Connectivity

G is k-connected if $S \subseteq V, |S| < k$ implies $G - S$ is connected.

$$\kappa(G) = \max\{k : G \text{ is } k\text{-connected}\}.$$
G is k-edge connected if $S \subseteq E, |S| < k$ implies $G - S$ is connected.

$$\kappa'(G) = \max \{k : G \text{ is } k\text{-edge connected}\}.$$
Assume G connected.

S is a k-vertex cutset if $S \subseteq V, |S| = k$ and $G - S$ is not connected.

A 1-vertex cutset is a cutpoint.

S is a k-edge cutset if $S \subseteq E, |S| = k$ and $G - E$ is not connected.

A 1-edge cutset is a bridge or cut-edge.
Lemma 1 \textit{If }G\textit{ is connected and }e\textit{ is a bridge, then }$H = G - e$\textit{ has exactly 2 components.}

\textbf{Proof} \hspace{0.5cm} \textit{If }H\textit{ has components }C_1, C_2, C_3\textit{ then }$G = H + e$\textit{ has }≥ 2\textit{ components, since adding an edge decreases the number of components by at most 1. This contradicts the fact that }G\textit{ is connected.} \Box
Complete Graphs

K_n has no vertex cutsets.

$\kappa(K_n) = n - 1$ by convention.

$\kappa'(K_n) = n - 1$.

So in general

$\kappa(G) \leq \nu - 1$.

G not complete. v, w not neighbours.
$V \setminus \{v, w\}$ is a $(\nu - 2)$-vertex cutset.
Theorem 1

\[\kappa(G) \leq \kappa'(G) \leq \delta(G). \]

Proof If \(G \) has no edges then

\[\kappa' = 0 = \delta. \]

Otherwise the set of edges incident with a vertex \(v \) of minimum degree is a \(\delta \)-edge cutset.

Therefore \(\kappa' \leq \delta \).
We prove that $\kappa \leq \kappa'$ by induction on κ'.

True for $\kappa' = 0$.

Assume true for all graphs with $\kappa' < k$ and let G be a graph with $\kappa'(G) = k$.

Suppose $A \subseteq E$ is a k-edge cutset of G.

Let $e \in A$ and $H = G - e$. Then

$$H - (A \setminus e) = G - A$$

is not connected

and so $\kappa'(H) < k$.

By the induction hypothesis $\kappa(H) \leq \kappa'(H) \leq k - 1$.

Let $S \subseteq V$ be a $k - 1$-vertex cutset of H.
If $G - S$ is not connected then $\kappa(G) \leq k - 1 < \kappa'(G)$.

Assume therefore that $G - S$ is connected.

Neither endpoint of e is in S, else $G - S = H - S$.

e is a bridge of $G - S$ since $(G - S) - e = H - S$ is not connected. It has 2 components C_1, C_2.
If $|C_1| \geq 2$ then $S + v$ is a k-vertex cutset of G and so $\kappa(G) \leq k$.

Similarly if $|C_2| \geq 2$.

So assume that $G - S$ is the just the edge vw.

Then $\nu(G) = k + 1$ and so $\kappa(G) \leq k$.
A block is a connected graph with no cutpoints.

Thus a block is either a single vertex, a single edge or if $\nu \geq 3$ it is a 2-connected graph.

A block of a graph is a maximal connected subgraph with no cutpoints.

Note that blocks partition the edges of G, not the vertices.
Union and Intersection of Graphs

\(G_i = (V_i, E_i), i = 1, 2. \)

\[G_1 \cup G_2 = (V_1 \cup V_2, E_1 \cup E_2). \]

\[G_1 \cap G_2 = (V_1 \cap V_2, E_1 \cap E_2) \]

provided \(V_1 \cap V_2 \neq \emptyset. \)

Theorem 2 \(A \) connected graph \(G \) can be expressed as

\[G = B_1 \cup B_2 \cup \cdots B_r \]

where \(B_1, B_2, \ldots, B_r \) are the blocks of \(G \).

By induction on \(\nu \). Trivial for \(\nu = 1. \)
Assume true for all connected graphs with \(\nu < k \) and suppose that \(G \) has \(k \) vertices.
(a) G has no cutpoints – $G = B_1$.

(b) G has a cutpoint v.

Let $G - v$ have components $C_1, C_2, \ldots C_s$.
$C_i + v$ is connected for $1 \leq i \leq s$.

By induction

$$C_i + v = \bigcup_{j=1}^{k_i} B_{i,j}$$

where the $B_{i,j}$ are the blocks of $C_i + v$.

Thus

$$G = \bigcup_{i=1}^{r} \bigcup_{j=1}^{k_i} B_{i,j}.$$

We still have to check that the $B_{i,j}$ are maximal 2-connected subgraphs. But $B_{i,j}$ is not strictly contained in any 2-connected subgraph of $C_i + v$ since it is a block of $C_i + v$. Also, if $x \notin C_i + v$ then every path from x to C_i must go through v and so v is a cutpoint of any subgraph containing $B_{i,j}$ and x.
Theorem 3 If B_1, B_2 are blocks of the connected graph G then

$$|V(B_1) \cap V(B_2)| \leq 1.$$

Proof Suppose that $|V(B_1) \cap V(B_2)| \geq 2$. We obtain the contradiction that $B_1 \cup B_2$ is 2-connected. Let $x \in V(B_1) \cup V(B_2)$ and $y \in (V(B_1) \cap V(B_2)) - x$. Then there is a path in B_i from every vertex v of $B_i - x$ to y. Thus $B_1 \cup B_2 - x$ is connected. \[\square\]
Lemma 2 If v is a cutpoint of connected graph then there exist blocks B_1, B_2 such that $V(B_1) \cap V(B_2) = \{v\}$.

Proof Let $G-v$ have components C_1, C_2, \ldots , C_r. Let B_i be the block of $C_i + v$ which contains v for $i = 1, 2$. B_1, B_2 are blocks of G, by the same argument as given in end of proof of Theorem 2. \square
Lemma 3 If $B_1 \neq B_2$ are blocks of G and $V(B_1) \cap V(B_2) = \{v\}$ then every path from a vertex of B_1 to a vertex of B_2 goes through v.

Proof If there is a path P from $x \in B_1$ to $y \in B_2$ which avoids v then $B_1 \cup B_2 \cup P$ is 2-connected.

Corollary 1 If $B_1 \neq B_2$ are blocks of G and $V(B_1) \cap V(B_2) = \{v\}$ then v is a cutpoint of G.
Lemma 4 Suppose $B_1 \neq B_2$ are vertex disjoint blocks of G and there is an edge xy with $x \in V(B_1)$, $y \in V(B_2)$. Then x, y forms a block of G and both of x, y are cutpoints.

Proof If y is of degree 1 then $B_1 = x$ is not a block.

\[\text{\begin{tikzpicture}

 \end{tikzpicture}}\]

Otherwise if y is not of degree 1 and is not a cutpoint then there is a path P from B_2 to $B_1 - x$ which implies $B_1 \cup B_2 \cup P$ is 2-connected – contradiction.

\[\text{\begin{tikzpicture}

 \end{tikzpicture}}\]

Thus xy is a bridge of G and so is a block.
Let G be a connected graph with blocks B_1, B_2, \ldots , B_r and cutpoints c_1, c_2, \ldots , c_s. We define a bipartite graph H with $V(H) = \{b_1, b_2, \ldots , b_r\} \cup \{c_1, c_2, \ldots , c_s\}$ (block vertices and cut vertices) and $E(H) = \{b_ic_j : c_j \in B_i\}$.

Theorem 4 H is a tree.
Proof If G is 2-connected then H consists of a single vertex. Assume that G is not 2-connected.

(a) H is connected.
Suppose that H contains components C_1, C_2, \ldots, C_r, $r \geq 2$. Each component contains at least one block vertex and at least one cut vertex – each block contains a cutpoint and each cutpoint is contained in a block.

Since G is connected, there exist C_i, C_j and $b_i \in C_i, b_j \in C_j$ such that either

1. $V(B_i) \cap V(B_j) = \{c\}$: but then H contains the path b_i, c, b_j – contradiction.

2. $V(B_i) \cap V(B_j) = \emptyset$ and there is an edge x, y joining B_i to B_j: but then x, y is a block B_k, say, and H contains the path b_i, x, b_k, y, b_j – contradiction.
(b) H contains no cycles.

If H contains the cycle $(b_1, c_1, b_2, c_2, \ldots, b_k, c_k, b_1)$ then $B_1 \cup B_2 \cup \cdots B_k$ is 2-connected – contradiction.
A family of paths is said to be *internally disjoint* if no vertex of G is an internal vertex of more than one path.

Theorem 5 A graph G with $\nu \geq 3$ is 2-connected iff any two vertices of G are connected by at least two internally disjoint paths.
Proof

If: $G - v$ is connected for any v since $x, y \in V - v$ must contain at least one path which avoids v.

Only if: assume G is 2-connected. We show by induction on $d(u, v)$ that every pair of vertices u, v are joined by two internally disjoint paths.

Base case: $d(u, v) = 1$.

$e = uv$ is not a cut-edge and so is contained in a cycle.
Assume true for $d(u, v) < k$ and consider a pair u, v with $d(u, v) = k$. Let w be the penultimate vertex on some path of length k from u to v. Thus $d(u, w) = k - 1$ and there are two internally disjoint paths P, Q joining u and w.

$G - w$ is connected and so there exists a u, v-path P' in $G - w$. Let x be the last vertex of P' which is not in $P \cup Q$.

If $x \in P$ take $P(u, x) + P'(x, v)$ and Q as the two internally disjoint paths.
Corollary 2 If G is 2-connected and $\nu \geq 3$ then every pair of vertices are contained in a cycle.

Corollary 3 If G is 2-connected and $\nu \geq 3$ then every pair of edges e_1, e_2 are contained in a cycle.

G' is obtained from G by dividing e_1, e_2. G' is 2-connected. Apply Theorem 5.