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Growing network with local rules: Preferential attachment, clustering hierarchy,
and degree correlations

Alexei Vázquez
Department of Physics, University of Notre Dame, Notre Dame, Indiana 46556

~Received 23 November 2002; published 7 May 2003!

The linear preferential attachment hypothesis has been shown to be quite successful in explaining the
existence of networks with power-law degree distributions. It is then quite important to determine if this
mechanism is the consequence of a general principle based on local rules. In this work it is claimed that an
effective linear preferential attachment is the natural outcome of growing network models based on local rules.
It is also shown that the local models offer an explanation for other properties like the clustering hierarchy and
degree correlations recently observed in complex networks. These conclusions are based on both analytical and
numerical results for different local rules, including some models already proposed in the literature.
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I. INTRODUCTION

In the last few years there has been a great interest in
study of networks, with particular emphasis on the followi
properties: small world effect@1,2#, power-law degree distri-
bution@3,4#, and more recently degree correlations@5–7# and
clustering hierarchy@6,8,9#. This explosion has been possib
thanks to the increase of available network maps offering
graph representation for a wide variety of systems with si
ranging from hundreds to billions of nodes. Examples
clude technological networks such as the physical Inte
@5,6,10–17#, the World Wide Web~WWW! @18–20#, elec-
tronic mail @21,22#, and electronic circuits@23#, biological
networks such as the protein-protein interaction netw
@24–28#, metabolic paths@29,30#, and food webs@31,32#,
and social networks represented by the citation graph@33–
35#, scientific collaboration webs@36–39#, sexual relations
@40#, among others.

In particular, metrics like the degree~the number of edges
incident to a vertex!, the minimum path distance betwee
pairs of vertices, and the clustering coefficient~the fraction
of edges among the neighbors of a vertex! have attracted the
attention of the physics community. Watts and Strogatz@1,2#
have shown that, in general, real networks are character
by a small average minimum path distance and a large c
tering coefficient that together are named thesmall world
effect. The name comes from the fact that we can reach ev
vertex in the graph by crossing a small number of edg
Moreover, Baraba´si and collaborators@41,42# have pointed
out that many real networks are also characterized by pow
law degree distributions, giving an appreciable probability
observe high-degree vertices. A more exhaustive analysi
veals that, in addition to power laws, truncated power la
and exponential distributions are also observed@43#.

Barabási and Albert~BA! proposed a mechanism that e
plains the origin of power-law degree distributions@41#. This
mechanism is based on two fundamental properties of a w
class of real networks, their growing nature, and the e
tence of a preferential attachment: new vertices added to
graph are attached preferentially to high-degree vertices
particular, a linear preferential attachment, where the pr
ability to get connected to a vertex is proportional to
degree, leads to power-law degree distributions. The pre
1063-651X/2003/67~5!/056104~15!/$20.00 67 0561
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ential attachment mechanism can be generalized in diffe
ways. A sublinear preferential attachment leads to boun
degree distributions while a superlinear one yields gra
with a single hub connected to almost any other ver
@44,45#. The power laws can also be truncated after the
troduction of other ingredients such as aging@46#, bounded
capacity@43#, or limited information@47#. Moreover, the in-
troduction of quenched@48# and annealed@49,50# disorder
leads to logarithmic corrections and multifractal scaling,
spectively.

The BA model provides a general mechanism to obt
power-law degree distributions in growing networks. If o
consider other measures like the clustering coefficient t
one may conclude that this model is still insufficient to d
scribe real graphs. However, we should not focus on
detailed properties of the model but on its philosophy. T
is, if we assume that there is a growing tendency of
network and an effective linear preferential attachment th
we obtain a scale-free degree distribution. Actually, this
fective preferential attachment has been measured in di
ent real graphs, including the Internet@5,51# and a variety of
scientific collaboration webs@39,51,52#, supporting the hy-
pothesis of a linear attachment rate. With regard to the o
topological properties, we can construct many models w
different clustering coefficients, minimum path distanc
and other metrics@53#. However, the origin of the ubiquity o
the linear preferential attachment is not clear yet.

The topology of real networks is also characterized
degree correlations@5,7# and clustering hierarchy@6,9#.
Moreover, these correlations influence the behavior of m
els defined on top of these graphs, as has recently b
shown in Refs.@7,54–58#. Growing network models with
global evolution rules, like the BA model, exhibit degre
correlations. For instance, nontrivial degree correlations
been obtained in the linear preferential attachment mo
@45# and in a growing network model without any prefere
tial attachment@59#. However, the degree correlations o
tained in those global models are not sufficiently strong
account for the features observed in real graphs. New mo
giving a better representation of real graphs are starting
emerge@9,60,61#. In addition to the numerical simulation
some analytical treatments have shown that power-law
gree distributions and clustering hierarchy are obtained a
©2003 The American Physical Society04-1
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ALEXEI VÁ ZQUEZ PHYSICAL REVIEW E67, 056104 ~2003!
outcome of these models@9,62–66#. However, a genera
principle based on local rules is still missing.

In this work, different local mechanisms that lead t
graphs with power-law degree distributions, degree corr
tions, and clustering hierarchy are studied. The termlocal
means that we will investigate evolution rules that involve
vertex and its neighbors. As will be shown, the preferen
attachment, the inverse proportionality between the aver
clustering coefficient and the vertex degree, and degree
relations are common features of growing graph models b
by local rules. The general principles behind these featu
are also determined.

The paper is organized as follows. In the next section
motivation for this work is presented. It is shown that,
addition to power-law degree distributions, clustering hier
chy and degree correlations are common features of real
works. Then in the following sections three different mod
based on local rules are presented. In all cases both analy
and numerical evidence is provided. In particular, in Sec.
a walk model is proposed as a mechanism for search
networks such as the WWW and the citation network. Th
in Sec. IV a model for social network evolution is analyze
based on the existence of potential connections between
neighbors of a vertex. Finally, in Sec. V we study mod
with duplication or replication of their vertices. The commo
patterns observed on these models are summarized in
concluding Sec. VI.

II. CORRELATIONS AND HIERARCHY
IN REAL GRAPHS

In this section we study correlations in some real grap
In particular we consider five different networks here d
noted by Router, AS, WWW, Gnutella, PIN, and Math. In
cases the graph is obtained by representing the ‘‘releva
units of the system by vertices and their interactions or re
tions by edges. In some cases, multiple graph representa
of the same system can be obtained. ‘‘Router’’ is the rou
level graph representation of the Internet, where each ve
represents a router and each edge represents a physica
nection among them. AS is theautonomous system~AS! rep-
resentation of the Internet, where each vertex represent
AS or service provider and each edge represents a peer
tion among them. WWW is the graph representation of
WWW, where each vertex represents a web page and
directed edge a hyperlink from one page to another. Here
will consider the directed edges as undirected. Gnutella is
graph representation of the peer-to-peer network of the s
name, where each vertex represents a user and each e
peer relation among them. PIN is the graph representatio
the protein interaction network, where each vertex repres
a protein and each edge an interaction among them. Ma
the graph representation of the mathematical coautorship
work, where each vertex represents an author and each
the existence of at least one common publication am
them.

In general, real networks are correlated and correlati
may have different origins. Let us consider the example
the Internet. Due to installation costs, the Internet has b
05610
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designed with a hierarchical structure. This hierarchy can
schematically divided into international connections, n
tional backbones, regional networks, and local area n
works. Vertices providing access to international connecti
or national backbones are of course on the top level of
hierarchy, since they make possible the communication
tween regional and local area networks. Moreover, in t
way, a small average minimum path distance can be achie
with a small average degree. This hierarchical structure
introduce some correlations in the network topology. For
stance, it is expected that vertices with high degrees are
nected to vertices with low degrees.

In contrast, in social networks well connected people te
to be connected with well connected people@7#. Let us take
the example of the scientific coauthorship graph. A scien
writing a lot of papers has in general a larger probability
writing a paper with another scientist who also has a lot
papers than with one with a few papers. In fact, ifFi is the
number of papers of scientisti andFi!N, then the probabil-
ity that two scientists write a paper together is rough
FiF j /N. Now, Fi is in general a monotonically increasin
function of the scientist degreedi ~number of collaborators!
and, therefore, scientists with a high degree will have a be
chance of making a new article together, i.e., of being c
nected.

To investigate these correlations it has been propose
analyze the clustering coefficient and the nearest-neigh
average connectivity as a function of the vertex degree@5,6#.
The clustering coefficient is the average probability that t
neighborsl andm of a vertexi are connected. In terms of th
adjacency matrix (Ji j 51 if verticesi andj are connected and
0 otherwise!, the clustering coefficient is defined as the co
ditional probability that ifJil Jim51 then Jlm51. Thus, it
measures in some way the existence of three-point corr
tions in the adjacency matrix. The clustering coefficientci is
then defined as the ratio between the number of edgeei
among thedi neighbors of a given vertexi and its maximum
possible value,di(di21)/2, i.e.,

ci5
2ei

di~di21!
. ~1!

The average clustering coefficient^c& is the average ofci
over all vertices in the graph. It provides a measure of h
well the neighbors of a vertex are locally interconnected.
Refs. @1,2# it was shown that the clustering coefficient
many graphs representing real systems is orders of ma
tude larger than the one expected for a random graph
therefore, they are far from being random. Further inform
tion can be extracted if one computes it as a function of
vertex degree@6#.

In Fig. 1 we plot ^c&d vs d for different real networks.
According to this measure, two different classes emerge
the first class~Math and Router data!, ^c&d does not exhibit a
strong dependency ond, except for finite size effects at th
largest degrees. This behavior is typical of random grap
where the probability that two neighbors of a vertex are c
nected by an edge is a constant, and equal to the probab
that any two vertices selected at random are connected
4-2
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the contrary, there is another class where^c&d follows an
evident decay with increasing vertex degreed. Thus, in this
case, low-degree vertices form local subgraphs that are
connected. At the same time they are connected to other p
of the graph by high-degree vertices, having a few ed
between the subgraphs they connect but giving a small a
age minimum path distance. This picture makes evident
existence of some hierarchy@5,6# or modularity@9#.

These observations for the clustering coefficient
complemented by another metric related to the correlati
between vertex degrees. These correlations are quantifie
the probabilityp(d8ud) that a vertex with degreed has an
edge to a vertex with degreed8. With the available data a
plot of this magnitude is very noisy and difficult to interpre
Thus in @5# it was suggested to measure the average de
among the nearest neighbors of a vertex, which is given

^dnn&d5 (
d8

d8p~d8ud!, ~2!

and to plot it as a function of the vertex degreed. If there are
not degree-degree correlations then the probability tha
edge points to a vertex of degreed8 is independent ofd and
proportional to d8pd8 , resulting, after normalization, in
p(d8ud)5d8pd8 /^d&. Therefore, the plot̂dnn&d vs.d will be
flat and equal to

^dnn&unco5
^d2&

^d&
. ~3!

FIG. 1. Clustering coefficient as a function of the vertex deg
for some real graphs. AS and Router are the autonomous sy
@10# and router@12# level graph representations of the Intern
respectively. WWW is a subgraph of the WWW network, a data
collected by the Notre Dame Group of Complex Networks@93#.
Gnutella is the Gnutella peer-to-peer network, provided by Cl
Distributed Search Solutions. PIN is the protein-protein interact
graph of Saccharomices cerevisiaeas obtained from two hybrid
experiments@26#. Math is the coauthorship graph obtained from
relevant journals in the field of mathematics and published in
period 1991–1998@39#.
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In Fig. 2 we plot^dnn& vs d for several real networks. In
this case also we found the emergence of two differ
classes of graphs. In one of them the average nea
neighbor degree exhibits a power-law decay with increas
vertex degree. This is strong evidence for the existence
disassortative~or negative! correlations, where large degre
vertices tend to be connected with low-degree ones and
versa. On the other hand, for some of the graphs~Math and
Router data! an increasing tendency is observed, denot
the presence of assortative~or positive! correlations, where
the edges connect vertices with similar degrees. The s
conclusions are obtained using the Pearson coefficient of
degrees at either ends of an edge@7,67#. Notice that the sub-
division attending either the clustering coefficient or the a
erage nearest-neighbor degree coincides.

These observations cover a wide range of networks
are complemented by Refs.@5–7,9,67#. However, their origin
is not yet clear. After some years of intensive research
complex networks there is no explanation for the ubiquity
the linear preferential attachment. Different models ha
been proposed but a mechanism is still missing. The lack
a general principle is extended to these new metrics ass
ated with correlations. In the following sections three diffe
ent models that exhibit these properties are studied, em
sizing the mechanism behind them. Based on their anal
some general conclusions will be achieved.

III. RANDOM WALK ON A NET

In this section we study the evolution of a graph where
know about new vertices by simply exploring the graph, w
applications to searchable networks such as the citation
WWW graphs. We focus on different local mechanism
where the term ‘‘local’’ means that we will investigate ev
lution rules that involve a vertex and its neighbors. A glob
approach based on effective attachment rates can be fou
@68#.

There are different ways to obtain information about t

e
em

t

2
n

e

FIG. 2. Average nearest-neighbor degree as a function of
vertex degree for the real graphs introduced in Fig. 1.
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ALEXEI VÁ ZQUEZ PHYSICAL REVIEW E67, 056104 ~2003!
documents~articles, web pages! in these graphs, like looking
at directories ~citation index, web crawler!, commercial
spots, shown by a friend, or following the references~cita-
tions, hyperlinks! that are contained in the documents th
we already know. In the case of the citation graph, we of
find new articles from the citation list of an article that w
already know and, later on, we can repeat the process
these new articles. Moreover, it is known that with a hi
probability people know about new web pages by surfing
the WWW.

Two of the major contributions to how people find o
about new web pages are following the hyperlinks of ot
web pages and using search engines@69#. The first source
can be characterized by modeling the WWW ‘‘surfers’’
random walkers on the WWW graph. Let us assume that
walk starts from a page selected at random and, on e
page, with probabilityqe it decides to follow one link on tha
page or to jump to another random page with probability
2qe . Then, the probabilityv i that a pagei will be visited is
given by

v i5
12qe

N
1qe (

j
Ji j

v j

dj
ou

, ~4!

whereJi j is the adjacency matrix anddj
ou denotes the vertex

out degree. It is quite interesting to notice that this proba
ity of being visited by a random surfer is often used
search engines as a page rank criterion@70#, as is the case
with the popular Google@71#. Hence, the two main source
through which new pages are visited are characterized by
~4! and, therefore, the main properties of the in-degree
tribution of the WWW graph should be computed by starti
on it. However, to my knowledge and except from the rec
sive search model proposed by the author in Ref.@72#, no
study has been performed in this direction.

In a mean-field approximation one can replace the sum
Eq. ~4! by Qdi

in , resulting in

v i5
12qe

N
1qeQdi

in , ~5!

whereQ is the average probability that a vertex pointing
vertexi is visited anddi

in is the vertex in degree. To compu
Q we should take into account that the probability tha
vertexi has an in edge coming from a vertex with out deg
dou is doupdou /^dou&. This edge will be selected at rando
among thedou out edges and, therefore, with probabili
1/dou. Thus,

Q5 (
dou

doupdou

^dou&

1

dou
vdou5

^v&

^dou&
. ~6!

In general when we visit new pages we do not creat
hyperlink to it. In a first approximation this can be model
by introducing the probabilityqv that a visited vertex~page!
increases its in degree by 1~a hyperlink is created to it!.
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Then, when a walk is performed̂v&N vertices are visited
and, therefore,qv^v&N edges are added on average, result
in

]N

]t
5na,

]E

]t
5nsqv^v&N, ~7!

whereE is the number of edges, andns andna are the num-
ber of surfers and the number of newly added pages per
time, respectively. The integration of these equations yie

^dou&5^din&5qv^v&N
ns

na
. ~8!

Thus, from Eqs.~6! and ~8! we finally obtain

Q5
na

qvnsN
. ~9!

The probability that the in degree of a vertex of in degr
d( in) increases by 1 when a surfer walks on the graph
given byA(d( in))5qvv(d( in)) and, therefore, from Eqs.~5!
and ~9! it follows that

A~d( in)!5
1

N Fqv~12qe!1qe

na

ns
d( in)G . ~10!

Notice that the walk on the graph leads to an effective lin
preferential attachment. The degree distribution correspo
ing to this attachment rate can easily be obtained using
rate equation approach@44,45#. Indeed, the number of verti
cesndin(t) with in degreedin satisfies the rate equation

]ndin

]t
5nsAdin21ndin212nsAdinndin1naddin0 . ~11!

Now we should take into account that the number of verti
on the WWW graph grows exponentially and, in this ca
na}N. Moreover, assuming that each surfer has its own~or
group of! web page~pages! the number of surfers is expecte
to be proportional to the number of web pages, i.e.,ns}N.
Thus,

ns

na
5a, ~12!

wherea is a constant. It is worth noticing that Eq.~12! is
always satisfied for networks with a constant growth rate
may be the case of the citation graph. If this condition
satisfied then the in-degree distribution reaches a statio
state and we can writendin(t)5Npdin, wherepdin is the sta-
tionary probability that a vertex has in degreedin. Substitut-
ing this expression in Eq.~11!, we obtain
4-4
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GROWING NETWORK WITH LOCAL RULES: . . . PHYSICAL REVIEW E 67, 056104 ~2003!
pdin5
1

11a

G@a~g21!1din#

G@a~g21!#

G@~11a!~g21!11#

G@~11a!~g21!1din11#
,

~13!

where

g511
1

qe
, a5aqv~12qe! ~14!

with the asymptotic behavior for large in degree

pdin;~din!2g. ~15!

Hence, the random walk model on a directed graph le
to a power-law in-degree distribution, with an exponentg
>2. Notice that the power-law exponent does not depend
qv and, therefore, we expect that generalizations of the
of creating an edge to a visited vertex will not change t
exponent. For instance, one can divide the vertices
classes in such a way that the edges can be created
among vertices of the same class, and the resulting po
law exponent should be the same. Moreover, the power-
exponent does not depend ona.

We can go beyond the in-degree distribution and comp
the clustering coefficient as a function of the total degred
5din1dou of a vertex. For this purpose we consider t
graph as undirected and compute the numberei of edges
among the neighbors of a vertexi. Since the only dynamics
in this model is given by the random walk, the result is

]ei

]t
5qv~qeQdi

in1qev i !. ~16!

The first term on the right-hand side is the probability tha
vertex with an out edge toi is visited and the second th
probability that vertexi is visited and the walk follows one
of its out edges to visit an out-neighbor vertex. In all cas
the visited vertex is selected with probabilityqv . Using Eqs.
~5!, ~9!, and ~10! and taking into account that] tdi

in

5A(di
in), we can rewrite Eq.~16! as

]ei

]t
'~11qe!

]di
in

]t
, ~17!

where we have neglected the first term in the right-hand s
of Eq. ~10!. Integrating this equation with the boundary co
dition e(din50)50 we obtain the clustering coefficient

^c&d5
2e~d!

d~d21!
5

2~11qe!

d
1

2~11qe!~12dou!

d~d21!
.

~18!

For larged the clustering coefficient scales as

^c&d'
2~11qe!

d
. ~19!

Thus, we obtain an inverse proportionality between the c
tering coefficient and the vertex degree.
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A. Random walk model

We now study a particular random walk model by mea
of numerical simulations and compare its properties with
analytical results obtained above. We have made some
plifications in order to reduce the number of parameters
investigate the influence of the most important parameterqe .
The model is defined as follows.Initial condition: we start
with one vertex and an empty set of edges. Then we ite
tively perform the following rules.

Adding. A new vertex is created with an edge pointing
one of the existing vertices, which is selected at random

Walking. If an edge is created to a vertex in the netwo
then with probabilityqe an edge is also created to one of
nearest neighbors. When no edge is created, go to theadding
rule.

The first simplification is that there is only one ‘‘surfer
in the network, i.e.,ns51. Second, each time the ‘‘surfer
decides not to follow one of the edges of the visited verte
stops, and a new vertex starts a search from a vertex sele
at random. In other words, the jump to a random vertex
coupled with the addition of new vertices resulting inna
512qe . Finally, each time a vertex is visited an edge
created to it; thusqv51. Hence, the in-degree distribution
given by Eq.~13! with

g511
1

qe
, a51. ~20!

We have made numerical simulations of this random w
model up to graph sizesN5106 taking an average over 10
realizations. In Fig. 3 we show a log-log plot of the in-degr
distribution for different values ofqe . The power-law decay
for large in degrees is evident. The exponentg obtained from
the fit to the numerical data is shown in the inset, toget

FIG. 3. In-degree distribution of the random walk model f
different values of the probability of continuing the walkqe and for
graph sizeN5106. In all cases we take the average over 100 re
izations. The inset shows the exponentg obtained from the fit to the
power lawpdin;(din)2g ~circles! together with the analytical pre
diction ~continuous line!.
4-5
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ALEXEI VÁ ZQUEZ PHYSICAL REVIEW E67, 056104 ~2003!
with the predicted dependency in Eq.~20!. The analytical
values overestimate the power-law exponent but the qua
tive picture is the same. Forqe→0 the power-law exponen
is so large that the degree distribution cannot be dis
guished from an exponential distribution. In contrast, forq
→1 it approaches is minimum valueg52. We attribute the
quantitative disagreement to the mean-field approxima
performed in the step from Eq.~4! to Eq. ~5!. On the other
hand, the behavior of the average clustering coefficient w
respect to the vertex degree is shown in Fig. 4. In this c
the analytical asymptotic behavior in Eq.~19! is in very good
agreement with the numerical data.

We were not able to obtain a prediction for the scaling
the average neighbor degree with the vertex degree. In
case our analysis relies on numerical simulations. In Fig
we plot ^dnn& vs d for two values ofqe . For qe50.3 and for
small values ofqe the average neighbor degree does
exhibit a strong dependency ond and, therefore, the grap
appears uncorrelated. In contrast, forqe50.5 and in genera
for larger values ofqe it shows a peak aroundd510 and
then decays with increasing degree. This decay beco
even faster with increasingqe . We have not found an expla
nation for this qualitative change of behavior yet. It is wor
noticing that the experimental data for the WWW yieldg
'2.1, which can be obtained with our model usingqe
.0.5. For this value ofqe the model yields negative corre
lations in agreement with the real data presented in Sec
However, we should take into account that the above an
sis includes the fluctuation properties of the in degree, w
the statistics of the out degree was not considered. The
one is irrelevant to determining the in-degree distribution
has to be taken into account to determine the clustering
degree correlation properties of the undirected representa
of the directed graph. Hence, the results obtained here
^c&d and ^dnn&d are not conclusive.

FIG. 4. Clustering coefficient as a function of vertex degree
the random walk model, for different values of the probability
continuing the walkqe and for graph sizeN5106. In all cases we
take the average over 100 realizations. The solid lines correspo
the power-law decayC(d)52(11qe)/d.
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B. Recursive search model

In the random walk model one follows only one edge
the visited vertices. However, one may consider an exha
tive search following all the edges recursively@72#. The main
idea of a recursive search is thus to be connected to
vertex of the network, and any time we get in contact with
new vertex we follow all its edges, exploring in this way
larger part of the network. This can be modeled by modi
ing the walking rule as follows.

Walking. If an edge is created to a vertex in the netwo
then with probabilityqe an edge is also created to each of
nearest neighbors. When no edge is created go to theadding
rule.

As for the previous model we havens51, na512qe but
A(din) is not given by Eq.~10!. The form of A(din), and
consequently the in-degree distribution, is determined be
for two limiting cases.

qe50. In this case only theadding rule is performed;
henceA(din)51/N independent ofdin. The fact thatA(din)
scales asN21 carries as a consequence thatndin(N)5Npdin

is the stationary solution of Eq.~11!, wherepdin is the sta-
tionary probability of finding a vertex with in degreedin.
Substituting this expression in Eq.~11!, one obtains

pdin522(din11). ~21!

qe51. For this limiting case also the in-degree distributio
can be computed exactly. Let us determineA(din) using the
following fact. Any vertexi with in degreedi

in hasdi
in ver-

tices with an edge to it, which will be denoted byxj ( j
51,2, . . . ,di

in). At the same time each of thesexj vertices
may have other vertices with an edge to it. The followi
result holds: Any vertex with an edge to any of the vertic
xj also has an edge toi. The proof is straightforward. If when
a vertex is added it creates an edge to any of the verticexj

f

to

FIG. 5. Average neighbor degree as a function of vertex deg
of the random walk model, for different values of the probability
continue the walkqe and for graph sizeN5106. In all cases we
take the average over 100 realizations.
4-6
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then with probabilityqe51 it creates an edge to all the nea
est neighbors ofxj , among which the vertexi is contained;
end of proof. Hence, the probability that when a vertex
added it creates an edge to vertexi is just the probability
(11di

in)/N that the first edge is connected toi or to any of
the di

in vertices with an edge toi, i.e., A(din)5(1
1din)/N. As for qe50 A(din) scales as 1/N and, therefore,
the stationary solution is of the formndin(N)5Npdin. Then
from Eq. ~11! it follows that

pdin5
1

~din11!~din12!
. ~22!

Notice that in this case also, although it is not implicit
assumed, there is a preferential attachment leading to
power-law decay for large in degreespdin;(din)22.

The limiting casesqe50 andqe51 are described by in
degree distributions which are qualitatively different. F
qe50 the distribution is exponential with a finite average
degree. In contrast, forqe51, the distribution follows a
power-law decaypdin;din2g for largedin, with g52. This
power-law decay goes up to the largest possible degreedin

;N1/(g21);N while pdin50 for din>N. Hence, forqe51
and largeN the average in degree scales as

^din&~N!5^dou&~N!5a1 ln N, ~23!

wherea is independent ofN and clearlŷ din& diverges in the
thermodynamic~large network sizes! limit. In a mean-field
approximation one can neglect the existence of loops in
network and, in such a case, the ‘‘walking’’ rule will tak
place on a tree. Each vertex on the tree will have on aver
^dou&(N) sons, which is just the average out degree afteN
vertices have been added. Moreover, if a vertex is vis
then each of its sons will be visited with probabilityqe .
Hence, when the vertexN11 is added, its average out de
gree ^dou&(N11) will be given by the average number o
vertices visited during the walk, i.e.,

^dou&~N11!511qe^d
ou&~N!1@qe^d

ou&~N!#21•••

5
1

12qe^d
ou&~N!

. ~24!

If there is a stationary state then^dou&(N11)5^dou&(N)
5^dou&. In this case Eq.~24! yields two solutions. One o
them diverges whenqe→0, which is not admissible sinc
^dou&51 for qe50. The other solution reads

^dou&5^din&5
12A124qe

2qe
. ~25!

This solution is valid forqe<qc51/4 and, therefore, the av
erage out degree does not converge to a stationary v
whenqe.qc . In this last region the average out degree
creases logarithmically withN, as in the extreme caseqe
51 @see Eq.~23!#. Now, ^din&5^dou& and both approach a
stationary state for anyg.2 and diverge otherwise. We the
expect that the in-degree distribution has a power-law ex
05610
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nentg.2 for qe,qc andg<2 for qe.qc . Moreover, tak-
ing into account that the fastest divergence is obtained
qe51, whereg52, we conclude that forqe.qc the power-
law exponent is constant and equal tog52.

To investigate the behavior for 0,qe,1 and the exis-
tence of a nontrivial thresholdqc as predicted by the mean
field approach, we have made numerical simulations of
recursive search model for different values ofqe up to graph
sizesN5105. For each value ofqe the in-degree distribution
was averaged over 100 runs of the algorithm. The resul
in-degree distribution is shown in Fig. 6. Forqe50.1 the
decay for large in degrees is very fast, and can be fitted b
power-law decay with a very large exponent, or equivalen
by an exponential decay. On the contrary, for largerqe the
exponent becomes smaller and the power-law behavior
comes more evident. Finally, forqe>qc50.560.1, the ex-
ponent becomes independent ofqe and equalsg52, in
agreement with the mean-field prediction. However, the
merical threshold is twice the value obtained from Eq.~25!.

In ordinary critical phenomena there is an absence of
typical length scale at the critical point, which is observed
a precise value of the order parameter. For the present mo
however, the absence of a characteristic in degree is m
fested not only at a precise value ofqe but in the whole
interval qc<qe<1. These features are very similar to tho
observed in some sandpile models@73,74#, the paradigm of
self-organized critical systems@75,76#. As in these models
@77,78#, there is a time scale separation between the addi
of new vertices and their ‘‘walk’’ through the network. In th
thermodynamic limit (N→`) the phase diagram of th
model is divided into a subcritical (0<qe,qc) and a critical
region (qc<qe<1), where the power-law exponent does n
depend on the control parameter. Hence, the results
sented here suggest that forqc<qe<1 the present model is
in a self-organized critical state.

FIG. 6. Log-log plot of the in-degree distribution of the recu
sive search model for different values ofqe . The inset shows the
exponentg obtained from the power-law fitpdin;(din)2g to the
numerical data.
4-7
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ALEXEI VÁ ZQUEZ PHYSICAL REVIEW E67, 056104 ~2003!
IV. CONNECTING NEAREST NEIGHBORS

In social graphs it is more probable that two vertices w
a common neighbor get connected than two vertices cho
at random@52#. Clearly, this property leads to a large avera
clustering coefficient since it increases the number of c
nections between the neighbors of a vertex, as has alre
been observed in a model proposed by Davidsen, Ebel,
Bornholdt ~DEB! @79#. The basic assumption of their mod
is that the evolution of social connections is mainly det
mined by the creation of new relations between pairs of
dividuals with a common friend. Moreover, a similar mech
nism was considered by Holme and Kim@61# and by Jinet
al. @38# to introduce an appreciable clustering coefficient
preferential attachment models.

The study of these models has been mainly performed
numerical simulations. A deeper analytical understanding
be obtained by introducing the concept of potential edge.
will say that a pair of vertices is connected by apotential
edgeif ~1! they are not connected by an edge and~2! they
have at least one common neighbor. Notice that while
concept has been implicitly considered in previous work
mathematical description will be introduced here.

The graph dynamics will be defined by the transition ra
between the three possible states of a pair of vertices:
connected (s), on connected by a potential edge (p) or by an
edge (e). Let di* be the number of potential edges incide
to vertexi, the potential degree, to abbreviate. We can w
the rate equations for the evolution of the number of verti
with degreed and potential degreed* . Instead we will use
the continuum approach@80,81#. In this case we neglect fluc
tuations and write mean-field equations for the evolution
di anddi* ,

]di

]N
5ns→ed̂i1np→edi* 2~ne→s1ne→p!di ,

]di*

]N
5ns→pd̂i1ne→pdi2~np→s1np→e!di* ,

d̂i5N2di2di* . ~26!

nx→y is the transition rate from statex to statey per unit ofN
and d̂i is the number of remaining neighbors, which are n
connected by a potential edge or by an edge to vertexi.

The creation~deletion! of a potential edge incident to
vertex is associated with the creation~deletion! of an edge
incident to one of its neighbors. For instance, if a new ver
i is connected to an existing vertexj then a potential edge i
created betweeni and all neighbors ofj. Hence

ns→p5ns→edi ,

np→s5ne→sdi . ~27!

These equalities are at the core of the connecting nea
neighbor model.

In the following we will neglect any process where a
edge is deleted, i.e.,
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ne→s50. ~28!

This assumption may seem too crude for some social
works where it is known that social relations can be lost,
it is realistic in many other cases. For instance, in the n
work of scientific collaborations two scientists are said to
connected if they have coauthored a paper. It is clear that
connection cannot be lost in time because the fact that t
have written a paper together cannot be changed. In gen
if the connection between two vertices is given by the occ
rence of a certain event~coauthoring a paper, being in th
cast of the same film, having a sexual relation! in the past
history, then this connection cannot be lost and, therefo
our approximation holds.

Another crucial assumption is related to the fact that
transition from a potential edge to an edge has a higher p
ability of occurrence than the transition from being disco
nected to an edge. In fact, the connection of two disc
nected vertices without a common neighbor is a process
models the creation of a social relation between two so
entities chosen at random. We thus assume

ns→e5
m0

N2
. ~29!

On the other hand, the creation of an edge between
vertices with a common neighbor, that is, with a potent
edge between them, models the creation of a social rela
between two ‘‘friends’’ of a social entity. In this case w
assume

np→e5
m1

N
. ~30!

Under these approximations the system of equations~26!
is reduced to

N
]di

]N
5m01m1di* ,

N
]di*

]N
5m0di2m1di* . ~31!

Hence, the existence of a linear preferential attachment~the
growth rates ofdi and di* are linear in themselves! in this
class of models becomes evident with the introduction of
concept of potential edges. Thus, a power-law degree di
bution is expected. This system of differential equations
linear and, therefore, can be easily integrated, with the re
that, forN@Ni ,

di~N!5d0S N

Ni
D b

, di* ~N!5d0* S N

Ni
D b

, ~32!

whereNi is the size of the graph when vertexi was added to
it and

b5
m1

2 S 211A114
m0

m1
D . ~33!
4-8
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Now, if the vertices are added at a constant rate thenP(Ni
5N)51/N, yielding

P~di.d!5PFd0S N

Ni
D b

.dG
5E

0

NdNi

N
QFd0S N

Ni
D b

2dG . ~34!

Consequently,

pd5
]P~di.d!

]d
;d2g ~35!

with

g511
1

b
. ~36!

Notice that the main ingredient leading to this power-la
behavior is given by Eq.~27!. In contrast, ifns→p were in-
dependent of the vertex degree an exponential decay w
be obtained.

We can also compute the clustering coefficient as a fu
tion of the vertex degree. The main contribution to the e
lution of ei , the number of edges among the neighbors
vertexi, is given by the transitionpotential edge→ edge. In
fact, if the potential edge connecting a vertexi to another
vertex j, with common neighbork, becomes an edge the
vertexi gains one neighbor~vertex j ) and a new edge amon
its neighbors~that connectingj andk). Neglecting other con-
tributions we have

]ei

]N
5np→edi* 5m1

di*

N
. ~37!

Integrating this equation using Eq.~32!, the result is

^c&d5
2e~d!

d~d21!
'

2m1

d
. ~38!

Thus, once again we obtain the inverse proportionality
tween^c&d and vertex degreed, in this case due to the con
version of potential edges between vertices with a comm
neighbor into edges.

A. Connecting nearest-neighbor model

To check these results we have made numerical sim
tions of a variant of the DEB model. Starting with a sing
vertex and an empty set of edges iteratively perform the
lowing rules.

~1! With probability 12u introduce a new vertex in the
graph, create an edge from the new vertex to a vertexj se-
lected at random~implying the creation of a potential edg
between the new vertex and all the neighbors ofj ).

~2! With probabilityu convert one potential edge select
at random into an edge.

A schematic representation of these rules is shown in
7. Actually, in the DEB model the number of vertices is fix
05610
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and each time a new vertex is added one vertex is remo
from the graph. We consider the growing variant because
this case it is easier to determine some properties ana
cally. For very largeN we expect that both variants have th
same qualitative behavior.

These evolution rules fit into the equations written abo
after setting

m051, m15
u

12u
. ~39!

Thus, from Eqs.~33! and ~36! it follows that

g~u!511
2~12u!

u S 211A114
12u

u D 21

, ~40!

with the limiting cases

g~0!5`, g~1!52. ~41!

Thus, the power-law exponentg takes its minimum value
whenu→1, corresponding to a low rate of addition of ve
tices, and it grows with decreasingu corresponding to highe
rates of vertex addition. In Fig. 8 we plot the degree dis
bution as obtained from numerical simulations. For interm
diate degrees it exhibits a power-law decaypd;d2g. The
value of g obtained from the fit to the numerical data
shown in the inset, together with the analytical curve giv
by Eq. ~40!. The quantitative disagreement tells us that t
mean-field Eq.~26! give us the right qualitative descriptio
but fluctuations should be considered to obtain a prec
agreement with the numerical data.

In Fig. 9 we plot the clustering coefficient as a function
the vertex degree. It follows a power-law decay for lar
degrees but with an exponent smaller than 1. On the o
hand, the average neighbor degree as a function of the ve
degree is shown in Fig. 10. It increases with increasingd,
i.e., the graphs generated using this model exhibit posi

FIG. 7. Schematic representation of the two evolution rules
the connecting nearest-neighbor model. Top: with probabilityu a
potential edge~dashed line! becomes an edge~continuous lines!.
Bottom: with probability 12u a new vertex is added to the grap
~disconnected vertex on the left!; then it is connected with an edg
to a vertex selected at random and by potential edges to its ne
bors ~right!.
4-9



e
als
th
y

ng

ca
is
u

he
tion
tex
upli-
rac-
the
tor.
led
g to

of
s
ted

ent
-
n or

ses
ace
s-

e at
the
rty.

of a

d
. By
w

bo

e

o
th
-

ith
nt

o-

ALEXEI VÁ ZQUEZ PHYSICAL REVIEW E67, 056104 ~2003!
degree correlations. This result is in very good agreem
with the observations made for social graphs that are
characterized by positive degree correlations. Hence,
connecting nearest-neighbor mechanism generates man
the topological properties of social networks, includi
power-law degree distributions and positive correlations.

V. DUPLICATION DIVERGENCE

The evolution of some real graphs is given by a repli
tion or partial replication of its local structure. An example
the genome that evolves, among other mechanisms, thro
single gene or full genome duplications@82# and mutations

FIG. 8. Degree distribution of the connecting nearest-neigh
model for different values of the addition rateu, graph sizeN
5106, and average over 100 realizations. The inset shows the
ponentg obtained from the fit to the power lawpd5ad2g ~circles!
together with the analytical prediction~continuous line!.

FIG. 9. Clustering coefficient as a function of vertex degree
the connecting nearest-neighbor model for different values of
addition rateu, graph sizeN5106, and average over 100 realiza
tions. The solid line is a power-law decay with exponent 0.6.
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that lead to the differentiation of the duplicate genes. T
evolution of the genome can be translated into the evolu
of the protein-protein interaction network where each ver
represents the protein expressed by a gene. After gene d
cation both expressed proteins will have the same inte
tions. This corresponds to the addition of a new vertex in
network with edges pointing to the neighbors of its ances
In addition, positive and negative mutations can be mode
by the creation and loss, respectively, of the edges leadin
the divergence of the duplicates@28,50,83#. The duplication
mechanism has also been considered in the evolution
other biological networks@84#. Moreover, another example i
given by the WWW, where new web pages may be crea
by making a copy or a partial copy of the hyperlinks pres
in other web pages@85#. In this case the duplication repre
sents the copying process and the divergence the deletio
addition of hyperlinks in the duplicated pages.

In a first approximation we will assume that the proces
of duplication and divergence are not coupled but take pl
independently one of the other. Moreover, we will also a
sume that the creation and deletion of edges take plac
random and that they are independent of the degree of
vertices at the edge ends, or any other topological prope
Under these approximations, the evolution of the degree
vertex ~the number of interacting partners! is given by

]di

]N
5nDdi1nC~N2di !2nLdi , ~42!

wherenD , nC , andnL are the rates per unit of vertex adde
of duplications, edge creation, and edge lost, respectively
definition, each duplication implies the addition of a ne
vertex and, therefore,

r

x-

f
e

FIG. 10. Average degree among the neighbors of a vertex w
degreed of the connecting nearest-neighbor model for differe
values of the addition rateu, graph sizeN5106, and average over
100 realizations. The solid line is a power-law growth with exp
nent 0.6.
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nD5
1

N
. ~43!

We will further assume that

nC5
m0

N
, nL5

m1

N
; ~44!

otherwise the stationary graph will be empty or fully co
nected, both being unreal. Notice thatm0 and m1 are new
parameters with no relation to those introduced in the pre
ous section. Then, substituting Eqs.~43! and ~44! into Eq.
~42! we obtain

N
]di

]N
5m01~12m1!di . ~45!

The linear dependency of the growth rate ondi evidences
once again the existence of an effective linear preferen
attachment. The integration of this equation yields

di~N!5S di~Ni !1
m0

12m1
D S N

Ni
D b

2
m0

12m1
, ~46!

whereNi anddi(Ni) are the graph size and degree of vert
i when vertexi was added to the graph, and

b512m1 . ~47!

Here we have implicitly assumed that

m1,1; ~48!

otherwise the stationary state will be an empty graph.
From Eq.~46! it follows that

P~di.d!5PF S di~Ni !1
m0

12m1
D S N

Ni
D b

2
m0

12m1
.dG .

~49!

This probability should be computed taking into account t
both Ni anddi(Ni) are random variables. If the duplication
take place at a constant rate then the probability density oNi
is given byP(Ni5N)51/N. Moreover, the probability that a
vertex has degreedi(Ni) when it is introduced is just the
probability that its ancestor has this degree. If the graph i
a stationary state thenP@di(Ni)5d#5pd is just the degree
distribution. Hence

P~di.d!5 (
d8

pd8 E
1

N dNi

N
QF S d81

m0

12m1
D S N

Ni
D b

2
m0

12m1
.dG . ~50!

For N@1 we finally obtain

pd5
]P~di.d!

]d
;S m0

12m1
1dD 2g

~51!

with
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g511
1

12m1
. ~52!

The origin of this power-law degree distribution is dete
mined by the second term in the right-hand side of Eq.~45!,
associated with the vertex duplications and subsequent e
lost. These are local mechanisms and, as in the models
scribe before, they lead to an effective preferential atta
ment manifested as a power-law degree distribution.

The next step is thus to investigate if the duplicatio
divergence model satisfies the inverse proportionality
tween the average clustering coefficient and vertex degre
the creation of new interactions takes place at random,
they appear between randomly chosen vertices, then the
erage clustering coefficient will be negligible for large gra
sizesN. There is, however, one source of new interactio
giving an appreciable contribution. In the duplication pr
cess, if the ancestor is a self-interacting protein then the
cestor and the duplicate may have an interaction among t
@28#. Let us assume that this happens with a probabilityqv .
Thus, if a neighbor of a vertexi is duplicated it will gain a
new neighbor~the copy! and with probabilityqv an edge
between its neighbors~that between the copy and its ance
tor!, and therefore

]ei

]t
' qv

]di

]t
, ~53!

where we have neglected any other process leading to
interactions and edges lost. The integration of this equa
yields

^c&d5
2e~d!

d~d21!
'

2qv

d
. ~54!

Hence, under these assumptions we obtain the inverse
portionality behavior. The inclusion of the edge lost m
change this result. We do not have any analytical proof
since this process contributes to the loss of triangles an
has a higher impact in high-degree vertices, then we exp
that ^c&d would decay faster thand21.

A. Coupled duplication-divergence model

In some practical cases the processes of duplication
divergence cannot be decoupled. For instance, the pro
protein interaction network has a functional role in the o
ganism and, therefore, the lost of certain interactions
result in the death of the corresponding organism. Accord
to the classical model@82# after duplication the duplicate
genes have fully overlapping functions. Later on, one of
copies may either become nonfunctional due to degenera
mutations or it can acquire a novel beneficial function a
become preserved by natural selection. In a more rec
framework@86,87#, it is proposed that both duplicate gen
are subject to degenerative mutations, losing some funct
but jointly retaining the full set of functions present in th
ancestral gene. To investigate the influence of the coup
between duplication and divergence we consider the follo
4-11
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ALEXEI VÁ ZQUEZ PHYSICAL REVIEW E67, 056104 ~2003!
ing model introduced in Ref.@50#. At each time step a verte
is added according to the following rules.

Duplication. A vertex i is selected at random. A new ve
tex i 8 with an edge to all the neighbors ofi is created. With
probability qv an edge betweeni and i 8 is established~self-
interacting proteins!.

Divergence. For each of the verticesj connected toi and
i 8 we choose randomly one of the two edges (i , j ) or (i 8, j )
and remove it with probability 12qe .

A schematic representation of these rules is shown in
11. A similar model with an asymmetric divergence was
troduced in Ref.@83#. For practical purposes the algorith
starts with two connected vertices and we repeat
duplication-divergence rulesN times. Since genome evolu
tion analysis@28,88# supports the idea that the divergence
duplicate genes takes place shortly after the duplication,
can assume that the divergence process always occurs b
any new duplication takes place; i.e., there is a time sc
separation between duplication and mutation rates. This
lows us to consider the number of vertices in the networkN,
as a measure of time~in arbitrary units!. It is worth remark-
ing that the algorithm does not include the creation of n
edges, i.e., the developing of new interactions between g
products, other than those due to self-interactions. Howe
we have tested that the introduction in the coup
duplication-divergence algorithm of a probability to devel
new random connections does not change the network to
ogy substantially.

In order to provide a general analytical understanding
the model, we use a mean-field approach for the mom
distribution behavior. Let̂ d&(N) be the average degree o
the network withN vertices. After a duplication eventN
→N11 we have that the average degree is given by

^d&~N11!5
N^d&~N!12qv1~2qe21!^d&~N!

N11
. ~55!

On average, the gain will be proportional to 2qv because of

FIG. 11. Schematic representation of the coupled duplicat
divergence model evolution rules. Left and middle: a vertex (L) is
being duplicated. Right: the divergence of the duplicates is m
fested as a coupled lost of interactions, where the coupling is g
by the restriction that for each neighbor (d) at least one of the
duplicates should preserve an edge to it. Moreover, due to the
istence of self-interactions, a new edge can be created betwee
duplicates~dashed line!.
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the interaction between duplicates, and to 2^d&(N) because
of duplication, and a loss proportional to 2(12qe)^d&(N)
due to the divergence process. For largeN, taking the con-
tinuum limit, we obtain a differential equation for^d&. For
qe,1/2, ^d& grows with N but saturates to the stationar
value^d&52qv /(122qe)1O(N2qe21). On the contrary, for
qe.1/2, ^d& grows withN asN2qe21. At qe5q151/2 there
is a dramatic change of behavior in the large scale deg
properties. Analogous equations can be written for high
order momentŝdl&. Using a rate equations approach simil
to that considered in Ref.@89# it is obtained that

]nd

]N
5Ad21nd212Adnd2

nd

N
12qvGd2112~12qv!Gd ,

~56!

where

A~din!5
1

N
~qv1qed!, ~57!

Gd5 (
d8>d

S d8

d D nd8
N S qe

2 D dS 12
qe

2 D d82d

. ~58!

The first two terms in the right-hand side of Eq.~56! result
from the duplication of a neighbor of a vertex~with prob-
ability qed/N) and the duplication of a vertex with the cre
ation of an edge between the duplicates~with probability
qv /N), yielding the attachment rate in Eq.~57!. Moreover,
the last three terms are given by the divergence of the du
cates, where with probabilitynd /N a vertex with degreed is
replaced by two duplicates~factor of 2 in the last two terms!.
Thus, the coupling of the duplication and divergence mix
the equations for differentnd . We cannot give an exact der
vation of nd but we can compute the moments of the deg
distribution@50,89#. Multiplying Eq. ~56! by dl and summing
over d we obtain

Ml5 (
d

pddl ;Ns l (qe), ~59!

where

s l~qe!5 lqe12F S 11ql

2 D l

21G , ~60!

provided s l(qe).0. If s l(qe),0 the corresponding mo
ment approaches a stationary value for largeN. For all l we
find a valueql at which the moments cross from a diverge
behavior to a finite value forN→`. In particular, forl 51
we haveq151/2 ~as obtained above! and forl 52 we obtain
q252A323 ' 0.46. Moreover, the nonlinear behavior wit
l is indicative of a multifractal degree distribution.

In order to support the analytical calculations, we ha
performed numerical simulations of the coupled duplicatio
divergence model with graph size ranging fromN5103 to
106. In Fig. 12 we report the generalized exponentss l(qe)
as a function of the divergence parameterqe . As predicted
by the analytical calculations,s l50 at a critical valueql .
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GROWING NETWORK WITH LOCAL RULES: . . . PHYSICAL REVIEW E 67, 056104 ~2003!
The general phase diagrams obtained is in good qualita
but not quantitative, agreement with the mean-field pred
tions and the multifractal picture. Noticeably, multifract
features are present also in a recently introduced mode
growing networks@49# where, in analogy with the duplica
tion process, newly added vertices inherit the network deg
properties from parent vertices. Multifractality thus appe
to be related to local inheritance mechanisms. Multifrac
distributions have a rich scaling structure where the sc
free behavior is characterized by a continuum of expone
This behavior is, however, opposite to that of the usual
ponentially bounded distributions. Even if the evolution ru
of the coupled duplication-divergence model are local th
introduce an effective linear preferential attachment. Ho
ever, because the edge deletion of duplicate vertices in
duce additional heterogeneity in the problem, we obtai
multifractal behavior.

The coupling between duplication and divergence is ho
ever less relevant to determine the scaling of the aver
clustering coefficient with vertex degree. In fact, for t
coupled duplication-divergence model Eq.~53! also applies,
obtaining the inverse proportionality in Eq.~54!. In Fig. 13
we plot ^c&d vs d for different values ofqe , manifesting a
power-law decay but with an exponent larger than 1. W
decreasingqe ~increasing the loss of edges! the power-law
decay deviates more and more from the predicted beha
^c&d ; d21. This picture corroborates our hypothesis tha
the edge loss is sufficiently large then a faster decay sh
be observed.

On the other hand, the average neighbor degree as a f
tion of the vertex degree for different values ofqe is depicted
in Fig. 14. Negative degree correlations are manifested b
power-law decaŷ dnn& ; d20.1. The existence of negativ

FIG. 12. The exponents l(qe) as a function ofqe for different
values ofl. The symbols were obtained from numerical simulatio
of the model. The momentŝdl& were computed as a function ofN
in networks with size ranging fromN5103 to N5106. The expo-
nentss l(q) are obtained from the power-law fit of the plot^dl& vs
N. In the inset we show the corresponding mean-field behavior
obtained from Eq.~60!, which is in qualitative agreement with th
numerical results.
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degree correlations has been actually reported in Ref.@90#
for a protein-protein interaction network. Moreover, a mod
based on these correlations has also been proposed in
@91#.

VI. DISCUSSION AND CONCLUSIONS

After analyzing these models we can conclude that gro
ing networks based on local evolution rules exhibit an eff
tive linear preferential attachment. The general principle
hind it is the following. It is true that when we take a verte
at random the selection does not imply any degree pre
ence, other than the one imposed by the degree distribu
However, if we take a neighbor of that vertex then som
preference is induced. In fact, the probability that vertexi is

as

FIG. 13. Clustering coefficient as a function of vertex degree
the coupled duplication-divergence model for different values
qe , graph sizeN5106, and average over 100 realizations. The so
line is a power-law decay with exponent 1.

FIG. 14. Average degree among the neighbors of a vertex w
degreed of the coupled duplication-divergence model for differe
values ofqe , graph sizeN5106, and average over 100 realization
The solid line is a power-law decay with exponent 0.1.
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ALEXEI VÁ ZQUEZ PHYSICAL REVIEW E67, 056104 ~2003!
a neighbor of the randomly selected vertex is simply

di

(
j

dj

, ~61!

which is exactly the linear preferential attachment conside
in the BA model@19#. Therefore, the connection to a neig
bor of a vertex selected at random leads to an effective lin
preferential attachment.

Another important consequence of the local models c
sidered above is the inverse proportionality between the
erage clustering coefficient and the vertex degree, or m
generally^c&d ; d2b. This result is determined by the fac
that when a new edge is created to a vertex then wit
certain probability an edge will also be created to one
more of its neighbors. Thus, locality is again a crucial poi
On the other hand, even if we were not able to find an a
lytical explanation, these local models are also character
by degree correlations among connected vertices.

TABLE I. Summary of the correlation properties of the differe
models analyzed here.

Mechanism ^c&d ; d2b ^dnn&d ;da

Connecting neighbors 0,b,1 a.0
Random walk b51 a<0
Duplication divergence b>1 a,0
en
n,

v.

e

rin

ch
C

J,

/
sis
A
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These features are observed in the three models anal
here and are summarized in Table I. They describe differ
systems such as technological, social, and biological
works, which appear unrelated from the definitions of th
evolution rules. The detailed analysis performed here rev
that their main property that they are local models of gro
ing networks, explains the existence of strong similarities
their topological properties. These observations can be
tended to other local models proposed in the literature.
example is the model introduced in Ref.@92#, where each
time a vertex is added it is connected to both ends of an e
selected at random. It can be easily shown that this rule
introduces an effective linear preferential attachment, clus
ing hierarchy, and degree correlations. Another example
the deactivation model@60#, where new vertices are con
nected to small subset of connected vertices. A detailed s
of its topology@63# reveals the existence of clustering hie
archy and degree correlations.

In conclusion, the growing models with local rules exhib
some of the common features of real graphs. They are c
acterized by an effective preferential attachment, an aver
clustering coefficient that decreases with increasing ve
degree, and degree correlations. The local knowledge is
a general principle determining the topology of growin
complex networks.
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