defined as the maximum such
distance. This was not how we defined diameter in §6.2, but the two definitions are equivalent.
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These planes project to lines through x in the plane of R. Among these planes there is
at least one, say H, such that∫

Kj∩H+

f dµ =

∫
Kj∩H−

f dµ = 0.

To see this, choose any (n− 1)-dimensional plane G through x whose normal lies within
the plane of R. If G does not already have the desired property, then, since

∫
Kj∩G+ f dµ+∫

Kj∩G− f dµ = 0, one integral or the other has to be positive. By rotating G about x

by an angle of π, the signs exchange. So by continuity and the mean value theorem we
have to have hit the sought-for H at some point.

It is easy to convince oneself that Kj intersected with one side of H (i.e., either
Kj ∩H+ or Kj ∩H−) is also a violating set, in the sense that the ratio (6.10) is bounded
by λ when S = Kj ∩H+ (or S = Kj ∩H−, as appropriate). Now iterate this procedure.
By Lemma 6.11, the area of the projection R of the convex body drops by a constant
factor at each iteration, and must eventually drop below 1

2ε
2. At this point the width

of R, by Lemma 6.13, is at most ε. Then, rotating the fat axes as appropriate, the
projection of the convex body onto (say) the first of these axes is a line segment of
length at most ε. The convex set now has exactly the properties we require of the set
Kj−1, i.e., the same properties as Kj , but with j − 1 replacing j. Hence by induction
we can find our set K1.

The above line of argument requires at least two fat dimensions in order to provide
enough freedom in selecting the plane H. We need a new approach in order to shrink
the needle-line set along the remaining fat dimension.

Claim 6.16. Let K1 and f be as in the conclusion of Claim 6.15, δ be as in Lemma 6.4,
and let η := c3δ/

√
n where c3 > 0 is any constant. Then, under the curvature condi-

tion (6.3), there is a convex subset K0 ⊆ K1 satisfying

(6.11)

∫
K0

h dµ <
1

10

∫
K0

(f − f̄ )2 dµ

where

(6.12) f̄ =
1

µ(K0)

∫
K0

f dµ,

and such that K0 lies in the box [−η, η]× [0, ε]n−1 in some Cartesian coordinate system.

Remark 6.17. We will choose the constant c3 later; in order to obtain an eventual
contradiction, it will need to be small enough. The choice of c3 will then determine the
universal constant c2 of Theorem 6.7: the smaller c3, the smaller c2.

Our strategy for proving Claim 6.16 is to chop K1 into short sections and show that
at least one of these sections (or perhaps the union of two adjacent ones) satisfies the
inequality (6.11). (Refer to Figure 6.6.) Before embarking on the proof proper, we need
another geometric lemma, which is a consequence of the Brunn-Minkowski Theorem;
the proof is again deferred to §6.5.
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S0 S1 S2 Sm−1Sm−2

U0

U1

U2

U3

U4
Um−2

η

K1 :

Figure 6.6: Partitioning of K1

Lemma 6.18. Let convex body K1 be partitioned into m pieces S0 . . . Sm−1 of equal
width by planes orthogonal to a fixed axis. Then the sequence

1

voln S0
,

1

voln S1
, . . . ,

1

voln Sm−1

is convex.

We are ready to resume the chopping argument.

Proof of Claim 6.16. Let convex body K1 be partitioned into m pieces by planes or-
thogonal to the fat axis, as specified in Lemma 6.18, so that each piece Si has width
η = c3δ/

√
n. Additionally, define Ui := Si ∪ Si+1 for i = 0, 1, . . . ,m − 2. Note that

m = O(D
√
n/δ). Using Lemma 6.5, we find

(6.13)

∫
K1

f2 dµ =
m−1∑
i=0

∫
Si

(f − f̄i)2 dµ︸ ︷︷ ︸
A

+
m−1∑
i=0

µ(Si)f̄
2
i︸ ︷︷ ︸

B

,

where for convenience we define

f̄i :=
1

µ(Si)

∫
Si

f dµ.

In the case that sum A is greater or equal to sum B, we readily find a piece Si that
serves as a violating set. We start with

m−1∑
i=0

∫
Si

h dµ =

∫
K1

h dµ(6.14)

< λ

∫
K1

f2 dµ by assumption

≤ 2λ
m−1∑
i=0

∫
Si

(f − f̄i)2 dµ by (6.13) and A ≥ B.(6.15)

Comparing sums (6.14) and (6.15) we see there must be an Si such that∫
Si

h dµ ≤ 2λ

∫
Si

(f − f̄i)2 dµ.
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Setting K0 = Si satisfies the conclusion of the claim with plenty to spare. (Note in this
context that λ = O(n−2).)

The case B > A is a little more difficult. Using the alternative expression for variance
which we have seen before, and recalling that the expectation of f with respect to µ onK1

is 0, we have

µ(K1)

∫
K1

f2 dµ < 2µ(K1)

m−1∑
i=0

µ(Si)f̄
2
i since B > A

= 2
∑

0≤i<j<m
µ(Si)µ(Sj)(f̄i − f̄j)2 using (5.5).(6.16)

Our aim is to replace the r.h.s. of (6.16) by a sum with similar terms, but restricted to
adjacent pairs i, j. This will enable us to finish with an argument similar to the A ≥ B
case.

For convenience, we introduce the abbreviation wi = µ(Si), and set

(6.17) ai,j := wiwj

j−1∑
k=i

wk + wk+1

wkwk+1
≤ 2wiwj

j∑
k=i

1

wk
.

Inequality (6.16) may be massaged as follows:

µ(K1)

∫
K1

f2 dµ < 2
∑
i<j

wiwj(f̄i − f̄j)2

= 2
∑
i<j

wiwj

[
j−1∑
k=i

(f̄k − f̄k+1)

]2

= 2
∑
i<j

wiwj

[
j−1∑
k=i

√
wk + wk+1

wkwk+1
·
√

wkwk+1

wk + wk+1
(f̄k − f̄k+1)

]2

≤ 2
∑
i<j

ai,j

j−1∑
k=i

wkwk+1

wk + wk+1
(f̄k − f̄k+1)

2,(6.18)

where the final inequality is Cauchy-Schwarz combined with (6.17). Define f̂k to be the
expectation of f over Uk = Sk ∪ Sk+1:

f̂k :=
1

µ(Uk)

∫
Uk

f dµ =
wkf̄k + wk+1f̄k+1

wk + wk+1
.

Then, by Lemma 6.5,

wkwk+1

wk + wk+1
(f̄k − f̄k+1)

2 = wk(f̄k − f̂k)2 + wk+1(f̄k+1 − f̂k)2

≤
∫
Uk

(f − f̂k)2 dµ(6.19)

(The first line may be viewed as the special case |Ω| = 2 of (5.5), or may be verified
by elementary algebraic manipulation. Inequality (6.19) comes from Lemma 6.5, noting
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that the first sum on the r.h.s. of (6.6) is clearly positive.) Applying bound (6.19) to the
terms in (6.18) yields

(6.20) µ(K1)

∫
K1

f2 dµ < 2
∑
i<j

ai,j

j−1∑
k=i

∫
Uk

(f − f̂k)2 dµ.

Taking stock momentarily: inequality (6.20) appears to be telling us that if the variance
of f is large on K1 then it must be large on some Uk; but there is still some work to be
done on the way to quantifying this effect.

Recall that

wi = µ(Si) = L−1
∫
Si

`(x) dx,

where L =
∫
K `(x) dx. Thus, by Lemma 6.4,

(6.21) 0.4L−1 voln Si ≤ wi ≤ L−1 voln Si,

leading to the following upper bound on ai,j :

ai,j ≤ 2wiwj

j∑
k=i

L

0.4 voln Sk
by (6.17) and (6.21)

≤ 2.5wiwjL (j − i+ 1)
( 1

voln Si
+

1

voln Sj

)
by Lemma 6.18

≤ 2.5(j − i+ 1)(wi + wj) by (6.21).(6.22)

Since j − i + 1 never exceeds m, we have the following crude bound on the sum of the
ai,j : ∑

i<j

ai,j ≤ 2.5
∑
i<j

(j − i+ 1)(wi + wj)

≤ 2.5m
∑
i<j

(wi + wj)

≤ 2.5m2
∑
i

wi(6.23)

= 2.5m2µ(K1).(6.24)

To see (6.23), fix attention on a particular index k and note that wk occurs exactly m−1
times in the double sum.

Returning now to (6.20),

µ(K1)

∫
K1

f2 dµ < 2
∑
i<j

ai,j

j−1∑
k=i

∫
Uk

(f − f̂k)2 dµ

≤ 2
∑
i<j

ai,j

m−2∑
k=0

∫
Uk

(f − f̂k)2 dµ

≤ 5m2µ(K1)

m−2∑
k=0

∫
Uk

(f − f̂k)2 dµ by (6.24),
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z2z1

2η

δ

K0

Figure 6.7: “Needle like” body K0

from which

(6.25)

∫
K1

f2 dµ ≤ 5m2
m−2∑
k=0

∫
Uk

(f − f̂k)2 dµ.

Inequality (6.25) is the one we sought, expressing the fact that if the variance of f is
large on the whole of K1 then it must be fairly large on some piece Uk. Proceeding now
by analogy with the A ≤ B case, using (6.25) and the conclusion of Claim 6.15,

m−2∑
k=0

∫
Uk

h dµ ≤ 2

∫
K1

h dµ < 2λ

∫
K1

f2 dµ ≤ 10m2λ
m−2∑
k=0

∫
Uk

(f − f̂k)2 dµ.

Therefore there must exist a k such that

(6.26)

∫
Uk

h dµ < 10m2λ

∫
Uk

(f − f̂k)2 dµ.

By setting c2 sufficiently small, specifically c2 < c23/100, we obtain

10m2λ = 10

(
D
√
n

c3δ

)2 c2δ2
D2n

<
1

10
.

Setting K0 := Uk, we recognise (6.26) as the inequality promised in the statement of the
claim. This concludes the case B > A and hence the proof.

We pick up the proof of Theorem 6.7. At the outset we assumed, with a view to
obtaining a contradiction, the converse of (6.8). Now, from Claims 6.15 and 6.16, we
deduce the existence of a convex set K0 ⊂ K satisfying inequality (6.11) such that K0

is contained in a prism of height 2η whose cross section is an (n− 1)-dimensional cube
of side ε. We are close to obtaining the desired contradiction.

Let C be the centre axis of the prism, and let z1 and z2 be the points at which C
intersects the end facets of the prism. (Refer to Figure 6.7.) Let δ′ := δ − ε

√
n, and

choose ε sufficiently small that

(6.27) volnB(0, δ′) ≥ 0.9 volnB(0, δ).
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z1 z2

δ
′

Boundary of K
K0

Figure 6.8: Construction of the set I (shown shaded)

(Recall that we are free to choose ε as small as we like.) Set I := B(z1, δ
′)∩B(z2, δ

′)∩K.
(Refer to Figure 6.8.) We shall argue that by choosing c3 (and hence η) sufficiently small
we can ensure

(6.28) voln
(
B(z1, δ

′) ∩B(z2, δ
′)
)
≥ 0.8 volnB(0, δ),

and hence

(6.29) voln I = voln
(
B(z1, δ

′) ∩B(z2, δ
′) ∩K

)
≥ 0.2 volnB(0, δ).

The calculation supporting (6.28) proceeds exactly as in the proof of Lemma 6.4.
Divide B(z1, δ

′) ∩ B(z2, δ
′) into two congruent pieces by the plane bisecting the line

(z1, z2) and orthogonal to it. Each piece can be viewed as a half-ball less a segment
that can be contained in a cylinder of height η (= c3δ/

√
n ) and radius δ′ ≤ δ. By

setting c3 small enough — refer to the calculation in the proof of Lemma 6.4 — we may
ensure that the volume of this cylinder is less than 0.05 volnB(0, δ). Now, by (6.27), the
combined volume of the two half balls is at least 0.9 volnB(0, δ), so after removing the
two segments we are still left with a set of volume 0.8 volnB(0, δ), as claimed in (6.28).
Inequality (6.29) is now immediate: just observe that the piece of B(z1, δ

′) ∩ B(z2, δ
′)

that we loose when we intersect with K is contained in B(z1, δ)\K, which by Lemma 6.4
has volume at most 0.6 volnB(0, δ).

Inequality (6.29) expresses one key property of I, namely that its volume is not too
small. The other key property is that every point in I may be reached from any point
in K0 in one step of the ball walk. For by construction,

sup
{
‖x− y‖ : x ∈ C and y ∈ I

}
≤ δ′,

from which, by the triangle inequality,

sup
{
‖x− y‖ : x ∈ K0 and y ∈ I

}
≤ δ′ + ε

√
n = δ.

Since I ⊆ K, we may conveniently reformulate this fact as

(6.30) I ⊆ B(x, δ) ∩K, for all x ∈ K0.
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Region R
Cθ1

Cθ2

Cθ3

Figure 6.9: A paradoxical subset of R.

So, ∫
K0

h dµ ≥ 1

2

∫
K0

µ(dx)

voln(B(x, δ) ∩K)

∫
I

(
f(x)− f(y)

)2
dy by (6.7, 6.30)

≥ 1

2 volnB(0, δ)

∫
K0

µ(dx)

∫
I

(
f(x)− f(y)

)2
dy

≥ 1

2 volnB(0, δ)

∫
I
dy

∫
K0

(
f(x)− f(y)

)2
µ(dx) (Fubini)

≥ 1

2 volnB(0, δ)

∫
I
dy

∫
K0

(
f − f̄ )2 dµ(6.31)

≥ 1

10

∫
K0

(f − f̄ )2 dµ by (6.29),

where f̄ , as in (6.12), is the µ-expectation of f over K0. Inequality (6.31) uses a simple
fact about variance, namely that

∫
K0

(f − c)2 dµ is minimised by setting c = f̄ . But the
combined inequality contradicts (6.11). This completes the proof of Theorem 6.7.

6.5 Proofs of the geometric lemmas

In this section we tie up the loose ends by providing proofs for the three geometric
lemmas used in the proof of Theorem 6.7.

Proof of Lemma 6.11. The following proof is due to Alan Riddell; I thank him and also
Toby Bailey for communicating it to me.

Consider all possible partitions of R into three regions of equal area by a pair of
parallel lines. (There is one partition corresponding to each orientation for the lines.)
Let {Cθ : 0 ≤ θ < π} be an indexing of the central bands in these partitions, considered
as closed sets. Suppose there exist bands Cθ1 , Cθ2 and Cθ3 with no point in common.
The set R2\(Cθ1∪Cθ2∪Cθ3) consists of six unbounded regions and one triangle. Consider
the partition of R into seven pieces obtained by extending the edges of the triangle to
the boundary of R, and in particular the four pieces shown shaded in Figure 6.9. Each
of the shaded pieces other than the central triangle has area at least 1

3 vol2R, since it
is the intersection of two regions of R of area 2

3 vol2R. The central triangle itself has
positive area. Thus the total shaded area exceeds vol2R, a contradiction.
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η

K1

S

x+ S

x

Figure 6.10: Slab S sweeping over K1

Hence every triple from {Cθ} has a common point and, by Helly’s theorem (see
Egglestone [31, Thm 17]), the intersection

⋂
θ Cθ of all central bands is non-empty. Any

point in this intersection will do as our choice for x.

Proof of Lemma 6.13. Suppose R is a convex region in R2 of area A. Let `1 and `′1 be
parallel supporting lines of R, touching R at the points α and α′. We may arrange for
lines `1 and `′1 to be perpendicular to the line segment [α, α′], e.g., by choosing [α, α′]
to be a diameter of R. Now let `2 and `′2 be supporting lines of R perpendicular to `1
and `′1, touching R at the points β and β′. The rectangle formed by these supporting
lines has area at least w2, where w is the width of R. It is easy to see that the convex
hull of {α, α′, β, β′} has area 1

2w
2. (The fact that [α, α′] is parallel with an edge of the

rectangle is crucial here.) But the convex hull of {α, α′, β, β′} is contained within R. It
follows that A ≥ 1

2w
2.

Proof of Lemma 6.18. For what follows, we abbreviate voln Si by vi. In order to prove
the lemma, the notation of Minkowski sums is useful: Let A and B be sets of points and
λ a real number. A point p is represented by the vector pointing from 0 to p. Then we
define the set A+ B as the set of points a+ b with a ∈ A and b ∈ B. Furthermore, for
a scalar λ, λA is the set of points λa with a ∈ A.

We prove the lemma by showing properties of the function voln
(
(xe1 + S)∩K1

)
for

x ∈ [0, D], where S is a “slab” of width η, and e1 is a unit vector parallel to the fat axis.
(The slab is defined as the intersection of two halfspaces orthogonal to the fat axis and
distant η apart; assume that the origin is placed at the leftmost point of K1.) Thus we
move the slab S from left to right and observe how the volume of the intersection K1∩S
behaves. Note that vi := voln Si = voln

(
(iηe1 + S) ∩K1

)
. (Refer to Figure 6.10.)

The proof of the lemma relies on a theorem of Brunn and Minkowski (see Eggle-
stone [31, Thm 46]).

Theorem 6.19 (Brunn-Minkowski). Let K ′ and K ′′ be two convex bodies in Rn. Then

voln(K ′ +K ′′)1/n ≥ voln(K ′)1/n + voln(K ′′)1/n.

To continue with the proof of Lemma 6.18, observe that

(6.32) (λx+ (1− λ)y + S) ∩K1 ⊇ λ((x+ S) ∩K1) + (1− λ)((y + S) ∩K1).
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To verify this, assume z is in the set on the right hand side. This means that we can
write z = z′ + z′′ with z′ ∈ λ((x+ S) ∩K1) and z′′ ∈ (1− λ)((y + S) ∩K1). Therefore,
z′ ∈ λK1 and z′′ ∈ (1− λ)K1. Thus z ∈ K1. On the other hand, we have z′ ∈ λ(x+ S)
and z′′ ∈ (1− λ)(y + S) which leads to z ∈ λx+ (1− λ)y + S.

Using the Brunn-Minkowski Theorem in conjunction with (6.32), we find

voln
[
(λx+ (1− λ)y + S) ∩K1

]1/n
≥ voln

[
λ((x+ S) ∩K1) + (1− λ)((y +K1) ∩K1)

]1/n
≥ voln[λ((x+ S) ∩K1)]

1/n + voln[(1− λ)((y + S) ∩K1)]
1/n

= λ voln[(x+ S) ∩K1]
1/n + (1− λ) voln[(y + S) ∩K1]

1/n.

In the last step, we used voln(λK) = λn volnK. As a special case of this inequality, we

find that the sequence (v
1/n
i ) is concave:

(6.33) 2v
1/n
i ≥ v1/ni−1 + v

1/n
i+1

Now it is easily checked that if (ai) is any concave sequence, and g any monotone
non-increasing convex function, then the sequence (g(ai)) is convex. The lemma then

follows from (6.33) by setting ai = v
1/n
i and g(x) = x−n.

6.6 Relaxing the curvature condition

What happens if we do not have the curvature condition (6.3)? As we shall see, the
question is of some importance, not least because the standard reduction from volume
estimation to sampling introduces sharp corners, even if these are absent in the given
convex body K. The most obvious consequence of dropping (6.3) is that the expected
number of Metropolis steps to simulate a single heat-bath step is no longer bounded by a
constant. Worse, as we have argued, the expected number steps may be exponential in n
for a worst-case choice for the current point Xt = x. The most we can hope for is that,
in a typical evolution of the ball walk, we are very unlikely to visit this bad region of K.
This turns out indeed to be the case, provided δ = O(1/

√
n ), the body K contains the

unit ball B(0, 1), and we make a reasonable choice of initial state. See Kannan, Lovász
and Simonovits [50].

Remark 6.20. To get a feel for what is going on, imagine the Metropolis ball walk in
some n-dimensional polytope K. In order to mix, the walk needs potentially to “see all
the boundary” of K, otherwise it cannot gain information about the body. In the case
of a polytope this means that we would have to treat the case of coming close to facets
(i.e., (n − 1)-dimensional faces) of the polytope. There the random walk can “learn” a
lot about the shape of K. But it does not necessarily have to come close to smaller-
dimensional faces, where the walk might get stuck for long periods. Not surprisingly,
the main technical difficulties then arise from showing that close encounters with low-
dimensional faces are rare.

A problem arises, however, before we ever reach the comparison of the heat-bath and
Metropolis versions of the ball walks. Specifically, our derivation of the key Poincaré
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inequality contained in Theorem 6.7 made use of the curvature condition at two points:
at inequalities (6.21) and (6.29), both of which rely on Lemma 6.4, and both of which
fail in the absence of (6.3).

We may avoid the first of these inequalities entirely, thus removing the curvature
condition (6.3) from the statement of Claim 6.16. First we make some observations
concerning the local conductance `.

Lemma 6.21. The local conductance ` defined in (6.4) satisfies:

(i) `(x)1/n is concave over K;

(ii) ln ` is Lipschitz; specifically
∣∣ln `(x)− ln `(y)

∣∣ ≤ n

δ
‖x− y‖, for all x, y ∈ K.

Proof (sketch). We are in a similar situation to that already encountered in the proof
of Lemma 6.18: a convex body — there a slab defined by parallel (n − 1)-dimensional
planes, here a ball of radius δ — is translated in a straight line and its intersection
with K studied with the aid of the Brunn-Minkowski Theorem (Theorem 6.19). The
proof of part (i) here is analogous.

For part (ii), observe that the definition of the function `, presented in (6.4), makes
sense outside its official domain, namely K. Observe also that part (i) continues to hold
over the larger region K + B(0, δ), the Minkowski sum of K and the ball of radius δ.
Given x, y ∈ K, let z be the point colinear with x and y, at distance δ from y, and on
the opposite side of y to x. Note that z ∈ K +B(0, δ). Thus, by part (i),

δ `(x)1/n + ‖x− y‖ `(z)1/n ≤ (δ + ‖x− y‖) `(y)1/n,

and hence
`(x)

`(y)
≤
(
δ + ‖x− y‖

δ

)n
.

Taking the logarithm of both sides,

ln `(x)− ln `(y) ≤ n ln

(
δ + ‖x− y‖

δ

)
≤ n ‖x− y‖

δ
.

Since the argument is symmetric in x and y, part (ii) of the lemma follows.

We may now avoid inequality (6.21) by taking a more direct route, which is opened
up by replacing Lemma 6.18 by:

Lemma 6.22. With S0, S1, . . . , Sm−1 as in Lemma 6.18, the sequence

µ(S0)
1/2n, µ(S1)

1/2n, . . . , µ(Sm−1)
1/2n

is concave. Consequently, the sequence

1

µ(S0)
,

1

µ(S1)
, . . . ,

1

µ(Sm−1)

is convex.
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This lemma follows from a functional version of the Brunn-Minkowski Theorem due
to Dinghas [24, Satz 1]. We state this theorem in a slightly less general form than it
appears in [24].

Theorem 6.23 (Dinghas). Suppose A1 and A2 are non-empty, bounded, measurable
sets in Rn, and let A0 = A1 +A2 be the Minkowski sum of A1 and A2. Suppose further
that f1 and f2 are measurable functions defined on A1 and A2, respectively, and form
the function g0 defined by

g0(x) = sup
{(

(f1(x
′)1/r + f2(x

′′)1/r
)r

: x′ ∈ A1, x
′′ ∈ A2 and x′ + x′′ = x

}
,

for all x ∈ A0. If f0 is any measurable function on A0 satisfying f0(x) ≥ g0(x) for all
x ∈ A0, then[∫

A0

f0(x) dx

]1/(r+n)
≥
[∫

A1

f1(x) dx

]1/(r+n)
+

[∫
A2

f2(x) dx

]1/(r+n)
.

Proof of Lemma 6.22. In Theorem 6.23 make the following identifications: r = n, A1 =
Si−1, A2 = Si+1, f1 = f2 = ` and f0(x) = 2r`(x/2). By part (i) of Lemma 6.21, we then
have f0 ≥ g0, as required; also observe that 2Si ⊇ Si−1 + Si+1 = A0. The first claim in
Lemma 6.22 may then be read off from the concluding inequality of Theorem 6.23. The
second claim uses the same reasoning as in the final step of the proof of Lemma 6.18.
See also [55, Lemma 2.1].

Armed with Lemma 6.22, the upper bound on ai,j derived in the sequence of inequal-
ities ending at (6.22) — with improved constant 1 in place of 2.5 — follows directly from
the definition (6.17) of ai,j . This establishes Claim 6.16 in the absence of the curvature
condition (6.3).

The other place at which the curvature condition is used, namely in establish-
ing (6.29), is trickier to handle. (Note that we used it in going from (6.28) to (6.29).)
Our use of curvature is more substantial here, and we need to modify the partitioning
of the needle-like body K1 used in the proof of Claim 6.16 (see Figure 6.6) to recover
the proof. If we are prepared to settle for a Poincaré constant λ smaller by a factor n
(i.e., λ = c2δ

2/D2n2) then it is not too difficult to establish Theorem 6.7 in the absence
of (6.3), and we shall see presently how this is done. Getting the correct (up to a con-
stant factor) λ in the absence of (6.3) requires a more complicated analysis, which we
only sketch here.

What is it we were trying to achieve with inequality (6.29)? Well, the final contra-
diction required us to find a set I ⊆ K with the properties that: (i) every point of K0

is within distance δ of every point of I; and (ii) the ratio voln I/ voln(B(x, δ) ∩ K) is
bounded below by a universal constant for every x ∈ K0. Without (6.3) there is cur-
rently no guarantee that such a set I exists. However, if we chop K1 more finely, into
slabs of width η = c3δ/n (instead of η = c3δ/

√
n ), then we are assured to find the

required set I. This finer partition increases the number of slabs m by a factor
√
n, and

hence reduces the Poincaré constant by a factor n. We borrow the following lemma from
Kannan, Lovász and Simonovits [50, Lemma 3.5].
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Lemma 6.24. Suppose δ′ > 0, and x, y ∈ K with ‖x− y‖ ≤ δ′/
√
n. Then

voln(B(x, δ′) ∩B(y, δ′) ∩K)

≥ 1

1 + e
min

{
voln(B(x, δ′) ∩K), voln(B(y, δ′) ∩K)

}
.

Recall that voln(B(x, δ′) ∩ K) is proportional to `(x). (This is by definition (6.4)
of local conductance `.) Now, with η smaller than before, part (ii) of Lemma 6.21 (the
Lipschitz inequality for `) ensures that voln(B(x, δ′) ∩K) varies by at most a constant
factor as x ranges over K0. So, choosing δ′ a little less than δ, as before, we see that
the set I := B(z1, δ

′) ∩B(z2, δ
′) ∩K has the properties we desire: property (i) is by the

triangle inequality, and property (ii) is by Lemma 6.24. This establishes Theorem 6.7
without assumption (6.3) but with λ smaller by a factor n.

Exercise 6.25. Flesh out the details of the above proof sketch.

Finally, some inadequate pointers on how to drop assumption (6.3) without losing
the factor n in λ. Let’s step back and consider what we need to have in order to be
able to construct the contradictory set I, using Lemma 6.24. Certainly we need the
slabs in the decomposition to have width O(δ/

√
n ); but we also require that the local

conductance ` varies by at most a constant factor over each slab. As we have seen, these
two requirements can be met by using slabs of width O(δ/n), but then the number of
slabs increases, and our estimate of the Poincaré constant worsens.

So it seems that we need to partition K1 into slabs of unequal thickness, using thinner
slabs where ` is rapidly varying. We might as well use the coarsest possible partition
that will allow us to draw the final contradiction. Starting at the leftmost point of K1,
partition K1 into slabs S0, S1, . . . , Sm−1 as in Figure 6.6, finishing with slab Sm−1 at the
rightmost point of K1. Having created S0, S1 . . . , Si−1, choose the plane defining Si to
be the rightmost plane subject to the conditions:

(i) the distance from the previous plane (i.e., the thickness of slab Si) is at most
c3δ/
√
n; and

(ii) the local conductance `(x) varies by at most a factor 2 as x ranges over Si.

Thus the partition of K1 into slabs Si is the coarsest possible, subject to conditions (i)
and (ii).

Note that conditions (i) and (ii) together allow us to construct, using Lemma 6.24,
the set I that leads to the final contradiction. We need of course to fix up the proof
of Claim 6.16, which was conducted under the assumption that K1 is partitioned into
slabs of constant width O(δ/

√
n ). Specifically, we need work harder to prove the key

inequality (6.24).

Exercise 6.26. Complete the Proof of Theorem 6.7 (the Poincaré inequality) in the
absence of the curvature condition (6.3), using the programme outlined above. The main
technical challenge lies in reproving Claim 6.16 in the absence of (6.3), specifically in
re-establishing (6.24), taking due account of the amended partition of K1 into slabs. You
will find that the partition of Figure 6.6 (using the amended construction just presented)
can be divided into three sections: S0, . . . , S`−1, then S`, . . . , Sr−1 and Sr . . . , Sm−1,
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where the slabs in the middle section are all of full width η, and the others are all
of strictly smaller width. (Either or both of the outer sections may be empty.) The
existence of such a division relies on log-concavity of the local conductance `, which is a
consequence of Lemma 6.21(i). The middle section is dealt with exactly as before, since
the number of slabs contained within it is r− ` ≤ D/η = O(D

√
n/δ). In the left (right)

sections it can be shown that wi = µ(Si) is increasing (decreasing) geometrically; thus
the sum (6.17) is determined, up to a constant factor, by its first (last) term. (This step
uses log-concavity of ` and Brunn-Minkowski.) Thus it doesn’t matter so much that the
number of terms in the sum (i.e., slabs in the partition) may grow faster than O(D

√
n/δ).

Note that this is a challenging, verging on speculative, exercise. To keep the technical
complexities within bounds, you may want to assume δ = O(D/

√
n ). This is not a

restriction in the volume application, where δ = Θ(1/
√
n ) and D = Ω(1). However, the

assumption is a definite blemish, in that Theorem 6.7 should hold even when δ is of the
same order as D.

Remark 6.27. Kannan, Lovász and Simonovits [50] restrict the function f to be an
indicator function f : K → {0, 1}. The parameter Φ corresponding to λ in the inequality

EP (f, f) ≥ ΦVarµ f, for all (measurable) f : K → {0, 1}

is called the conductance of the ball walk. Since the class of functions f is restricted, the
conductance Φ is potentially larger than λ. However it is known — a version of Cheeger’s
inequality — that λ ≥ 1

2Φ
2. (See Sinclair [71] or Aldous and Fill [2] for relationships

between various MC parameters, including these two.) The approach to the ball walk
in [50] is to show that the conductance Φ is of order δ/D

√
n, which leads by Cheeger to

the required bound on λ. However, the restriction of f to the class of indicator functions
unfortunately does not seem to lead to any significant technical simplification in the
proof.

6.7 Using samples to estimate volume

In order to estimate the volume of a convex body using our sampling procedure, we follow
the basic “product of ratios” approach used in earlier examples. Briefly, the procedure
is as follows.

Given our convex body K, we define a series of concentric balls B0 ⊂ B1 ⊂ · · · ⊂ Bk
such that B0 ⊆ K and K ⊆ Bk. (Refer to Figure 6.11.) Additionally, we require that
the volume of these balls does not grow too quickly, say volnBi+1 ≤ 2 volnBi. We can
estimate the ratios

%i =
voln(Bi ∩K)

voln(Bi+1 ∩K)

by repeatedly sampling points from Bi+1 ∩ K and determining the fraction of these
points which lie also in Bi ∩ K. Let Zi be an estimate for %i obtained by taking the
sample mean. We then get the desired estimate of volnK from

volnK ≈ volnB0 ·
k−1∏
i=0

1

Zi
.

Of course, we may calculate volnB0 from an explicit formula.
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B0

B1

B2

B3

K

Figure 6.11: A convex body K and concentric balls

We have glossed over important issues here, not least the obvious fact that k must
not be too large if we are to control the variance of our product estimator for volnK. If
K is “well rounded” then, indeed, k need not be very large. But if K is very elongated
it will be necessary to apply a linear transformation to K to render it well rounded. For
details of this step, and many further refinements, refer to [50].

6.8 Appendix: a proof of Corollary 6.8

We work with the lazy version of the ball walk, which stays put with probability 1
2 . For

the first leg, we follow closely the proof of Theorem 5.6, but replacing sums by integrals.
Because of the close similarity of the arguments we record only the main steps here:

[Pzzf ](x) =
1

2

∫
K
P (x, dy)

(
f(x) + f(y)

)
,

Varµ(Pzzf) ≤ 1

4

∫
K
µ(dx)

∫
K
P (x, dy)

(
f(x) + f(y)

)2
,

and

Varµ f =
1

2

∫
K
µ(dx)

∫
K
P (x, dy)

(
f(x)2 + f(y)2

)
.

It follows that

Varµ f −Varµ(Pzzf) ≥ 1

4

∫
K
µ(dx)

∫
K
P (x, dy)

(
f(x)− f(y)

)2
=

1

2
EP (f, f)

≥ 1

2
λVarµ f,
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and hence

Varµ(Pzzf) ≤
(

1− λ

2

)
Varµ f.

Iterating the above, we obtain

(6.34) Varµ(P tzzf) ≤
(

1− λ

2

)t
Varµ f ≤ exp(−1

2λt).

Now suppose A is measurable subset of K, and let f : K → R be the function that
is 1 on A and 0 outside A. Assume that we start our walk from a point X0 selected
uniformly at random from the ball B = B(x, δ) ⊆ K. (This is, of course, equivalent to
starting the walk at point x at time −1.) For ε > 0 we want to find a time t such that the
variation distance of the t-step distribution from stationarity is at most ε; equivalently,
we require

(6.35) |Pr(Xt ∈ A)− µ(A)| =
∣∣∣∣ 1

volnB

∫
B

{
[P tzzf ](y)− µ(A)

}
dy

∣∣∣∣ ≤ ε,
uniformly over the choice of A. (In this context, recall the definition of total variation
distance (3.2), and the fact that [P tzzf ](y) may be interpreted as Pr(Xt ∈ A | X0 = y).)

Noting Eµ(P tzzf) = µ(A), we find

Varµ(P tzzf) ≥
∫
B

{
[P tzzf ](y)− µ(A)

}2
µ(dy)

≥ 0.4

volnK

∫
B

{
[P tzzf ](y)− µ(A)

}2
dy(6.36)

≥ 0.4 volnB

volnK

[
1

volnB

∫
B

{
[P tzzf ](y)− µ(A)

}
dy

]2
,(6.37)

where inequality (6.36) follows from the definition (6.5) of µ and Lemma 6.4; and (6.37)
from the fact that the expectation of the square of a r.v. is at least as large as the square
of its expectation. Thus, to achieve the desired bound (6.35) on variation distance, we
require

Varµ(P tzzf) ≤ 0.4 ε2 volnB

volnK
.

Now, the volume of K is maximised, for specified diameter D, when K is a ball of
radius D/2. Thus it is enough that we achieve

Varµ(P tzzf) ≤ 0.4 ε2
(

2δ

D

)n
.

According to (6.34), this inequality will hold, provided

t ≥
⌈

2

λ

(
ln

{
5

2ε2

}
+ n ln

{
D

2δ

})⌉
.

This is the mixing time claimed in Corollary 6.8, with i(µ0) specialised to an initial
distribution that is uniform and supported on a ball of radius δ.
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Inapproximability

Not all counting problems are efficiently approximable. We open with a simple example.

Fact 7.1. Unless RP = NP there can be no FPRAS for the number of Hamilton cycles
in a graph G.

Informally: assuming, as seems likely, that there exist predicates in NP that admit no
polynomial-time randomised algorithm, then no FPRAS for Hamilton cycles can exist.
Still informally: the reason is that an FPRAS for Hamilton cycles would, in particular,
need to distinguish the zero from non-zero case with reasonable probability.

To apply a rigorous interpretation to Fact 1.1, we need to divert briefly into ran-
domised complexity classes, in particular RP and BPP. A predicate ϕ : Σ∗ → {0, 1} is
in the class RP if there is a polynomial-time witness-checking predicate1 χ : Σ∗×Σ∗ →
{0, 1} and a polynomial p such that:

(i) if ¬ϕ(x) then ¬χ(x,w) for all putative witnesses w ∈ Σp(|x|);

(ii) if ϕ(x) then Pr[χ(x,w)] ≥ 1
2 , where w is assumed to be chosen u.a.r. from the set

Σp(|x|).

The predicate ϕ is in the class BPP if there exist χ and p, as above, satisfying:

(i′) if ¬ϕ(x) then Pr[χ(x,w)] ≤ 1
4 ;

(ii′) if ϕ(x) then Pr[χ(x,w)] ≥ 3
4 ,

where, again, w is assumed to be chosen u.a.r. from the setΣp(|x|). Thus RP (respectively,
BPP) is the set of predicates that can be decided in randomised polynomial time with
one-sided (respectively, two-sided) error.

Remarks 7.2. (a) There is no significance in the exact thresholds 1
2 , 1

4 and 3
4 appear-

ing in the above definitions. By designing appropriate simulations, one can show
that 1

2 can be replaced by any constant strictly between 0 and 1, and 1
4 and 3

4 by
any constants c1, c2 with 0 < c1 < c2 < 1.

(b) It is immediate from the definition of RP that RP ⊆ NP. No similar inclusion is
known for BPP.

1Refer to Chapter 2 for the general setting.

85
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Now, comparing the definition of BPP with that of FPRAS, we see that the existence
of an FPRAS for the number of Hamilton cycles in a graph G would immediately imply
that the decision problem — is G Hamiltonian? — is in BPP. Since the decision problem
is NP-complete, it would follow that NP ⊆ BPP. The apparently stronger conclusion
RP = NP follows from the complexity-theoretic fact:

Fact 7.3. If NP ⊆ BPP then NP ⊆ RP (and hence RP = NP).

See, e.g., Papadimitriou’s textbook [67, Problem 11.5.18].

Remark 7.4. The converse to Fact 1.1 is also true: if RP = NP then there is an FPRAS
for the number of Hamilton cycles in a graph. Whereas Fact 1.1 is trivial, its converse
is not, relying as it does on the bisection method of Valiant and Vazirani [77]. See
Chapter 10 of Goldreich’s lecture notes [38].

Of course, Hamiltonicity is not a distinguished NP-complete problem. More generally
we have:

Fact 7.5. (Informal statement.) If the decision version of a counting problem is NP-
complete, then the counting problem itself does not admit an FPRAS unless RP = NP.

Exercise 7.6. Provide a formal statement of Fact 1.5 using the notion of witness-
checking predicates.

Fact 1.5 instantly yields a large number of counting problems that, for a rather trivial
reason, do not admit an FPRAS (under a reasonable complexity-theoretic assumption).
We now turn to an example that does not admit an FPRAS for some non-trivial (though
only slightly non-trivial) reason.

Let us consider the independent sets counting problem:

Name. #IS.

Instance. A graph G.

Output. The number of independent sets2 of all sizes in G.

The decision version of #IS is trivial, since every graph has the empty set of vertices as
an independent set. Nevertheless, we shall see that #IS is hard to approximate under
some reasonable complexity-theoretic assumption. We shall make use of the optimisation
version of #IS:

Name. MaxIS.

Instance. A graph G.

Output. The size of a maximum independent set in G.

MaxIS is a classical NP-complete3 problem: see, e.g., Garey and Johnson [36, GT20].

Proposition 7.7. There is no FPRAS for #IS unless RP = NP.

2An independent set in graph G is a subset U ⊆ V (G) of the vertex set of G such that no edge of G
has both endpoints in U .

3To make formal sense of this claim, one would need to make MaxIS into a decision problem. This
could be done, in the usual way, by specifying a bound k ∈ N as part of the problem instance and asking
whether G has an independent set of size at least k.
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G

G′

Kr,r

blocks of

r vertices

Figure 7.1: The construction.

Proof. We use a reduction from MaxIS. Let G = (V,E) be an instance of MaxIS. We
want to construct a graph G′ = (V ′, E′), being an instance of #IS, in such a way that
typical independent sets in G′ reveal maximum independent sets in G.

The construction replaces vertices by blocks of r vertices and edges by complete
bipartite graphs between blocks; formally,

V ′ = V × {0, . . . , r − 1},
and

E′ =
{
{(u, i), (v, j)} : {u, v} ∈ E and i, j ∈ {0 . . . r − 1}

}
.

(See Figure 1.1.)

Each independent set I ′ in G′ projects to an independent set

I =
{
v ∈ V : there exists i ∈ {0 . . . r − 1} such that (v, i) ∈ I ′

}
in G. (Since each edge of G corresponds to a complete bipartite subgraph in G′, the
set I is indeed independent in G.) Suppose |I| = k; then there are (2r−1)k independent
sets I ′ in G′ that project to the specific independent set I in G. We consider the two
complementary situations:

(a) An independent set of size k exists in G. Then there are at least (2r − 1)k inde-
pendent sets in G′.

(b) The maximum independent set in G has size less than k. Then there are at most
2n(2r − 1)k−1 independent sets in G′, where n = |V |.

Setting r = n+ 2, we have

(2r − 1)k = (2n+2 − 1)(2r − 1)k−1 ≥ 2× 2n(2r − 1)k−1;

in other words, the minimum possible number of independent sets in case (a) exceeds the
maximum possible number in case (b) by a factor 2. An FPRAS for #IS would be able to
distinguish cases (a) and (b) with high probability, providing us with a polynomial-time
randomised algorithm (with two-sided error) for MaxIS. As we have seen, this would
imply RP = NP.
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Remark 7.8. Note that the reduction proves something much stronger than the non-
existence of an FPRAS for #IS. It shows (under the assumption RP 6= NP) that there in
no polynomial time randomised algorithm that approximates the number of independent
sets even to within any fixed exponential factor. To see this, simply set r = cn with c > 1.
The statement can be strengthened even further: see Dyer, Frieze and Jerrum [27].

7.1 Independent sets in a low degree graph

Proposition 1.7 is evidence that the number of independent sets in a graph is hard to
approximate in general, so we need to restrict the class of problem instances to make
progress. One interesting way to do this is to place a bound ∆ on the maximum degree
of the instance G. Then we can investigate how the computational difficulty of of #IS
varies as ∆ does. On the positive side we have the following result.

Theorem 7.9 (Luby and Vigoda). There is an FPRAS for #IS when ∆ = 4.

Proof (sketch). As usual, it is enough to be able to sample independent sets almost
uniformly at random in polynomial time.

Independent sets are sampled using an MC based on edge updates. View an inde-
pendent set I in graph G = (V,E) as a function I : V → {0, 1}, where I(v) = 1 has the
interpretation that v is in the independent set. The state space of the MC is the set of
all independent sets in G. Transition probabilities are specified by the following trial,
where X0 : V → {0, 1} is the initial independent set.

1. Choose an edge {u,w} ∈ E, u.a.r.

2. Begin to construct a new independent set I as follows: with equal probability (13
in each case) set (a) I(u) := 0 and I(w) := 0; (b) I(u) := 0 and I(w) := 1; or
(c) I(u) := 1 and I(w) := 0. (Note that these three cases correspond to the three
possible restrictions of an independent set in G to the edge {u,w}.)

3. For all v ∈ V \ {u,w} set I(v) := X0(v).

4. If I is an independent set then X1 := I, otherwise X1 := X0.

Informally, we are using edge-updates with Metropolis acceptance probabilities.
This MC can be shown to be rapidly mixing using the path-coupling method. Two

independent sets are considered to be adjacent if they differ at exactly one vertex. If
adjacent independent sets are considered to be at distance 1, the derived path-metric is
just Hamming distance. Suppose X0 and Y0 are adjacent; on the basis of a case analysis
of moderate complexity it is possible to conclude that the expected Hamming distance
between X1 and Y1 is at most 1. (For a regular graph with no small cycles there are four
“good edges” {u,w} whose selection may cause the distance to decrease, and twelve “bad
edges” which may cause the distance to increase. In the worst case, these two effects
are exactly in balance.) It follows that the mixing time of the MC scales quadratically
with n.

Exercise 7.10. Complete the proof of Theorem 1.9. To keep technical complexity to a
minimum, assume the graph G is triangle-free, i.e., contains no cycles of length 3. In case
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you need to refer to it, a complete analysis (in a more general setting where vertices in
the independent set are given weight or “fugacity” λ) is given by Luby and Vigoda [58].
Theorem 1.9 corresponds to the case λ = 1 of their result. Dyer and Greenhill [30] also
obtain a generalisation of Theorem 1.9, using a slightly different MC. Their proof has
the advantage of dispensing with triangle-freeness.

According to Theorem 1.9, approximately counting independent sets in a graph G
is tractable provided the maximum degree ∆ is small enough. We know that ∆ = 4 is
small enough, so what about ∆ = 5, 6, . . .? The reduction described in Proposition 1.7
constructs graphs of arbitrarily large degree, so it apparently leaves open the possibility
that there is an FPRAS for #IS for any fixed degree bound ∆. However, if we look
afresh at the construction of Theorem 1.9 in the light of inapproximability results for
the optimisation problem MaxIS, we discover that there is a definite upper bound on ∆.
This idea is due to Luby and Vigoda [58].

Proposition 7.11. There is no FPRAS for #IS when ∆ = 1188, unless RP = NP.

Proof. We know that MaxIS is NP-hard when restricted to graphs of maximum degree 4.
A result of Berman and Karpinski [6, Thm 1(iv)] tells us more: for any ε > 0, it is NP-
hard to determine the size of a maximum independent set in a graph G to within ratio
of 73

74 + ε, even when G is restricted to have maximum degree 4. (By “determining the

size. . . within ratio %” we mean computing a number k̂ such that %k ≤ k̂ ≤ k, where k
is the size of a maximum independent set in G.) In other words, the problem MaxIS is
polynomial-time (Turing) reducible to the approximate version of MaxIS, in which we
ask for a result within ratio 73

74 +ε. This result, like many other inapproximability results
for optimisation problems, rests on the powerful theory of probabilistically checkable
proofs (PCP).

So let G be a graph of maximum degree 4. Using our construction from the proof of
Theorem 1.7 with r = 297, we obtain a graph G′ of maximum degree 1188. We shall see
that even a rough approximation to the number of independent sets in G′ will provide
a close (within ratio 73

74 + ε) approximation to the size of the largest independent set
in G. Thus the existence of an FPRAS for #IS in graphs of maximum degree 1188 would
imply the existence of a polynomial-time randomised algorithm (with two-sided error)
for MaxIS. As before, this would in turn imply RP = NP.

We define J ′ to be the collection of all independent sets in G′. Let k be the size of a
maximum independent set in G. We have

(2r − 1)k ≤ |J ′| ≤ 2n(2r − 1)k,

or, taking the natural logarithm,

k ln(2r − 1) ≤ ln |J ′| ≤ n ln 2 + k ln(2r − 1).

Consider the following estimate for k:

k̂ =
ln |J ′| − n ln 2

ln(2r − 1)
;

it is clear that

k − n ln 2

ln(2r − 1)
≤ k̂ ≤ k.
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Recall that Brooks’s theorem [8, 10] asserts that any graph of maximum degree ∆ ≥ 3
that does not contain K∆+1 as a connected component is ∆-colourable. Assuming, as
we may, that G is connected, it follows that G is 4-colourable. Since any (and hence in
particular the largest) of the four colour classes is an independent set, k ≥ n/4. Thus

k

(
1− 4 ln 2

ln(2r − 1)

)
≤ k̂ ≤ k.

Note that, when r = 297,
4 ln 2

ln(2r − 1)
<

1

74
.

If we had an FPRAS for #IS restricted to graphs of maximum degree 1188 then we would
be able to approximate |J ′| (with high probability) within arbitrarily small constant
relative error, and ln |J ′| (and hence k̂) within arbitrarily small constant additive error.
But this in turn would provide an approximation to the size of the largest independent
set in G (with high probability) within ratio 73

74 + ε.

One might suspect that the degree bound ∆ = 1188 in Proposition 1.11 is quite a
bit larger than necessary, and this is indeed the case. Indeed, simply by tightening the
analysis of the construction used in the proof of Proposition 1.11, one can reduce the
degree ∆ in its statement by 10–20%.

Exercise 7.12. Using the same reduction, but improved estimates, show that Proposi-
tion 1.11 holds for some ∆ less than 1100. (I think ∆ = 964 is achievable.)

Using a technically more involved reduction, Dyer, Frieze and Jerrum have shown
that ∆ = 1188 may be replaced by ∆ = 25. That still leaves a large gap between
what is known to be tractable (∆ = 4) and intractable (∆ = 25); no doubt the upper
bound could be reduced slightly at the expense of additional technical complexity, but
a substantial gap would still remain.

To explore further the boundary between tractable and intractable requires us, at
present, to accept more circumstantial evidence. Consider any MC on independent sets
of a graph on n vertices. Let b(n) ≤ n be any function of n and suppose the Hamming
distance between successive states Xt and Xt−1 of the MC is uniformly bounded by b(n).
We will say that the MC is b(n)-cautious. (Recall that we are viewing independent sets
as functions V → {0, 1}.) Thus a b(n)-cautious MC is not permitted to change the
status of more than b(n) vertices in G at any step. Ideally, for ease of implementation,
we would wish to have b(n) a constant (as in the proposals of Luby and Vigoda [58],
and Dyer and Greenhill [30]). However, we are able show that no b(n)-cautious chain
on independent sets can mix rapidly unless b(n) = Ω(n), even when ∆ = 6. Thus any
chain that does mix rapidly on graphs of maximum degree 6 must change the status of
a sizeable proportion of the vertices at each step.

Theorem 7.13 (Dyer, Frieze and Jerrum). There exists an infinite family of regular
bipartite graphs of degree 6, together with constants δ, γ > 0, such that the following is
true: any δn-cautious MC on independent sets of these graphs has exponential mixing
time, in the sense that τ

(
1
4

)
= Ω(exp(γn)).
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Dyer, Frieze and Jerrum’s proof of Theorem 1.13 provides an explicit value for δ,
namely δ = 0.35. We present a simplified version of the proof here that does not
attempt to estimate δ. The idea underlying the proof is very simple: if the state space
of an MC has a tight “constriction” then its mixing time will be long. This intuition
may be formalised as follows.

Claim 7.14. Consider an MC with state space Ω, transition matrix P , and stationary
distribution π. Let A ⊂ Ω be a set of states such that π(A) ≤ 1

2 , and M ⊂ Ω be a set
of states that forms a “barrier” in the sense that P (i, j) = 0 whenever i ∈ A \M and
j ∈ A \M . Then the mixing time τ of the MC satisfies τ

(
1
4

)
≥ π(A)/4π(M).

We defer the proof of the claim to the end of the chapter.

Proof of Theorem 1.13. Our counterexample to rapid mixing (or, more precisely, family
of counterexamples indexed by n) is a random regular bipartite graph G of degree ∆ = 6,
with n vertices on the left and n on the right. Denote the left and right vertex sets by
V1 and V2 respectively. The random graph model is simple. A pairing is one of the n!
possible bijections between left and right vertices viewed as a regular bipartite graph of
degree 1. Select ∆ pairings, independently and u.a.r., and form the union: the result is
a bipartite graph G of maximum degree ∆. Since the pairings may not be disjoint, the
graph G may not be regular; we return to this point later.

Let J(α, β) be the collection of all independent sets in G having αn vertices on the
left and βn on the right. For a given set of αn vertices U1 ⊆ V1 and βn vertices U2 ⊆ V2,
what is the probability that a random pairing will avoid joining some element in U1 to
some element in U2? Well, the “image” of U1 under the pairing is a random αn-subset
of V2, so the answer is the same as the probability that a random αn-subset of V2 is
disjoint from U2; but the latter probability is just(

(1− β)n

αn

)/(
n

αn

)
.

Thus the expected size of J(α, β) for a random G chosen according to our model is just

E |J(α, β)| =
(
n

αn

)(
n

βn

)[(
(1− β)n

αn

)/(
n

αn

)]∆
.

(By linearity of expectation, the required quantity is simply the number of possible can-
didates (U1, U2), times the probability that all ∆ pairings avoid connecting U1 and U2.)
By Stirling’s approximation we have

E |J(α, β)| = exp
(
ϕ(α, β)n(1 + o(1))

)
where

ϕ(α, β) = −α lnα− β lnβ −∆(1− α− β) ln(1− α− β)

+ (∆− 1)
(
(1− α) ln(1− α) + (1− β) ln(1− β)

)
.(7.1)

We treat ϕ as a function of real arguments α and β, even though a combinatorial
interpretation is possible only when αn and βn are integers. Then ϕ is defined on the
triangle

T =
{

(α, β) : α, β ≥ 0 and α+ β ≤ 1
}
,
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and is clearly symmetrical in α, β. (The function ϕ is defined by equation (1.1) on the
interior of T , and can be extended to the boundary by taking limits.)

Now set ∆ = 6. By calculus, ϕ(α, α) has a unique maximum in the range [0, 12);
numerically ϕ(α, α) is uniformly less than 0.704 in this range. Consider the region
D = {(α, β) ∈ T : |α − β| ≤ δ}, where δ is a small positive constant. (This is the δ in
the statement of the theorem.) For sufficiently small δ > 0,

ϕ(α, β) ≤ 0.705, for all (α, β) ∈ D.

For, if not, there would be an infinite sequence (αi, βi) of points in T , all satisfying
ϕ(α, β) > 0.705, which approach the diagonal α = β arbitrarily closely. By compactness,
there would be a subsequence of (αi, βi) converging to some point on the diagonal,
contradicting continuity of ϕ. So, by Markov’s inequality, with very high probability,4

(7.2)

∣∣∣∣∣ ⋃
(α,β)∈D

J(α, β)

∣∣∣∣∣ ≤ e0.706n,
where the union is over α, β which are multiples of 1/n.

Denote by L and R the two connected regions of T \ D. We need a lower bound on
the number of independent sets in these regions which exceeds the upper bound (1.2).
With this in mind, define

θ(α) = −α lnα− (1− α) ln(1− α) + (ln 2)(1−∆α).

for α < ∆−1. Then, for any graph G in the space of random graphs, the total number
of independent sets I with |I ∩ V1| = αn is (crudely) at least

|J(α, ∗)| ≥
(
n

αn

)
2(1−∆α)n = exp

(
θ(α)n(1− o(1))

)
.

(Choose αn vertices from V1; then choose any subset of vertices from the at least (1 −
∆α)n unblocked vertices in V2.) Set ∆ = 6 as before and α∗ = 0.015. Then, by numerical
computation, θ(α∗) is greater than 0.708. In other words,

(7.3)

∣∣∣∣∣ ⋃
(α,β)∈L

J(α, β)

∣∣∣∣∣ ≥ e0.708n,
for all sufficiently large n, with a similar bound for R. Comparing (1.2) and (1.3), we
see that, with very high probability, the number of approximately balanced independent
sets is smaller, by an exponential factor, than the number with a sizeable imbalance in
either direction. Specifically, the former is smaller than the latter by a factor eγn, where
γ = 0.002.

The (n+ n)-vertex graph whose existence is guaranteed by Theorem 1.13 (ignoring
for a moment the regularity requirement) is any graph from the space of random graphs
under consideration that exhibits the exponential gap just described. (A randomly

4“With very high probability” may be taken to mean “with probability differing from 1 by an amount
decaying exponentially fast with n.”
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chosen graph will do with high probability.) The remainder of our argument concerns
such a graph.

Now consider a δn-cautious MC. Let A =
⋃
α≥β J(α, β) denote the set of leftward

leaning independent sets, and assume, without loss of generality, that A is no larger than
its complement A = Ω \A. Denote by M the set of approximately balanced independent
sets M =

⋃
(α,β)∈D J(α, β).

Since the MC is δn-cautious, it cannot make a transition from A to A directly, but
only by using intermediate states in M . Now, we know from inequalities (1.2) and (1.3)
that

(7.4) |A| ≥ eγn |M |.

If we are prepared to weaken the theorem slightly by dropping the condition that the
graphs be regular, we can immediately complete the proof by appealing to Claim 1.14.

We may address the regularity issue by reference to a standard result about the
union-of-pairings model for random bipartite graphs. Provided ∆ is taken as constant,
Bender [5] has shown that ∆-regular graphs occur in our random graph model with
probability bounded away from 0. Since we prove that random graphs of maximum
degree 6, with very high probability, have the property we seek, it follows that random
∆-regular graphs (in the induced probability space), with very high probability, have
the property too.

It only remains to present the missing proof.

Proof of Claim 1.14. Denote by πt the t-step distribution of the MC. First note that

‖πt+1 − πt‖TV = ‖πtP − πt−1P‖TV =
1

2
max
‖z‖∞≤1

(πt − πt−1)Pz

≤ 1

2
max
‖w‖∞≤1

(πt − πt−1)w

= ‖πt − πt−1‖TV,

since ‖Pz‖∞ ≤ ‖z‖∞. Hence, by induction, ‖πt+1 − πt‖TV ≤ ‖π1 − π0‖TV and, further,
using the triangle inequality, ‖πt − π0‖TV ≤ t ‖π1 − π0‖TV. Now, for ∅ ⊂ S ⊂ Ω, define

Φ(S) =
1

π(S)

∑
i∈S

∑
j∈S

π(i)P (i, j).

The quantity Φ = min{Φ(S) : S ⊂ Ω and 0 < π(S) ≤ 1
2} is sometimes called the

“conductance” of the MC. (Conductance is normally considered in the context of time-
reversible Markov chains. However, both the definition and the line of argument em-
ployed here apply to non-time-reversible chains.) Now∑

i∈A

∑
j∈A

π(i)P (i, j) ≤
∑
i∈A

∑
j∈A∩M

π(i)P (i, j) +
∑

i∈A∩M

∑
j∈A

π(i)P (i, j)

≤ π(A ∩M) + π(A ∩M)

= π(M).
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In short, Φ(A)π(A) ≤ π(M). So setting

π0(i) =

{
π(i)/π(A), if i ∈ A;

0, otherwise,

we have

‖π1 − π0‖TV =
1

2

∑
j∈Ω

∣∣∣∣∣∑
i∈Ω

π0(i)P (i, j)− π0(j)

∣∣∣∣∣(7.5)

=
∑
j∈A

∑
i∈A

π0(i)P (i, j)(7.6)

= Φ(A).

(To see equality (1.6), observe that the terms in (1.5) with j ∈ A make a contribution
to the sum that is equal to that made by the terms with j ∈ A. Now simply restrict the
sum to terms with j ∈ A.) But ‖π0 − π‖TV ≥ 1

2 , since π(A) ≤ 1
2 , and hence

‖πt − π‖TV ≥ ‖π0 − π‖TV − ‖πt − π0‖TV ≥
1

2
− t Φ(A).

Thus we cannot achieve ‖πt − π‖TV ≤ 1
4 until

t ≥ 1

4Φ(A)
≥ π(A)

4π(M)
.

By an averaging argument there must exist some initial state x0 ∈ A for which τx0
(
1
4

)
≥

π(A)/4π(M).
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Inductive bounds, cubes, trees
and matroids

The spectral gap of a MC can sometimes be bounded by a direct inductive argument.
Given its conceptual simplicity, this inductive approach seems surprising powerful. To
start with, however, we’ll develop the tools in the context of the random walk on the
n-dimensional cube. The simplicity of this example will bring the key ideas into sharp
relief.

8.1 The cube

Suppose n is a positive integer (dimension) and 0 < p < 1/n. We consider the random
walk on Ω = {0, 1}n with transition probabilities given by

P (x, y) =

{
p if |x− y| = 1;

0 otherwise,

where |x − y| denotes Hamming distance between x and y. The MC (Ω,P ) is ergodic
with uniform stationary distribution. We already know two ways to upper bound the
mixing time of this MC: coupling and canonical paths. A third is to give the state space
a geometric interpretation and use isoperimetry. (Jerrum and Sinclair [45, §12.3] use the
random walk on the cube as an illustration of the second and third of these approaches.
Coupling is the subject of Exercise 8.4.) In this section we study a fourth. Why do
we need another method? The advantage of this one is that it is robust, in the sense
that applies to other MCs with inductively defined state spaces. This section and §8.3
is based on Jerrum and Son [47], and Jerrum, Son, Tetali and Vigoda [48].

A function g : K → R defined on a convex set K ⊂ Rk is convex if g(αx+(1−α)y) ≤
αg(x) + (1 − α)g(y) for every x, y ∈ K and 0 < α < 1. By expectation of a r.v. taking
values in K we mean the obvious thing, namely, take expectations of the individual
coordinates.

Lemma 8.1 (Jensen’s inequality). Let K ⊂ Rk be a compact convex set, X a r.v. taking
values in K, and g : K → R a convex real-valued function. Then g(EX) ≤ E g(X).

95
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Exercise 8.2. Prove Jensen’s inequality. Hint: Consider the graph G(g) =
{

(x, y) : x ∈
K and y ≥ g(x)

}
⊂ Rk+1 of g together with a supporting plane to G(g) at the point

(EX, g(EX)).

Suppose Ω = Ω0 ∪Ω1 is a partition of the state space. (For the cube it is natural to
take Ωb = {x = x0x1 . . . xn−1 ∈ Ω : x0 = b}.) For π a probability distribution on Ω, we
denote by πb : Ωb → [0, 1] the induced distribution π/π(Ωb) on Ωb. Let ϕ : Ω → R be any
real-valued “test function” on Ω. (In previous chapters we used f for this purpose. The
change to ϕ is just to avoid a notational clash later in this chapter.) Then (decomposition
of variance)

Varπ ϕ = π(Ω0) Varπ0 ϕ+ π(Ω1) Varπ1 ϕ+ Varπ ϕ̄(8.1)

where

Varπb ϕ =
∑
x∈Ωb

πb(x)(ϕ(x)− Eπb ϕ)2,

Eπb ϕ =
∑
x∈Ωb

πb(x)ϕ(x)

and

Varπ ϕ̄ = π(Ω0)π(Ω1)(Eπ0 ϕ− Eπ1 ϕ)2.

The rationale for the notation Varπ ϕ̄ is that this “cross term” may be interpreted as the
variance of the function ϕ̄ that is constant Eπb ϕ on Ωb, for b = 0, 1. Also (decomposition
of the Dirichlet form)

EP (ϕ,ϕ) = π(Ω0)EP0(ϕ,ϕ) + π(Ω1)EP1(ϕ,ϕ) + C,(8.2)

where

EPb
(ϕ,ϕ) =

1

2

∑
x,y∈Ωb

πb(x)P (x, y)(ϕ(x)− ϕ(y))2

and

C =
∑

x∈Ω0,y∈Ω1

π(x)P (x, y)(ϕ(x)− ϕ(y))2.

In the definition of C we have assumed time reversibility of (Ω,P ): the restriction of the
sum to unordered pairs exactly accounts for the factor 1

2 in the definition of the Dirichlet
form.

Exercise 8.3. Verify (8.1) and (8.2). (One of these identities is actually trivial.)

All the above was for an arbitrary time-reversible MC with finite state space par-
titioned into two pieces. We now specialise to the uniform random walk on the n-
dimensional Boolean cube. In this instance, π is the uniform distribution on Ω and πb
is the uniform distribution on Ωb. Suppose, inductively, we had established Poincaré
inequalities

(8.3) EPb
(ϕ,ϕ) ≥ λn−1,p Varπb ϕ

for the subcubes. These will allow us to compare two of the three corresponding pairs of
terms in (8.1) and (8.2). Thus we may obtain a Poincaré inequality for the n-dimensional
cube provided we can relate the final pair of terms.
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Consider the r.v. (F0, F1) ∈ R2 defined by the following trial: select z ∈ {0, 1}n−1

u.a.r.; then let (F0, F1) = (ϕ(0z), ϕ(1z)) ∈ R2. (Here bz denotes the element of Ωb
obtained by prefixing z by the bit b.) Then

Varπ ϕ̄ = π(Ω0)π(Ω1)(Eπ0 ϕ− Eπ1 ϕ)2 = π(Ω0)π(Ω1)(Ez F0 − Ez F1)2

and

C =
p

2
Ez
[
(F0 − F1)2

]
.

(Here we use Ez to denote expectations with respect to a uniformly selected z ∈
{0, 1}n−1.) But the function R2 → R defined by (ξ, η) 7→ (ξ − η)2 is convex; so, by
Lemma 8.1 (Jensen’s Inequality),

Ez
[
(F0 − F1)2] ≥ (Ez F0 − Ez F1)2

and hence

(8.4) C ≥ p

2π(Ω0)π(Ω1)
Varπ ϕ̄.

Substituting (8.3) and (8.4) into (8.2), and comparing with (8.1), we obtain

λn,p ≥ min{λn−1,p, 2p},

where we have used the fact that π(Ω0) = π(Ω1) = 1
2 . For the base case, n = 1, it is easy

to check by direct calculation that λ1,p = 2p. Thus, by a trivial induction, λn,p ≥ 2p.
This bound is tight, as can be seen by taking the function ϕ that is constant −1 on Ω0

and constant 1 on Ω1.
It follows from arguments in Chapter 5 — see Corollary 5.9, recalling % = λ−1 —

that the mixing time of the random walk on the n-dimensional cube with transition
probabilities p = 1/n is O

(
n(n + log(1/ε))

)
. (The first n is from the reciprocal of the

Poincaré constant and the second from log(1/π(x0)).) Here we assume that periodicity
is dealt with either by using the lazy version of the walk, or working in continuous time.
The correct answer is O

(
n log(n/ε)

)
, so no cigar. . . yet.

Exercise 8.4. Demonstrate that O(n log n) is the correct order of magnitude for the
mixing time of the random walk on the cube. The upper bound can be obtained by
coupling, the lower bound by a coupon collector argument. Warning: the lower bound
may not be quite as simple as you expect!

It was suggested at the outset that the technique just applied in the context of the
cube has a degree of robustness. “Twisted cubes” provide somewhat artificial confirma-
tion of this claim. A twisted cube of dimension 1 is a complete graph on two vertices (i.e.,
two vertices joined by an edge); a twisted cube of dimension n > 1 is the union of two
distinct twisted cubes (possibly different) of dimension n− 1, connected by an arbitrary
perfect matching (of size 2n−1). Observe that the inductive computation of λn,p given
in this section applies just as well to twisted cubes.

Exercise 8.5. For a twisted cube, what is the best upper bound on mixing time you
can achieve by coupling?
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8.2 Balanced Matroids

Twisted cubes in themselves aren’t interesting, but there are more substantial examples
where the ideas from §8.1 apply with no essential change. What do we need for the
argument of §8.1? First, we need to be able to decompose the MC into two (or maybe
more) smaller pieces “of the same kind”. Second, we need the transitions that cross
between the pieces to be such as to support a coupling of the r.v’s F0 and F1, used in
the derivation of (8.4).

A general class of random walks falling into this setting are random walks on the
“bases-exchange graph” of a balanced matroid. The various technical terms appearing
in that sentence will be explained presently. For the time being, let us merely note that
this class includes, as a special case, a natural walk on spanning trees of a graph.

Let E be a finite ground set and B ⊆ 2E a collection of subsets of E. We say that
B forms the collection of bases of a matroid M = (E,B) if the following two conditions
hold:

1. All bases (sets in B) have the same size, namely the rank of M .

2. For every pair of bases X,Y ∈ B and every element e ∈ X, there exists an element
f ∈ Y such that X ∪ {f} \ {e} ∈ B.

The above axioms for a matroid capture the notion of linear independence. Thus if
S = {u0, . . . , um−1} is a set of n-vectors over a field K, then the maximal linearly
independent subsets of S form the bases of a matroid with ground set S. The bases in
this instance have size equal to the dimension of the vector space spanned by S, and
they clearly satisfy the second or “exchange” axiom. A matroid that arises in this way
is vectorial, and is said to be representable over K.

Several other equivalent axiomatisations of matroid are possible, each shedding dif-
ferent light on the notion of linear independence; the above choice turns out to be the
most appropriate for our needs. For other possible axiomatisations, and more on matroid
theory generally, consult Oxley [66] or Welsh [81].

The advantage of the abstract viewpoint provided by matroid theory is that it allows
us to perceive and exploit formal linear independence in a variety of combinatorial sit-
uations. Most importantly, the spanning trees in an undirected graph G = (V,E) form
the bases of a matroid, the cycle matroid of G, with ground set E. A matroid that arises
as the cycle matroid of some graph is called graphic.

Two absolutely central operations on matroids are contraction and deletion. An
element e ∈ E is said to be a coloop if it occurs in every basis. If e ∈ E(M) is an element
of the ground set of M then, provided e is not a coloop, the matroid M \ e obtained
by deleting e has ground set E(M \ e) = E(M) \ {e} and bases B(M \ e) = {X ⊆
E(M \ e) : X ∈ B(M)}; and the matroid M/e obtained by contracting e has ground set
E(M/e) = E(M) \ {e} and bases B(M/e) = {X ⊆ E(M/e) : X ∪ {e} ∈ B(M)}. Any
matroid obtained from M by a series of contractions and deletions is a minor of M .

The matroid axioms given above suggest a very natural walk on the set of bases of a
matroid M . The bases-exchange graph G(M) of a matroid M has vertex set B(M) and
edge set {

{X,Y } : X,Y ∈ B and |X ⊕ Y | = 2
}
,
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where ⊕ denotes symmetric difference. Note that the edges of the bases-exchange
graph G(M) correspond to the transformations guaranteed by the exchange axiom. In-
deed, it is straightforward to check, using the exchange axiom, that the graph G(M) is
always connected. By simulating a random walk on G(M) it is possible, in principle,
to sample a basis (almost) u.a.r. from B(M). Although it has been conjectured that
the random walk on G(M) is rapidly mixing for all matroids M , the conjecture has
never been proved and the circumstantial evidence in its favour seems slight. Neverthe-
less, there is an interesting class of matroids, the “balanced” matroids, for which rapid
mixing has been established. The definition of balanced matroid is due to Feder and
Mihail [32], as is the proof of rapid mixing. We follow their treatment quite closely, up
to and including Lemma 8.8. We then deviate from their analysis, and instead use the
methods of §8.1 in order to achieve a tighter bound on spectral gap.

For the rest of this section we usually drop explicit reference to the matroid M , and
simply write B and E in place of B(M) and E(M). Suppose a basis X ∈ B is chosen
u.a.r. If e ∈ E, we let e stand (with a slight abuse of notation) for the event e ∈ X, and
ē for the event e /∈ X. Furthermore, we denote conjunction of events by juxtaposition:
thus ef̄ denotes the event e ∈ X ∧ f /∈ X, etc. The matroid M is said to possess the
negative correlation property if the inequality Pr(ef) ≤ Pr(e) Pr(f) holds for all pairs of
distinct elements e, f ∈ E. Another way of expressing negative correlation is by writing
Pr(e | f) ≤ Pr(e); in other words the knowledge that f is present in X makes the
presence of e less likely.1 Further, the matroid M is said to be balanced if all minors
of M (including M itself) possess the negative correlation property. We shall see in
§8.4 that graphic matroids, amongst others, are balanced. So the class is not without
interest, even if it does not include all matroids.

If E′ ⊆ E, then a increasing property over E′ is a property of subsets of E′ that is
closed under the superset relation; equivalently, it is a property that may be expressed
as a monotone Boolean formula in the indicator variables of the elements in E′. A
decreasing property is defined analogously.

Lemma 8.6. Suppose M is a balanced matroid. For every e ∈ E(M) and every in-
creasing property µ over E(M)\{e}, the inequality Pr(µe) ≤ Pr(µ) Pr(e) holds; in other
words, µ is negatively correlated with e.

Remark 8.7. The inequality Pr(ef) ≤ Pr(e) Pr(f) is a special case of Lemma 8.6.

Proof of Lemma 8.6. The proof is by induction on the size of the ground set. We may
assume that Pr(µe) > 0, otherwise the result is immediate. Conditional probabilities
with respect to e and µe are thus well defined, and we may re-express our goal as
Pr(µ | e) ≤ Pr(µ). Further, we may assume that the rank r of M is at least 2, otherwise
the result follows from the fact that µ is increasing.

From the identity ∑
f 6=e

Pr(f | µe) = r − 1 =
∑
f 6=e

Pr(f | e),

and the assumption that r ≥ 2, we deduce the existence of an element f satisfying
Pr(f | µe) ≥ Pr(f | e) > 0, and hence

(8.5) Pr(µ | ef) ≥ Pr(µ | e);
1We assume here that Pr(f) > 0; an element f such that Pr(f) = 0 is said to be a loop.
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note that the conditional probability on the left is well defined. Two further inequalities
that hold between conditional probabilities are

Pr(f | e) ≤ Pr(f)(8.6)

and

Pr(µ | ef) ≤ Pr(µ | f);(8.7)

the former comes simply from the negative correlation property, and the latter from
applying the inductive hypothesis to the matroid M/f and the property derived from µ
by forcing f to 1.

At this point we dispense with the degenerate case Pr(f̄ | e) = 0. It follows from (8.6)
that Pr(f) = 1, and then from (8.7) that Pr(µ | e) ≤ Pr(µ), as desired. So we may now
assume Pr(f̄ | e) > 0 and hence that probabilities conditional on the event ef̄ are well
defined. In particular,

(8.8) Pr(µ | ef̄) ≤ Pr(µ | f̄),

as can be seen by applying the inductive hypothesis to the matroid M \ f and the
property derived from µ by forcing f to 0. Further, inequality (8.5) may be re-expressed
as

(8.9) Pr(µ | ef) ≥ Pr(µ | ef̄).

The inductive step is now achieved through a chain of inequalities based on (8.6)–
(8.9):

Pr(µ | e) = Pr(µ | ef) Pr(f | e) + Pr(µ | ef̄) Pr(f̄ | e)
= Pr(µ | ef) Pr(f | e) + Pr(µ | ef̄)(1− Pr(f | e))
=
[

Pr(µ | ef)− Pr(µ | ef̄)
]

Pr(f | e) + Pr(µ | ef̄)

≤
[

Pr(µ | ef)− Pr(µ | ef̄)
]

Pr(f) + Pr(µ | ef̄) by (8.6), (8.9)

= Pr(µ | ef) Pr(f) + Pr(µ | ef̄) Pr(f̄)

≤ Pr(µ | f) Pr(f) + Pr(µ | f̄) Pr(f̄) by (8.7), (8.8)

= Pr(µ).

Given e ∈ E, the set of bases B may be partitioned as B = Be ∪ Bē, where Be =
{X ∈ B : e ∈ X} and Bē = {X ∈ B : e /∈ X}; observe that Be and Bē are isomorphic to
B(M/e) and B(M\e), respectively (assuming e is not a coloop). ForA ⊆ Be (respectively,
A ⊆ Bē), let Γe(A) denote the set of all vertices in Bē (respectively, Be) that are adjacent
to some vertex in A. The bipartite subgraph of the bases-exchange graph induced by
the bipartition B = Be ∪ Bē satisfies a natural expansion property.

Lemma 8.8. Suppose M is a balanced matroid, e ∈ E(M), and that the partition
B = Be ∪ Bē is non-trivial. Then

|Γe(A)|
|Bē|

≥ |A|
|Be|

, for all A ⊆ Be, and

|Γe(A)|
|Be|

≥ |A|
|Bē|

, for all A ⊆ Bē.
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Proof. For any A ⊆ Be let µA denote the increasing property µA =
∨
X∈A

∧
f∈X\{e} f .

The collection of all bases in Be satisfying µA is precisely A, while the collection of
all bases in Bē satisfying µA is precisely Γe(A). Hence the first part of the lemma is
equivalent to the inequality Pr(µA | ē) ≥ Pr(µA | e), which follows from Lemma 8.6.
Similarly, for any A ⊆ Bē let µ̄A denote the decreasing property µ̄A =

∨
X∈A

∧
f /∈X∪{e} f̄ .

The set of all bases in Bē satisfying µ̄A is precisely A, while the set of all bases in Be
satisfying µ̄A is precisely Γe(A). Hence the second part of the lemma is equivalent to
the inequality Pr(µ̄A | e) ≥ Pr(µ̄A | ē), which again follows from Lemma 8.6.

8.3 Bases-exchange walk

Suppose M is a balanced matroid, and p satisfies 0 < p ≤ 1/rm, where m is the size of
the ground set of M and r its rank. Consider the MC (Ω,P ) whose state space Ω = B
is the set of all bases in M , and whose transition probabilities P are given by

P (x, y) =

{
p if (x, y) is an edge of the bases-exchange graph G(M);

0 otherwise,

for all x, y ∈ Ω with x 6= y; loop probabilities are implicitly defined by complementation.
Since the maximum degree of the bases-exchange graph of M is strictly less than rm, the
transition probabilities are well defined. By the exchange property of matroids, (Ω,P ) is
irreducible, and since loop probabilities are non-zero it is also aperiodic. The transition
probabilities are symmetric, so the stationary distribution is uniform. This MC is the
bases-exchange walk associated with M .

We’ll see that the expansion property formalised in Lemma 8.8 allows us to reuse
the analysis of §8.1 almost exactly.

Remark 8.9. We can implement this random walk on G(M) naturally as follows. The
current state (basis) is X0.

1. Choose e u.a.r. from E, and f u.a.r. from X0.

2. If Y = X0 ∪ {e} \ {f} ∈ B then X1 = Y ; otherwise X1 = X0.

The new state is X1.

Theorem 8.10. Suppose M is a balanced matroid. The spectral gap of the bases-
exchange walk associated with M is at least λ ≥ 2p, where p is the uniform transition
probability. For the above implementation, p = 1/rm.

Corollary 8.11. The mixing time of the bases-exchange walk on any balanced matroid
of rank r on a ground set of size m is O

(
rm(r lnm+ ln ε−1

)
.

Theorem 8.10 will follow fairly directly from Lemma 8.12 below. In order to make a
connection with the argument of §8.1, we’ll identify Ω0 with Bē and Ω1 with Be. Recall
that πb = π/π(Ωb), for b = 0, 1, is the induced distribution on Ωb, in this case uniform.

Lemma 8.12. The transitions from Ω0 to Ω1 support a fractional matching. Specifically,
there is a function w : Ω0×Ω1 → R+ such that (i)

∑
y∈Ω1

w(x, y) = π0(x), for all x ∈ Ω0;
(ii)

∑
x∈Ω0

w(x, y) = π1(y), for all y ∈ Ω1; and (iii) w(x, y) > 0 entails P (x, y) > 0, for
all (x, y) ∈ Ω0 ×Ω1.
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Proof (sketch). Follows from Lemma 8.8, using the the Max-flow, min-cut Theorem [79,
Thm 7.1].

Exercise 8.13. Prove Lemma 8.12. Start with the bipartite subgraph of the bases-
exchange graph G(M) induced by the vertex partition (Ω0, Ω1). Construct from it a
flow network by adding a distinguished source s and sink t, arcs of capacity π0(x) from s
to every node x ∈ Ω0, and arcs of capacity π1(y) from every node y ∈ Ω1 to t. All other
arcs, corresponding to possible transitions from Ω0 to Ω1, have unbounded capacity. Use
Lemma 8.8 to show that the network has a flow of value 1.

Remark 8.14. Note that ∑
(x,y)∈Ω0×Ω1

w(x, y) =
∑
x∈Ω0

π0(x) = 1,

so (Ω0 ×Ω1, w) is a probability space.

We are now ready to bound the spectral gap of the bases-exchange walk.

Proof of Theorem 8.10. Let (F0, F1) ∈ R2 be the r.v. defined on (Ω0×Ω1, w) as follows:
select (x, y) ∈ Ω0 ×Ω1 according to distribution w and return (F0, F1) = (f(x), f(y)).

To carry out the programme of §8.1, need to compare the cross term of the variance

Varπ ϕ̄ = π(Ω0)π(Ω1)(Eπ0 ϕ− Eπ1 ϕ)2 = π(Ω0)π(Ω1)(Ew F0 − Ew F1)2,

to the cross term C in the Dirichlet form. Without loss of generality, assume π(Ω0) ≥
π(Ω1). Now, w(x, y) ≤ π0(x) = π(x)/π(Ω0), for all (x, y) ∈ Ω0 × Ω1, which implies
π(x)P (x, y) ≥ p π(Ω0)w(x, y). (Note that we are using the fact that w(x, y) = 0 when-
ever P (x, y) = 0.) Thus

C =
∑

(x,y)∈Ω0×Ω1

π(x)P (x, y)
(
ϕ(x)− ϕ(y)

)2
≥ p π(Ω0)

∑
(x,y)∈Ω0×Ω1

w(x, y)
(
ϕ(x)− ϕ(y)

)2
= p π(Ω0)Ew

[
(F0 − F1)2

]
≥ p π(Ω0)(Ew F0 − Ew F1)2 by Lemma 8.1

=
p

π(Ω1)
π(Ω0)π(Ω1)(Ew F0 − Ew F1)2

≥ 2pVarπ ϕ̄.

We are now exactly in the situation of §8.1, when we were analysing the gap of the cube
walk. In particular, denoting by λm,p a lower bound on the spectral gap of the basis-
exchange walk when the ground set of M has size m and the transition probabilities are
all p, we have λm,p ≥ min{λm−1,p, 2p}, and hence λm,p ≥ 2p.
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8.4 Examples of balanced matroids

A natural question now presents itself: how big is the class of balanced matroids?

A matroid that is representable over every field is called regular. The class of regular
matroids is well studied is certainly wide enough to contain interesting examples; indeed,
all graphic matroids are regular. The main result of this section is that all regular ma-
troids are balanced. More precisely, we prove the equivalent result that all “orientable”
matroids are balanced. The class of orientable matroids is known to be the same as the
class of regular matroids [66, Corollary 13.4.6].2

In order to define the property of being orientable, we need some further matroid
terminology. A cycle C ⊂ E in a matroid M = (E,B) is a minimal (under set inclusion)
subset of elements that cannot be extended to a basis. A cut is a minimal set of elements
whose complement does not contain a basis. Note that in the case of the cycle matroid
of a graph, in which the bases are spanning trees, these terms are consistent with the
usual graph-theoretic ones. Let C ⊆ 2E denote the set of all cycles in M and D ⊆ 2E

the set of all cuts. We say that M is orientable if functions γ : C ×E → {−1, 0,+1} and
δ : D×E → {−1, 0,+1} exist which satisfy the following three conditions, for all C ∈ C
and D ∈ D:

γ(C, g) 6= 0 iff g ∈ C,
δ(D, g) 6= 0 iff g ∈ D, and∑

g∈E
γ(C, g)δ(D, g) = 0.(8.10)

We work in this section towards the following result. In doing so, we’ll follow Feder
and Mihail [32] fairly closely.

Theorem 8.15. Orientable (and hence regular) matroids are balanced.

In preparation for the proof of Theorem 8.15, we introduce some further notation
and make some observations. A near basis of M is a set N ⊆ E that can be augmented
to a basis by the addition of a single element from the ground set. A unicycle of M
is a set U ⊆ E that can be reduced to a basis by the removal of a single element. A
near basis N defines a unique cut DN consisting of all elements of the ground set whose
addition to N results in a basis. A unicycle U defines a unique cycle CU consisting of all
elements which whose removal from U results in a basis. Let e, f be distinct elements of
the ground set E. We claim that

(8.11) γ(CU , e)γ(CU , f) + δ(DN , e)δ(DN , f) = 0,

for all near-bases N and unicycles U that are related by U = N ∪ {e, f}. To see this,
note that the equation (8.10) simplifies in this situation to

(8.12) γ(CU , e)δ(DN , e) + γ(CU , f)δ(DN , f) = 0,

2When consulting this corollary, it is important to realise that Oxley applies the term “signable” to
the class of matroids Feder and Mihail call “orientable,” preferring to apply the latter term to a different
and larger class. We follow Feder and Mihail’s terminology.
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since all terms in the sum are zero except from those obtained by setting g = e and g = f .
Now it may be that all four quantities in (8.12) are zero, in which case we are done.
Otherwise, some quantity, say δ(DN , e), is non-zero, in which case DN ∪{e} = CU \ {f}
is a basis and γ(CU , f) is non-zero also. Multiplying (8.12) through by γ(CU , f)δ(DN , e)
yields

γ(CU , e)γ(CU , f)δ(DN , e)
2 + γ(CU , f)2δ(DN , e)δ(DN , f) = 0,

which simplifies to equation (8.11) as required, since the square factors are both one.

For distinct elements e, f ∈ E, define

∆ef =
∑
N

δ(DN , e)δ(DN , f) = −
∑
U

γ(CU , e)γ(CU , f),

where the sums are over all near bases N and unicycles U . The equality of the two
expressions above is a consequence of (8.11), and the bijection between non-zero terms
in the two sums that is given by N 7→ N ∪ {e, f} = U . Select a distinguished element
e ∈ E and force γ(C, e) = −1 and δ(D, e) = 1 for all cycles C 3 e and cuts D 3 e.
This can be done by flipping signs around cycles and cuts, without compromising the
condition (8.10) for orientability, nor changing the value of ∆ef . With this convention
we have ∑

g 6=e
γ(C, g)δ(D, g) = 1, provided C 3 e and D 3 e;(8.13)

γ(CU , f) = δ(DN , f), provided U = N ∪ {e, f};(8.14)

and

∆ef =
∑

U :e∈CU

γ(CU , f) =
∑

N :e∈DN

δ(DN , f),(8.15)

where C, D, U and N denote, respectively, arbitrary cycles, cuts, unicycles and near
bases satisfying the stated conditions. An intuitive reading of ∆ef is as a measure of
whether cycles containing e, f arising from unicycles tend to traverse e and f in the
same or opposite directions; similarly for cuts arising from near bases.

We extend earlier notation in an obvious way, so that Bef is the set of bases of M
containing both e and f , and Bēf is the set of bases excluding e but including f , etc.

Theorem 8.16. The bases B = B(M) of an orientable matroid M satisfy |B| · |Bef | =
|Be| · |Bf | −∆2

ef .

Proof. We consider a pair of bases (X,Y ) ∈ Bē×Bef to be adjacent to a pair (X ′, Y ′) ∈
Be × Bēf if (X ′, Y ′) can be obtained by an exchange involving e and a second element
g 6= e:

X ′ = X ∪ {e} \ {g}(8.16)

Y ′ = Y ∪ {g} \ {e}.(8.17)

With each adjacent pair we associate a weight

(8.18) γ(CX∪{e}, g)δ(DY \{e}, g).
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Given a pair (X,Y ) ∈ Bē × Bef , the condition that an exchange involving g leads to a
valid pair of bases (X ′, Y ′) via (8.16) and (8.17) is precisely that the weight (8.18) is
non-zero. Note that whenever this occurs, (X ′, Y ′) ∈ Be × Bēf . Thus

|Bē| · |Bef | =
∑

(X,Y )∈Bē×Bef

[∑
g 6=e

γ(CX∪{e}, g)δ(DY \{e}, g)

]
= W,(8.19)

where W is the total weight of adjacent pairs. Here we have used equation (8.13).
Now we perform a similar calculation, but in the other direction, starting at pairs

(X ′, Y ′) ∈ Be × Bēf . We apply a weight

(8.20) δ(DX′\{e}, g)γ(CY ′∪{e}, g)

to each adjacent pair, which is consistent, by (8.14), with the weight (8.18) applied
earlier. Again, starting at (X ′, Y ′), the condition for (X,Y ), obtained by inverting the
exchange given in (8.16) and (8.17), to be a valid pair of bases is that the weight (8.20)
in non-zero. But now, even if (8.20) is non-zero, there remains the possibility that the
new pair of bases (X,Y ) is not a member of Bē × Bef ; this event will occur precisely
when g = f . Thus

|Be| · |Bēf | =
∑

(X′,Y ′)∈Be×Bēf

[∑
g 6=e

δ(DX′\{e}, g)γ(CY ′∪{e}, g)

]
(8.21)

=
∑

(X′,Y ′)∈Be×Bēf

[ ∑
g 6=e,f

δ(DX′\{e}, g)γ(CY ′∪{e}, g)

]
+

∑
(X′,Y ′)∈Be×Bēf

δ(DX′\{e}, f)γ(CY ′∪{e}, f)

= W +
∑

(X′,Y ′)∈Be×Bē

δ(DX′\{e}, f)γ(CY ′∪{e}, f)(8.22)

= W +
∑
X′∈Be

δ(DX′\{e}, f)
∑
Y ′∈Bē

γ(CY ′∪{e}, f)

= W +∆2
ef .(8.23)

Here, step (8.21) is by (8.13); step (8.22) uses the observation that terms are non-zero
only when f ∈ Y ′; and (8.23) is from the definition (8.15) of ∆ef .

Comparing (8.19) and (8.23) we obtain

|Be| · |Bēf | = |Bē| · |Bef |+∆2
ef ,

and the result now follows by adding |Be| · |Bef | to both sides.

The main result of the section now follows easily.

Proof of Theorem 8.15. According to Theorem 8.16, all orientable matroids satisfy the
negative correlation property. Moreover, it is easily checked that the class of orientable
matroids is closed under contraction and deletion.
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Exercise 8.17. Proving that class of orientable matroids is the same as the class of
regular matroids requires familiarity with matroid theory. However, the weaker claim
that the cycle matroid of any graph is orientable is an exercise in straight combinatorics.
Prove the claim.

Exercise 8.18. Another way to demonstrate that all graphic matroids are balanced is
via the theory of electrical networks. Regard a graph G = (V,E) as an electrical network,
with vertices as terminals and edegs as unit resistors. The key facts are: (1) For any
edge e = {u, v}, the effective between vertices u and v is equal to τ(G/e)/τ(G), where
τ(G) is the number of spanning trees in G, and τ(G/e) is the number of spanning trees
in G that include the edge e. This result is essentially due to Kirchhoff; see Van Lint
and Wilson [79, Thm. 34.3]. (2) If the resistance of some edge of a network is decreased,
the effective resistance between any two terminals does not increase. This is “Rayleigh’s
Monotonicity Principle”; see Doyle and Snell [25].

Example 8.19. From the matroid-theoretic fact that graphic matroids are regular, or
from Exercise 8.17, or indeed from Exercise 8.18, we know that graphic matroids are
balanced. Let G = (V,E) be a connected, undirected graph, and consider the following
random walk on the spanning trees of G: Suppose the current state (tree) is T ⊆ E.
Choose an edge e u.a.r. from E, and an edge f u.a.r. from T . If T ′ = T ∪ {e} \ {f} is
a spanning tree then move to T ′, otherwise remain at T . The random walk just defined
is the bases-exchange walk on a balanced matroid and, by Theorem 8.10, the spectral
gap of this walk is Ω(1/mn), where n = |V | and m = |E|. Thus, the mixing time of this
natural random walk on spanning trees of a graph is just O(mn2 logm). This is not a
bad result, but we’ll improve it further in the next chapter.

Remark 8.20. Regular matroids are always balanced, but not all balanced matroids
are regular. The uniform matroid Ur,m of rank r on a ground set E of size m has as
its bases all subsets of E of size r. It is easy to check that all uniform matroids satisfy
the negative correlation property and that the class of uniform matroids is closed under
contraction and deletion; on the other hand, U2,m is not regular when m ≥ 4. (Refer to
Oxley [66, Theorem 13.1.1].)

Remark 8.21. Graphic matroids are always regular, but not all regular matroids are
graphic. Let G = (V,E) be an undirected graph. The co-cycle matroid of G again
has ground set E but the bases are now complements (in E) of spanning trees. The
relationship of the cycle and co-cycle matroids of G is a special case of a general one of
duality. The co-graphic matroid of a non-planar graph is regular but not graphic.

Remark 8.22. The number of bases of a regular matroid may be computed exactly
in polynomial time (in m) by an extension of Kirchhoff’s Matrix-tree Theorem. It can
be shown that the bases of a regular matroid are in 1-1 correspondence with the non-
singular r× r submatrices of an r×m unimodular matrix, and that the number of these
can be computed using the Binet-Cauchy formula. Refer to Dyer and Frieze [26, §3.1]
for a discussion of this topic. This approach gives alternative polynomial-time sampling
procedure for bases of a regular matroid, not relying on Markov chain simulation. How-
ever, as we have seen, the class of balanced matroids is strictly larger than the class of
regular matroids.
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Remark 8.23. Following on from the previous remark, there exists a subclass of bal-
anced matroids, the “sparse paving matroids”, whose bases are hard to count exactly.
A little less informally, the problem of counting bases of a sparse paving matroids is
#P-hard. For a precise statement of this claim and a proof, refer to Jerrum [42].

Example 8.24. There exist non-balanced matroids. Let M be a matroid of rank r on
ground set E. For any 0 < r′ < r,

B′ = {X ′ : |X ′| = r′ ∧ ∃X ∈ B(M). X ′ ⊂ X}

is the collection of bases of a matroid M ′ on ground set E, the truncation of M to
rank r′. The truncation of a graphic matroid may fail to be balanced. Consider the
graph G with vertex set

{u, v, y, z, 0, 1, 2, 3, 4}

and edge set {
{u, v}, {y, z}

}
∪
{
{u, i} : 0 ≤ i ≤ 4

}
∪
{
{v, i} : 0 ≤ i ≤ 4

}
.

Let e denote the edge {u, v} and f the edge {y, z}. Let F6 denote the set of forests
in G with six edges, F6

ef the number of such forests including edges e and f , etc. Then

F6
ef = 80, F6

ef̄
= 32, F6

ēf = 192 and F6
ēf̄

= 80. Thus

Pr(e | f) = 5/17 > 7/24 = Pr(e),

contradicting negative correlation.





Chapter 9

Logarithmic Sobolev inequalities

We know that the spectral gap of the random walk on the n-dimensional cube is Θ(1/n),
and that this entails an O(n2) bound on mixing time. This quadratic bound is made up
from a linear factor arising from the reciprocal of the spectral gap, and another linear
factor expressing the dependency on the initial distribution. This dependency has the
form log(1/π(x0)), assuming the walk starts at a fixed initial state x0. Whereas the con-
tribution from the inverse spectral gap seems inescapable, one suspects that the factor
log(1/π(x0)) might exaggerate the penalty for starting at a point-mass initial distribu-
tion. The logarithmic Sobolev constant introduced in this chapter is a parameter that
in a sense incorporates more information than spectral gap, allowing one in favourable
circumstances to replace log(1/π(x0)) by log log(1/π(x0)). Sometimes, as in the case of
the random walk on the cube, this improvement leads to a tight bound on mixing time.

The seminal work on logarithmic Sobolev inequalities was done by Gross [40]. The
important role of logarithmic Sobolev inequalities in the analysis of the mixing time of
MCs was revealed in an expository paper of Diaconis and Saloff-Coste [20]. An early
algorithmic application was presented by Frieze and Kannan [35]. Much of this chapter,
up to the end of §9.3, is plundered from Guionnet and Zegarlinski’s lecture notes [41].

The key idea is to replace variance, which played a leading role in Chapter 8, with
the entropy-like quantity

Lπ(f) := Eπ
[
f2
(

ln f2 − ln(Eπ f2)
)]
.

A logarithmic Sobolev inequality (c.f. (5.7)) has the form

(9.1) EP (f, f) ≥ αLπ(f), for all f : Ω → R,

where α > 0 is the logarithmic Sobolev constant (“log-Sobolev” constant).

For a function f : Ω → R+, we use ‖f‖π,q to denote

‖f‖π,q =

[∑
x∈Ω

π(x)f(x)q

]1/q
,

so that Eπ f q = ‖f‖qπ,q. Observe that the substitution f → |f | leaves the r.h.s. of (9.1)
unchanged, and does not increase the l.h.s. Therefore, condition (9.1) is equivalent to
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one in which the quantification is over non-negative functions f : Ω → R+. Then, by
substituting f q/2 for f , we see that (9.1) is equivalent to

(9.2) EP (f q/2, f q/2) ≥ αq Eπ
[
f q ln

f

‖f‖π,q

]
, for all f : Ω → R+,

for any q > 0.

9.1 The relationship between logarithmic Sobolev
and Poincaré inequalities

Before considering the relationship between the logarithmic Sobolev constant α and
mixing time, it is instructive to compare α directly with the familiar Poincaré constant λ.

Theorem 9.1. Denote by α and λ the optimal logarithmic Sobolev and Poincaré con-
stants for some MC with transition matrix P . Then λ ≥ 2α.

Proof. The proof is due to Rothaus [69].
Let f : Ω → R be an arbitrary function with Eπ f = 0. By the logarithmic Sobolev

inequality,

ε2EP (f, f) = EP (1 + εf, 1 + εf)

≥ αEπ
[
(1 + εf)2

{
ln((1 + εf)2)− lnEπ[(1 + εf)2]

}]
,(9.3)

for all ε > 0. When ε is sufficiently small, 1 + εf is a strictly positive function, and we
may expand (9.3) as a Taylor series in ε:

ε2EP (f, f) ≥ αEπ
[
(1 + εf)2

{
2εf − ε2f2 − ε2 Eπ f2 +O(ε3)

}]
= αEπ

[
2εf + 3ε2f2 − ε2 Eπ f2 +O(ε3)

]
= 2ε2αEπ f2 +O(ε3)

= 2ε2αVarπ f +O(ε3).

Letting ε→ 0, we see that λ ≥ 2α.

The advantage of the logarithmic Sobolev constant over spectral gap, as we shall see
in §9.3, is that α is more tightly related to mixing time than λ. The main disadvantage
is that the inequality assured by Theorem 9.1 is not always tight, and even when it is, α
may be harder to calculate than λ. It is natural to ask how big the gap can be between
α and λ, but we do not pause to consider that question here. Those seeking an answer
are directed to Diaconis and Saloff-Coste [20, Cor. A.4].

9.2 Hypercontractivity

Just as spectral gap is related to decay of variance, so the logarithmic Sobolev constant is
related to a more powerful phenomenon known as “hypercontractivity”. For conciseness,
we write ft for P tf , where, as usual, P tf : Ω → R denotes the function defined by

[P tf ](x) =
∑
y∈Ω

P t(x, y)f(y), for all x ∈ Ω.
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For convenience, we’ll work in continuous time (refer to §5.5). Recall that P t = exp(Qt)
where Q = P − I, and that d

dtft = Qft.

Lemma 9.2. Let q(t) = 1 + e2αt, where α satisfies (9.1), and let f : Ω → R+ be any
non-negative function. Then, for all t ≥ 0,

d

dt
‖ft‖π,q(t) ≤ 0.

Remark 9.3. Recall, from §5.5, the analogous statement for spectral gap λ, which in
the notation of the current section could be written

d

dt
‖ft‖2π,2 ≤ −2λ ‖ft‖2π,2,

assuming f is normalised so that Eπ f = 0. In that section, we fixed q = 2 and investi-
gated the the decay of ‖ft‖π,q with time. In contrast, in Lemma 9.2 we set a fixed bound
for ‖ft‖π,q(t) but arrange for q(t) to increase with time t, so that the variation of ft
is being measured with respect to an ever more demanding norm. Since q(t) increases
exponentially fast with t, the norm we are working with soon comes “close” to the `∞
norm. Thus Lemma 9.2 makes a powerful statement about ft(x) at every point x, and
in particular when x is the initial state.

The proof of Lemma 9.2 may be clarified by introducing the general Dirichlet form
EP (f, g). Until now, we have encountered the Dirichlet form only the special case f = g,
and this allowed us the luxury of being able to use various expressions for EP (f, f)
interchangeably. It is important to note that these equivalent definitions do not remain
equivalent when generalised, in the natural way, to the situation f 6= g, at least when P
is not time-reversible. Since in this chapter we sometimes want to allow f 6= g, while at
the same time not restricting ourselves to the time-reversible case, it is important for us
to use the “correct” definition, which is

EP (f, g) = −Eπ[fQg] = −
∑
x

π(x)f(x)[Qg](x) = −
∑
x,y

π(x)f(x)Q(x, y)g(y),

where, as usual, Q = P − I. Note, in particular, that the above expression may not be
equal to

(9.4)
1

2

∑
x,y

π(x)P (x, y)(f(y)− f(x))(g(y)− g(x))

when f 6= g and P is not time reversible.

Exercise 9.4. Show that (9.4) is equal to EP (f, g) when either f = g or P is time
reversible, and provide a counterexample to the equivalence in general.

The proof of Lemma 9.2 follows a preparatory lemma.

Lemma 9.5.

EP (f q−1, f) ≥ 2

q
EP (f q/2, f q/2),

for all non-negative functions f , and all q ≥ 2.
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Proof. The proofs in this section are largely based on Guionnet and Zegarlinski [41],
but the calculation is modified to avoid their assumption that P is time-reversible. In
order to achieve this, we have to give away a factor of 2 in the rate of convergence.
The possibility of proving Lemma 9.2 without assuming time-reversibility was noted by
Diaconis and Saloff-Coste [20, Thm 3.5], who credit Bakry as their source.

First note the inequality

(9.5) zq − qz + (q − 1) ≥ (zq/2 − 1)2, for all q ≥ 2 and z ≥ 0.

To see this, write h(z) := zq − qz + (q − 1) − (zq/2 − 1)2, and note that h(1) = 0,
h′(1) = 0, and h′′(z) ≥ 0 for all z ≥ 0 (provided q ≥ 2), where prime signifies derivative
with respect to z. Then, provided f ≥ 0 and q ≥ 2,

EP (f q−1, f) = −Eπ[f q−1Qf ]

=
∑
x,y

π(x)f(x)q−1
(
I(x, y)− P (x, y)

)
f(y)

=
q − 1

q

∑
x

π(x)f(x)q +
1

q

∑
y

π(y)f(y)q

−
∑
x,y

π(x)P (x, y)f(x)q−1f(y)

=
∑
x,y

π(x)P (x, y)

[
q − 1

q
f(x)q +

1

q
f(y)q − f(x)q−1f(y)

]
≥ 1

q

∑
x,y

π(x)P (x, y)
[
f(x)q/2 − f(y)q/2

]2
(9.6)

=
2

q
EP (f q/2, f q/2),

where inequality (9.6) uses (9.5).

Proof of Lemma 9.2. With the groundwork out of the way, we are just left with a cal-
culation akin to that in §5.5. Since ln z is an monotone increasing function, it is enough
to show

d

dt
ln ‖ft‖π,q(t) ≤ 0.

So with q = q(t) = 1 + e2αt,

d

dt
ln ‖ft‖π,q =

d

dt

[
1

q
ln(Eπ f qt )

]
= − q

′

q2
ln(Eπ f qt ) +

1

q Eπ f qt
Eπ
[
f qt

(
q′ ln ft + q

f ′t
ft

)]
=

1

Eπ f qt

{
− q
′

q2
(Eπ f qt ) ln(Eπ f qt ) +

q′

q
Eπ[f qt ln ft] + Eπ[f q−1t Qft]

}
=

1

Eπ f qt

{
q′

q
Eπ
[
f qt ln

ft

(Eπ f qt )1/q

]
− EP (f q−1t , ft)

}
≤ 1

Eπ f qt

{
2αEπ

[
f qt ln

ft
‖ft‖π,q

]
− 2

q
EP (f

q/2
t , f

q/2
t )

}
(9.7)

≤ 0,(9.8)



113

where inequality (9.7) uses Lemma 9.5 and the fact that q′ ≤ 2αq, and (9.8) is from (9.2).

9.3 Mixing

Remark 9.3, although couched in informal terms, strongly suggests that hypercontractiv-
ity might be the key to obtaining bounds on mixing time with much reduced dependence
on the distribution of the initial state. We now make that idea precise.

Theorem 9.6. Suppose (Ω,P ) is an ergodic MC satisfying the logarithmic Sobolev in-
equality (9.1) with constant α. Then, for any ε > 0,

‖P t(x, ·)− π‖TV ≤ ε,

whenever t ≥ α−1[ln lnπ(x)−1+2 ln ε−1+ln 4]. (To avoid pathologies, interpret ln lnπ(x)−1

as zero when π(x) > e−1.)

Proof. Let A ⊂ Ω be arbitrary and define f : Ω → R to be the characteristic function
of A. Recall that λ denotes spectral gap. Then, from §5.5,

Varπ ft1 ≤ e−2λt1 Varπ f ≤ 1
4e
−2λt1 = 1

4ε
2

where t1 = λ−1 ln ε−1. It follows that

‖ft1‖2π,2 = (E ft1)2 + Varπ ft1 ≤ π(A)2 + 1
4ε

2,

and hence
‖ft1‖π,2 ≤ π(A) + 1

2ε.

Then, by Lemma 9.2

(9.9) ‖ft‖π,q(t2) ≤ π(A) + 1
2ε,

for any t2 ≥ 0 and t = t1 + t2. Set t2 = 1
2α
−1[ln lnπ(x)−1 + ln ε−1 + ln 2]. (We need

t2 ≥ 0, so interpret ln lnπ(x)−1 as zero when π(x) > e−1.) Then

π(x)1/q(t2) ≥ π(x)exp(−2αt2) = e−ε/2 ≥ 1− 1
2ε,

and hence

(9.10) ‖ft‖π,q(t2) ≥
[
π(x)ft(x)q(t2)

]1/q(t2) ≥ (1− 1
2ε)ft(x) ≥ ft(x)− 1

2ε.

Combining (9.9) and (9.10) yields P t(x,A) = ft(x) ≤ π(A) + ε. But A is arbitrary, so
‖P t(x, ·)− π‖TV ≤ ε. Finally, observe that

t = t1 + t2 =
1

2α

[
ln lnπ(x)−1 + 2 ln ε−1 + ln 2

]
,

where we have used Theorem 9.1 to eliminate λ in favour of α.

Remark 9.7. Comparing Theorem 9.6 against Corollary 5.9 we appreciate the potential
gain from using α in place of λ. Recall that the size of the state space, and hence π(x)−1,
is typically exponential in some reasonable measure of instance size.
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9.4 The cube (again)

The analysis of random walk on the cube from Chapter 8 may readily be adapted
from spectral gap to logarithmic Sobolev constant. This will lead directly to our first
application of Theorem 9.6. A move convincing application will be provided by the
bases-exchange walk. This section and the next is a reworking of Jerrum and Son [47].

For the time being, we’ll take (Ω,P ) to be an arbitrary time-reversible finite-state
MC (Ω,P ), and only later specialise it to the random walk on the cube. As in §8.1 we
suppose a partition of the state space Ω = Ω0 ∪Ω1 is given. For convenience we repeat
here the formula expressing the decomposition of Dirichlet form:

EP (f, f) = π(Ω0)EP0(f, f) + π(Ω1)EP1(f, f) + C,(9.11)

where

EPb
(f, f) =

1

2

∑
x,y∈Ωb

πb(x)P (x, y)(f(x)− f(y))2, for b = 0, 1

and

C =
∑

x∈Ω0,y∈Ω1

π(x)P (x, y)(f(x)− f(y))2.

To proceed, we need an analogue of (8.1) (decomposition of variance) for the entropy-
like quantity Lπ(f). It is the following:

Lπ(f) = π(Ω0)Lπ0(f) + π(Ω1)Lπ1(f) + Lπ(f̄ ),(9.12)

where

Lπb(f) = Eπb
[
f2
(

ln f2 − ln(Eπb f
2)
)]

and

Lπ(f̄) =
∑
b=0,1

π(Ωb)
[
(Eπb f

2)
(

ln(Eπb f
2)− ln(Eπ f2)

)]
.(9.13)

The use of the notation Lπ(f̄) for the expression on the right hand side of (9.13) is
justified, provided we interpret f̄ : Ω → R+ as the function that is constant

√
Eπb f2 on

Ωb, for b = 0, 1.

Exercise 9.8. Verify identity (9.12). (The calculation is given at end of chapter.)

As in Chapter 8, we aim to exploit (9.11) and (9.12) to synthesise an inequality of the
form EP (f, f) ≥ αLπ(f) from ones of the form EPb

(f, f) ≥ αb Lπb(f) and C ≥ ᾱLπ(f̄ ).
Inequalities EPb

(f, f) ≥ αb Lπb(f) will clearly come from the inductive hypothesis, ex-
actly as before. The derivation of C ≥ ᾱLπ(f̄ ) is by way of algebraic manipulation,
similar in spirit to that used in Chapter 8, but of greater complexity. This increase in
calculational complexity represents the main downside in using the logarithmic Sobolev
constant.

In the following lemma, we take the first step in relating C to Lπ(f̄ ).

Lemma 9.9. Let r and s be positive numbers with r + s = 1. Then

rξ2 ln
ξ2

rξ2 + sη2
+ sη2 ln

η2

rξ2 + sη2
≤ (ξ − η)2,

for all ξ, η ∈ R.
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Proof. Applying the inequality ln a ≤ a− 1, which is valid for all a > 0:

rξ2 ln
ξ2

rξ2 + sη2
+ sη2 ln

η2

rξ2 + sη2
≤ rξ2 s(ξ

2 − η2)
rξ2 + sη2

+ sη2
r(η2 − ξ2)
rξ2 + sη2

=
rs(ξ2 − η2)2

rξ2 + sη2

=
rs(ξ + η)2

rξ2 + sη2
(ξ − η)2

≤ (ξ − η)2.

To verify the final inequality, first note that by scaling one may assume that ξ + η = 1;
it is then easy to see (by calculus) that the extremal case is when ξ = s and η = r.

Corollary 9.10. With Lπ(f̄ ) defined as in (9.13),

Lπ(f̄ ) ≤
(√

Eπ0 f2 −
√
Eπ1 f2

)2
.

Remark 9.11. In view of our interpretation of f̄ , the right hand side of the inequality
appearing in Corollary 9.10 may be written

(
f̄(Ω0) − f̄(Ω1)

)2
. In other words, Corol-

lary 9.10 may be regarded as providing a logarithmic Sobolev inequality for a two-state
MC. In is natural to ask what is the optimal constant c such that

cLπ(f̄ ) ≤
(√

Eπ0 f2 −
√
Eπ1 f2

)2
?

The question has been answered by Diaconis and Saloff-Coste [20, Theorem A.2], though
it proves a surprisingly hard nut: Diaconis and Saloff-Coste refer to its resolution as “a
tedious calculus exercise”.

Given the crude approximations used in the proof of Lemma 9.9, we would expect
our estimate c = 1 to be a long way off, and indeed it is when either r = π(Ω0) or
s = π(Ω1) is close to zero. Nevertheless, when r = s = 1

2 , we lose only a factor 2.
Fortunately, in our applications, little is gained by using more refined estimates for c.
Better, then, to keep things simple!

Recall the random walk on the n-dimensional cube from the beginning of §8.1. Our
partition of the state space in this instance is the natural one, namely Ωb = {x =
x0x1 . . . xn−1 ∈ Ω : x0 = b}. Corollary 9.10 puts us neatly back on the track of our
earlier calculation, where our goal was to bound the spectral gap.

Consider the r.v. (G0, G1) ∈ R2 defined by the following trial: select z ∈ {0, 1}n−1
u.a.r.; then let (G0, G1) = (f(0z)2, f(1z)2) ∈ R2. (Recall that bz denotes the element of
Ωb obtained by prefixing z by the bit b.) Then, using Ez to denote expectations with
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respect to a uniformly selected z ∈ {0, 1}n−1,

Lπ(f̄ ) ≤
(√

Eπ0 f2 −
√

Eπ1 f2
)2

from Cor. 9.10

=
(√

Ez G0 −
√

Ez G1

)2
≤ Ez

[(√
G0 −

√
G1

)2]
(9.14)

= 2
∑

z∈{0,1}n−1

π(0z)
(
f(0z)− f(1z)

)2
=

2

p

∑
z∈{0,1}n−1

π(0z)P (0z, 1z)
(
f(0z)− f(1z)

)2
=

2

p
C,

where (9.14) is by Lemma 8.1 (Jensen’s inequality), noting the the function (R+)2 → R+

defined by (ξ, η) 7→ (
√
ξ − √η )2 is convex. Thus, by the same inductive argument

as before αn,p ≥ p/2, where αn,p denotes the logarithmic Sobolev constant of the n-
dimensional cube with constant transition probability p.

Remark 9.12. Where did we lose a factor 4 relative to the spectral gap calculation? A
factor of 2 was lost to the sloppy estimate in Lemma 9.9. The loss of the other factor
of 2 must, by Theorem 9.1, be inevitable.

Note that, by Theorem 9.6, our logarithmic Sobolev constant translates to anO
(
n(log n+

log ε−1)
)

upper bound on mixing time for the random walk on the n-dimensional cube.

9.5 The bases-exchange walk (again)

A convenient feature of the cube, as regards our analysis, is that transitions from Ω0 to
Ω1 support a perfect matching. We saw, in the context of the spectral gap lower bound
of Chapter 8, that it is enough for our purposes that the transitions support a fractional
matching. The same is true here.

Recall the bases-exchange random walk from §8.3. From Lemma 8.12, we know that
the transitions from Ω0 to Ω1 support a fractional matching w : Ω0 × Ω1 → [0, 1]. As
before, we regard (Ω0 ×Ω1, w) as a probability space.

Let (G0, G1) ∈ R2 be the r.v. defined on (Ω0×Ω1, w) as follows: select (x, y) ∈ Ω0×Ω1

according to the distribution w(·, ·) and return (G0, G1) = (f(x)2, f(y)2). Then, using
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Ew to denote expectations with respect to the sample space just described,

Lπ(f̄ ) ≤
(√

Eπ0 f2 −
√
Eπ1 f2

)2
=
(√

EwG0 −
√

EwG1

)2
≤ Ew

[(√
G0 −

√
G1

)2]
=

∑
(x,y)∈Ω0×Ω1

w(x, y)
(
f(x)− f(y)

)2
≤

∑
(x,y):w(x,y)>0

π(x)

π(Ω0)

(
f(x)− f(y)

)2
≤ 1

p π(Ω0)

∑
(x,y)∈Ω0×Ω1

π(x)P (x, y)
(
f(x)− f(y)

)2
≤ 2

p
C,

where we have assumed, by symmetry, that π(Ω0) ≥ π(Ω1) and hence π(Ω0) ≥ 1
2 .

Exactly the same inductive argument as in the case of the cube yields p/2 as the
logarithmic Sobolev constant for the bases-exchange walk.

Example 9.13. Consider again the walk on spanning trees of a graph described in
Example 8.19. Applying Theorem 9.6 in place of 5.9, improves our bound on mixing
time to from O(mn2 logm) to O(mn log n).

Exercise 9.14. By exhibiting a suitable graph, show that the bound in Example 9.13
is of the correct order of magnitude, at least in some circumstances.

Remark 9.15. What we have done in this chapter can be viewed as a application of a
more general “decomposition” approach to the analysis of MCs apparently introduced by
Caracciolo, Pelissetto and Sokal [17], and exploited by authors such as Madras, Martin
and Randall [61, 59]. See Jerrum, Son, Tetali and Vigoda [48] for a general treatment
of decomposition along the lines of this chapter and the previous one.

9.6 An alternative point of view

In this section we explore an alternative approach to relating the logarithmic Sobolev
constant α to mixing time. The idea is to measure closeness to stationarity in terms of the
“Kullback-Leibler divergence”, and show that convergence in this sense is exponential,
at a rate determined by α.

First, another inequality in the same spirit as Lemma 9.5.

Lemma 9.16. EP (f, ln f) ≥ EP (
√
f,
√
f ), and hence EP (ln f, f) ≥ EP (

√
f,
√
f ), for any

f : Ω → R+.

Proof. The key to the proof is the inequality

(9.15) a2(ln a− ln b) ≥ a(a− b),
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which is valid for all a, b > 0. (By homogeneity it is enough to verify (9.15) in the case
a = 1, when it reduces to the well known ln b ≤ b− 1.) The result now follows from the
following sequence of inequalities:

EP (f, ln f) = −
∑
x,y

π(x)f(x)Q(x, y) ln f(y)

=
∑
x

π(x)f(x)
[

ln f(x)−
∑
y

P (x, y) ln f(y)
]

= 2
∑
x

π(x)f(x)
[

ln
√
f(x)−

∑
y

P (x, y) ln
√
f(y)

]
≥ 2

∑
x

π(x)f(x)
[

ln
√
f(x)− ln

{∑
y

P (x, y)
√
f(y)

}]
(9.16)

≥ 2
∑
x,y

π(x)
√
f(x)

[√
f(x)−

∑
y

P (x, y)
√
f(y)

]
(9.17)

= −2
∑
x,y

π(x)
√
f(x)Q(x, y)

√
f(y)

= 2EP (
√
f,
√
f ),

where (9.16) is Jensen’s inequality (Lemma 8.1), and (9.17) uses inequality (9.15) with
a =

√
f(x) and b =

∑
y P (x, y)

√
f(y).

To see that the inequality holds with f and ln f reversed, consider the time reversal
P ∗ of P , defined by

π(x)P ∗(x, y) = π(y)P (y, x), fall all x, y ∈ Ω.

Then
EP (ln f, f) = EP ∗(f, ln f) ≥ EP ∗(

√
f,
√
f ) = EP (

√
f,
√
f ).

For probability distributions σ and π on Ω, define the Kullback-Leibler divergence of
σ from π by

(9.18) D(σ‖π) = Lπ
(√

σ

π

)
=
∑
x∈Ω

σ(x) ln
σ(x)

π(x)
.

The word “divergence” and the curious but conventional notation is supposed to em-
phasise the fact that D(· ‖ ·) is not a metric. (It is not symmetric, for one thing.)

Remark 9.17. In interpreting definition (9.18) we use the reasonable convention 0 ln 0 =
0. Since we only deal with ergodic MCs, we do not have to contemplate the possibility
that π(x) = 0 for some x ∈ Ω.

Exercise 9.18. Verify that D(σ‖τ) is non-negative, and that D(σ‖τ) = 0 implies σ = τ .

Denote by πt = π0P
t : Ω → [0, 1] the distribution of Xt given that the initial

distribution (that of X0) is π0. In long-hand,

πt(x) =
∑
y∈Ω

π0(y)P t(y, x).
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Note that d
dtπt = πtQ, where, as usual, Q = P − I (c.f. §5.5). The alternative approach

to bounding mixing time rests on exponential decay of Kullback-Leibler divergence.

Theorem 9.19. d
dtD(πt‖π) ≤ −2αD(πt‖π), and hence D(πt‖π) ≤ e−2αtD(π0‖π).

Proof.

d

dt
D(πt‖π) =

d

dt

∑
x

πt(x) ln
πt(x)

π(x)

=
∑
x

[πtQ](x) ln
πt(x)

π(x)
+
∑
x

[πtQ](x)

=
∑
x

[πtQ](x) ln
πt(x)

π(x)

=
∑
x,y

π(x) ln
πt(x)

π(x)
Q(x, y)

πt(y)

π(y)

= −EP
(

ln
πt
π
,
πt
π

)
.(9.19)

At this point we might decide to continue by defining a modified logarithmic Sobolev
constant based on the Dirichlet form (9.19) in place of the usual one. (See Bobkov and
Tetali [7].) Instead, we’ll use Lemma 9.16 to bring us onto a more familiar path. Picking
up from (9.19),

d

dt
D(πt‖π) = −EP

(
ln
πt
π
,
πt
π

)
≤ −2EP

(√
πt
π
,

√
πt
π

)
by Lemma 9.16

≤ −2αLπ
(√

πt
π

)
= −2α

∑
x

π(x)
πt(x)

π(x)
ln
πt(x)

π(x)

= −2αD(πt‖π).

Suppose we start at a fixed state X0 = x, so that π0 is the distribution with all its
mass at the state x. Then D(π0‖π) = ln(π(x)−1). This is promising: compared to the
decay of variance argument in §5.5, this relatively small initial value provides us with a
head start. However, it is not immediately clear how Kullback-Leibler divergence relates
to our familiar total variation distance. Fortunately, the two are tightly related (in the
direction that concerns us here at any rate) by Pinsker’s inequality :

(9.20) 2‖σ − π‖2TV ≤ D(σ‖π).

A proof of Pinsker’s inequality may be found in the appendix to this chapter (§9.7). (If
you want to try to prove Pinsker’s inequality for yourself at this point, be warned that
it is surprisingly tricky!)
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Putting the pieces together,

‖πt − π‖2TV ≤
1

2
D(πt‖π) ≤ 1

2
e−2αtD(π0‖π) =

1

2
e−2αt lnπ(x)−1.

Thus we are assured that ‖πt − π‖2TV ≤ ε provided

t ≥ 1

2α

[
ln lnπ(x)−1 + 2 ln ε−1 − ln 2

]
,

recovering Theorem 9.6.
As a proof of Theorem 9.6, the approach taken in this section is probably a little

smoother than that of §9.3. For one thing, it avoids the two-stage argument of §9.3
which requires the `2-norm to be brought under control before the norm itself is sharp-
ened. However, hypercontractivity is stronger than exponential convergence of Kullback-
Leibler divergence, implying, for example, convergence in `2-norm and not just in total
variation distance (`1-norm). In fact, the connection between the logarithmic Sobolev
constant and convergence in `2-norm is surprisingly tight: refer to Diaconis and Saloff-
Coste [20, Cor. 3.11] for details.

9.7 Appendix

Proof of identity (9.12). By appropriately scaling the function f , it is enough to estab-
lish (9.12) when Eπ f2 = 1. With this simplification,

Lπ(f) = Eπ[f2 ln f2] =
∑
b=0,1

π(Ωb)Eπb [f
2 ln f2]

and

Lπ(f̄ ) =
∑
b=0,1

π(Ωb)(Eπb f
2) ln(Eπb f

2)

Subtracting,

Lπ(f)− Lπ(f̄ ) =
∑
b=0,1

π(Ωb)Eπb
[
f2(ln f2 − ln(Eπb f

2)
]

=
∑
b=0,1

π(Ωb)Lπb(f),

as required.

Proof of Pinsker’s inequality (9.20). Our starting point is the inequality

(9.21) u lnu− u+ 1 ≥ 0, for all u > 0,

whose validity is easy to check. From there we bootstrap to the inequality

(9.22) 3(u− 1)2 ≤ (2u+ 4)(u lnu− u+ 1), for all u > 0.

To verify (9.22), define h(u) = (2u + 4)(u lnu − u + 1) − 3(u − 1)2, and observe that
h(1) = h′(1) = 0, and h′′(u) = 4u−1(u lnu − u + 1) ≥ 0, where we have used (9.21). It
follows that h(u) ≥ 0 for all u > 0.
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Pinsker’s inequality itself follows from the following sequence of (in)equalities, where
u(x) = σ(x)/π(x):

‖σ − π‖2TV =
1

4

[∑
x

∣∣σ(x)− π(x)
∣∣]2

=
1

2

[∑
x

π(x)
∣∣u(x)− 1

∣∣]
≤ 1

12

[∑
x

π(x)
√

2u(x) + 4
√
u(x) lnu(x)− u(x) + 1

]2
(9.23)

≤ 1

12

[∑
x

π(x)(2u(x) + 4)

][∑
x

π(x)
(
u(x) lnu(x)− u(x) + 1

)]
(9.24)

=
1

2

∑
x

π(x)u(x) lnu(x)

=
1

2
D(σ‖π).

Here, inequality (9.23) is from (9.22), and inequality (9.24) is Cauchy-Schwarz.
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