Vertex Colourings

We assume in this chapter that G is simple.

A k - colouring of (the vertices of) G is a mapping

$$c : V \rightarrow \{1, 2, \ldots , k\}.$$

c(v) is the colour of vertex v.

$K_i = \{v \in V : c(v) = i\}$ is the set of vertices with colour i.

c is proper if K_1, K_2, \ldots , K_k are independent sets i.e. adjacent vertices v, w have $c(v) \neq c(w)$.

1
G is k-colourable if it has a proper k-colouring.
A graph is k-colourable iff it is k-partite.
The Chromatic Number

$$\chi(G) = \min\{k : G \text{ is } k\text{-colourable}\}.$$

Lemma 1

$$\chi(G) \geq \max\{\text{cl}(G), \nu/\alpha(G)\}$$
where $\text{cl}(G)$ is the size of the largest clique in G.

Proof
If C is a clique of G then every vertex of C must have a different colour in a proper colouring of G.
If K_1, K_2, \ldots, K_k defines a proper k-colouring then

$$\nu = \sum_{i=1}^{k} |K_i| \leq k\alpha(G).$$
Greedy Colouring Algorithm

Let $V = \{v_1, v_2, \ldots, v_n\}$ and $V_i = \{v_1, v_2, \ldots, v_i\}$ for $i = 1, 2, \ldots, n$.

begin

for $i = 1$ to n do

begin

$c(v_i) := \min\{j : \exists w \in N_G(v_i) \cap V_{i-1} \text{ with } c(w) = j\}$

end

end
Theorem 1

\[\chi(G) \leq \Delta(G) + 1. \]

The Greedy Colouring algorithm produces a proper \(k \)-colouring for some \(k \leq \Delta + 1 \) where

\[k \leq 1 + \max_i |N_G(v_i) \cap V_{i-1}|. \]

(1)

(a) The colouring is proper: Suppose \(v_r v_s \in E \) and \(r < s \). \(c(v_r) \neq c(v_s) \) since \(c(v_s) \) is the lowest numbered colour that is not used by a neighbour of \(v_s \) in \(\{v_1, v_2, \ldots, v_{s-1}\} \),

(b) At most \(\Delta + 1 \) colours are used: \(|N_G(v_i)| \leq \Delta \) and so the minimum above is never more than \(\Delta + 1 \).

If \(G \) is a complete graph or an odd cycle then \(\chi(G') = \Delta + 1. \)
Colouring Number

Let

\[\delta^*(G) = \max_{S \subseteq V} \delta(G[S]) \]

(the maximum over the vertex induced subgraphs of their minimum degrees.)

\[\delta(G) = 2 \text{ and } \delta^*(G) = 3. \]
Theorem 2

\[\chi(G') \leq \delta^*(G) + 1. \]

Proof Let \(V = \{v_1, v_2, \ldots, v_n\} \) where

\(v_i \) is a minimum degree vertex of \(G[V_i] \).

\[
|N_G(v_i) \cap V_{i-1}| = \delta(G[V_i]) \leq \delta^*.
\]

The theorem follows from (1). \(\square \)
Brook’s Theorem

Theorem 3 If G is a connected graph which is not a complete graph or an odd cycle then $\chi(G) \leq \Delta(G)$.

Proof We shall prove this by induction on the number of vertices in G.

Assume that G is connected but not a complete graph or an odd cycle.

If G has a cutpoint v let $G - v$ have components C_1, C_2, \ldots, C_p and let $W_i = C_i + v$ for $i = 1, 2, \ldots, p$. Let $k_i = \chi(G[W_i])$ and properly k_i-colour the vertices of each W_i so that v has colour 1 in each.
This induces a proper k-colouring of G where $k = \max\{k_1, k_2, \ldots, k_p\}$.

We argue that $k \leq \Delta$. If say $k_1 = \Delta + 1$ then (by induction) either W_1 is an odd cycle or a complete graph on k_1 vertices.
If W_1 is an odd cycle then $k_1 = 3$ and $\Delta = 2$ but now $d_G(v) \geq 3$ — contradiction.

If W_1 is a complete graph on k_1 vertices then $\Delta \geq d_G(v) \geq k_1$ — contradiction.

Suppose next that G contains a vertex v with $d_G(v) \leq \Delta - 1$. Let $H = G - v$.

If H is an odd cycle then $\Delta(G) = 3$. We can 3-colour H and then colour v with a colour not used by one of its ≤ 2 neighbours. Thus $\chi(G) = 3$ as required.
If H is a k-clique then $\Delta(G) = k$. We k-colour H and extend the colouring to v as v has less than k neighbours in H.

If H is is neither a clique or an odd cycle then we can Δ-colour it. We can extend this colouring to v by using one of the colours not used so far in $N_G(v)$.

We can therefore assume that G is Δ-regular and 2-connected with $\Delta \geq 3$.
We now consider 2-vertex cutsets. Suppose first that G contains vertices u, v such that $uv \in E$ and u is a cut point of $H = G - v$.

Let C_1, C_2, \ldots, C_k be the components of $H - v$. Each C_i contains at least one neighbour x_i of v, else u is a cutpoint of G.

Take a Δ-colouring of H. Assume first that all neighbours of u have different colours. Interchange colours c_1, c_2 of x_1, x_2 within C_2 only.
Because u does not have colour c_1 or c_2 and C_1 has no neighbours other than u we see that this yields a new proper colouring of H, but now x_1 and x_2 have the same colour c_1.

Thus we can assume that we have a Δ-colouring of H in which 2 neighbours of v have the same colour. This colouring can be extended to v since fewer than Δ colours are being used by neighbours of v.
Suppose then that there are no two neighbours which form a 2-vertex cut set. We prove the existence of vertices a, b, c such that

$$ab, ac \in E \text{ and } bc \notin E \text{ and } G - \{b, c\} \text{ is connected.}$$

(2)

Choose $y \in V$ and let x be at distance 2 from x. y cannot be a neighbour of every other vertex else G is $(\Delta + 1)$-clique. Let x be the middle vertex of a path from x to y of length 2. Then $xy, xz \in E$ and $yz \notin E$.

If $G - \{yz\}$ is connected then let $a, b, c = x, y, z$.
Otherwise let $G - \{yz\}$ have components C_1, C_2, \ldots, C_k. y has a neighbour $\alpha \neq x$ in C_1 else x is of degree 2 or is a neighbour of z which is a cutpoint of $G - z$. Similarly, y has a neighbour $\beta \neq x$ in C_2.

We claim that $H = G - \{\alpha, \beta\}$ is connected and so we can take $a, b, c = y, \alpha, \beta$.
Suppose $C_2 - \beta$ has components D_1, D_2, \ldots. Then z is adjacent to D_1 else β is a cutpoint of $G - y$. Similarly, z is adjacent to all components of $C_1 - \alpha$ and $C_2 - \beta$. Now H contains the path x, y, z and every other component C_3, \ldots, C_k is connected to y, z and so H is connected.
Suppose that (2) holds. We run the Greedy colouring algorithm with

\[v_1 = b, v_2 = c, v_3, \ldots, v_{n-1}, v_n = a \]

The sequence \(v_3, \ldots, v_{n-1}, v_n \) is obtained by doing BFS from \(a \) in \(G - \{b, c\} \).

The important thing is that for \(3 \leq i \leq n - 1 \)

\[\exists j > i \text{ such that } v_j \text{ is a neighbour of } v_i. \] \((3) \)
Greedy uses at most Δ colours.

v_1 and v_2 both get colour 1.

For $3 \leq i \leq n - 1$, (3) implies that at most $\Delta - 1$ of v_i’s neighbours have already been coloured when we come to colour $v - i$.

Finally, $v_n = a$ has at least 2 neighbours, b, c using the same colour and so at most $\Delta - 1$ colours have been used so far in a’s neighbourhood. \qed
Chromatic Polynomial

\(\pi_k(G) \) is the number of distinct proper \(k \)-colourings of \(G \).

\[
\pi_k = k(k-1)(k-2)
\]

Theorem 4 Let \(e = uv \) be an edge of \(G \). Then

\[
\pi_k(G) = \pi_k(G - e) - \pi_k(G \cdot e).
\]

Proof \(\pi_k(G) \) = the number of \(k \)-colourings of \(G - e \) in which \(u, v \) have different colours.

\(\pi_k(G \cdot e) \) = the number of \(k \)-colourings of \(G - e \) in which \(u, v \) have the same colour. \(\square \)
Theorem 5 $\pi_k(G)$ is a polynomial of degree ν in k with integer coefficients, leading term k^ν and constant term zero. The coefficients alternate in sign.

Proof By induction on $|E|$. If $E = \emptyset$ then $\pi_k(G) = k^\nu$.

Assume true for all graphs with $< m$ edges and let G be a graph with m edges. Then by induction

$$
\pi_k(G - e) = k^\nu + \sum_{i=1}^{\nu-1} (-1)^{\nu-i} a_i k^i
$$

$$
\pi_k(G \cdot e) = k^{\nu-1} + \sum_{i=1}^{\nu-2} (-1)^{\nu-1-i} b_i k^i
$$

where $a_1, \ldots, a_{\nu-1}, b_1, \ldots, b_{\nu-2}$ are non-negative integers. Then

$$
\pi_k(G) = k^\nu - (a_{\nu-1} + 1) k^{\nu-1} + \sum_{i=1}^{\nu-2} (-1)^{\nu-i} (a_i + b_i) k^i.
$$

\qed
Triangle free graphs with high chromatic number

Theorem 6 For any positive integer k, there exists a triangle-free graph with chromatic number k.

Proof For $k = 1, 2$ we use K_1, K_2 respectively.

For larger k we use induction on k. Suppose we have a triangle-free graph $G_k = (V_k, E_k)$ of chromatic number k. Let $V_k = \{v_1, v_2, \ldots, v_n\}$. Form G_k as follows:

Add vertices $\{v\} \cup U = \{u_1, u_2, \ldots, u_n\}$ to G_k. Join u_i to v and the neighbours of v_i in G_k, for $1 \leq i \leq n$.
(a) G_{k+1} has no triangles.
U is an independent set and so any triangle will have at most one vertex from U. Thus there are no triangles involving v. Finally, if u_i, v_j, v_k is a triangle then v_i, v_j, v_k is a triangle of G_k.

(b) G_{k+1} does not have a proper k-colouring.
Suppose there was one c^*. We can assume that $c^*(v) = k$ and then U is coloured from $\{1, 2, \ldots, k-1\}$. But now we can define a proper $(k-1)$-colouring c of G_k by

$$c(v_i) = \begin{cases}
 c^*(v_i) & \text{if } c^*(v_i) \neq k \\
 c^*(u_i) & \text{if } c^*(v_i) = k
\end{cases}$$

This is a proper colouring of G_k since if $v_i v_j$ is an edge of G_k with $c(v_i) = c(v_j)$ then exactly one of $c(v_i) \neq c^*(v_i)$ or $c(v_j) \neq c^*(v_j)$ holds. Assume the former. Then $c^*(v_i) = k$ and $c(v_i) = c^*(u_i) \neq c^*(v_j) = c(v_j)$. Thus G_{k+1} is k-colourable implies G_k is $(k-1)$-colourable, which it isn’t.
(c) G_{k+1} has a proper $(k + 1)$-colouring. Let c be a proper k-colouring of G_k. Extend this to U by putting $c(u_i) = c(v_i)$ and then let $c(v) = k + 1$. Note that u_i and v_i have the same colour and the same neighbours in V_k and so the colouring remains proper.