Directed graphs

Digraph $D = (V, A)$.
$V=$\{vertices\}, $A=$\{arcs\}

V={a,b,...,h}, A={(a,b),(b,a),...}
(2 arcs with endpoints (c,d))

Thus a digraph is a graph with oriented edges.
D is *strict* if there are no loops or repeated edges.
Digraph D: $G(D)$ is the underlying graph obtained by replaced each arc (a, b) by an edge $\{a, b\}$.

The graph underlying the digraph on previous slide
Graph G: an orientation of G is obtained by replacing each edge $\{a, b\}$ by (a, b) or (b, a).

There are $2^{|E|}$ distinct orientations of G.

G

Orientation of G
Walks, trails, paths, cycles now have directed counterparts.

Directed Walk: (c,d,e,f,a,b,g,f).
Directed Path: (a,b,g,f).
Directed Cycle: (g,a,b,a)

(e,f,g,a) is not a directed walk -- there is no arc (f,g).
The *indegree* $d_D^-(v)$ of vertex v is the number of arcs (x,v), $x \in V$. The *outdegree* $d_D^+(v)$ of vertex v is the number of arcs (v,x), $x \in V$.

![Graph with vertices and arrows]

Note that since each arc contributes one to a vertex outdegree and one to a vertex indegree,

$$\sum_{v \in V} d_D^+(v) = \sum_{v \in V} d_D^-(v) = |A|.$$
Strong Connectivity or Diconnectivity

Given digraph D we define the relation \sim on V by $v \sim w$ iff there is a directed walk from v to w and a directed walk from w to v.

This is an equivalence relation (proof same as directed case) and the equivalence classes are called strong components or dicomponents.

Here the strong components are

$$\{a, b, g\}, \{c\}, \{d\}, \{e, f, h\}.$$
A graph is *strongly connected* if it has one strong component i.e. if there is a directed walk between each pair of vertices.

For a set \(S \subseteq V \) let

\[
N^+(S) = \{ w \notin S : \exists v \in S \text{ s.t.} (v, w) \in A \}.
\]

\[
N^-(S) = \{ w \notin S : \exists v \in S \text{ s.t.} (w, v) \in A \}.
\]

Theorem 1
D is strongly connected iff there does not exist \(S \subseteq V, S \neq \emptyset, V \) *such that* \(N^+(S) = \emptyset \).

Proof
Only if: suppose there is such an \(S \) and \(x \in S, y \in V \setminus S \) and suppose there is a directed walk \(W \) from \(x \) to \(y \). Let \((v_1 = x, v_2, \ldots, v_k = y) \) be the sequence of vertices traversed by \(W \). Let \(v_i \) be the first vertex of this sequence which is not in \(S \). Then \(v_i \in N^+(S) \), contradiction, since arc \((v_{i-1}, v_i) \) exists.
If: suppose that D is not strongly connected and that there is no directed walk from x to y. Let $S = \{v \in V : \exists$ a directed walk from x to $v\}$.

$S \neq \emptyset$ as $x \in S$ and $S \neq V$ as $y \notin S$.

Then $N^+(S) = \emptyset$. If $z \in N^+(S)$ then there exists $w \in S$ such that $(w, z) \in A$. But then since $w \in S$ there is a directed walk from x to w which can be extended to z, contradicting the fact that $z \notin S$. \square
A Directed Acyclic Graph (DAG) is a digraph without any directed cycles.

Lemma 1 If D is a DAG then D has at least one source (vertex of indegree 0) and at least one sink (vertex of outdegree 0).

Proof Let $P = (v_1, v_2, \ldots, v_k)$ be a directed path of maximum length in D. Then v_1 is a source and v_k is a sink.
Suppose for example that there is an edge xv_1. Then either

(a) $x \not\in \{v_2, v_3, \ldots, v_k\}$. But then (x, P) is a longer directed path than P – contradiction.

(b) $x = v_i$ for some $i \neq 1$ and D contains the cycle $v_1, v_2, \ldots, v_i, v_1$.

\[\square \]

A topological ordering v_1, v_2, \ldots, v_ν of the vertex set of a digraph D is one in which

$$v_i v_j \in A \text{ implies } i < j.$$
Theorem 2
\(D \) has a topological ordering iff \(D \) is a DAG.

Proof
Only if: Suppose there is a topological ordering and a directed cycle \(v_{i_1}, v_{i_2}, \ldots, v_{i_k} \). Then

\[
i_1 < i_2 < \cdots < i_k < i_1
\]

which is absurd.

if: By induction on \(\nu \). Suppose that \(D \) is a DAG. The result is true for \(\nu = 1 \) since \(D \) has no loops. Suppose that \(\nu > 1 \), \(v_{\nu} \) is any sink of \(D \) and let \(D' = D - v_{\nu} \).

\(D' \) is a DAG and has a topological ordering \(v_1, v_2, \ldots, v_{\nu-1} \), induction. \(v_1, v_2, \ldots, v_{\nu} \) is a topological ordering of \(D \). For if there is an edge \(v_i v_j \) with \(i > j \) then (i) it cannot be in \(D' \) and (ii) \(i \neq \nu \) since \(v_{\nu} \) is a sink.

\(\Box \)
Theorem 3 Let $G = G(D)$. Then D contains a directed path of length $\chi(G) - 1$.

Proof Let $D = (V, A)$ and $A' \subseteq A$ be a minimal set of edges such that $D' = D - A$ is a DAG.

Let k be the length of the longest directed path in D'.

Define $c(v) =$ length of longest path from v in D'.
$c(v) \in \{0, 1, 2, \ldots, k\}$. We claim that $c(v)$ is a proper colouring of G, proving the theorem.
Note first that if D' contains a path $P = (x_1, x_2, \ldots, x_k)$ then
\[c(x_1) \geq c(x_k) + k - 1. \quad (1) \]
(We can add the longest path Q from x_k to P to create a path (P, Q). This uses the fact that D' is a DAG.)

Suppose c is not a proper colouring of G and there exists an edge $vw \in G$ with $c(v) = c(w)$. Suppose $vw \in A$ i.e. it is directed from v to w.

Case 1: $vw \notin A'$. (1) implies $c(v) \geq c(w) + 1$ – contradiction.

Case 2: $vw \in A'$. There is a cycle in $D' + vw$ which contains vw, by the minimality of A'. Suppose that C has $\ell \geq 2$ edges. Then (1) implies that $c(w) \geq c(v) + \ell - 1$. \qed
Tournaments

A tournament is an orientation of a complete graph K_n.

1, 2, 5, 4, 3 is a directed Hamilton Path

Corollary 1 A tournament T contains a directed Hamilton path.

Proof $\chi(G(T)) = n$. Now apply Theorem 3. \qed
Theorem 4 If D is a strongly connected tournament with $\nu \geq 3$ then D contains a directed cycle of size k for all $3 \leq k \leq \nu$.

Proof By induction on k.

$k = 3$.
Choose $v \in V$ and let $S = N^+(V)$, $T = N^-(v) = V \setminus (S \cup \{v\})$.

![Diagram](image)

$S \neq \emptyset$ since D is strongly connected. Similarly, $S \neq V \setminus \{v\}$ else $N^+(V \setminus \{v\}) = \emptyset$.

Thus $N^+(S) \neq \emptyset$. $v \notin N^+(S)$ and so $N^+(S) = T$. Thus $\exists x \in S, y \in T$ with $xy \in A$.

15
Suppose now that there exists a directed cycle $C = (v_1, v_2, \ldots, v_k, v_1)$.

Case 1: $\exists w \not\in C$ and $i \neq j$ such that $v_iw \in A$, $wv_j \in A$.

![Diagram of directed cycle](image)
It follows that there exists ℓ with $v_\ell w \in A$, $wv_{\ell+1} \in A$.

$C' = (w, v_{\ell+1}, \ldots, v_\ell, v_1, \ldots, v_\ell, w)$ is a cycle of length $k + 1$.
Case 2 \(V \setminus C = S \cup T \) where
\[
\begin{align*}
w \in S & \implies wv_i \in A, \ 1 \leq i \leq k. \\
w \in T & \implies v_iw \in A, \ 1 \leq i \leq k.
\end{align*}
\]
\(S = \emptyset \) implies \(T = \emptyset \) (and \(C \) is a Hamilton cycle) or \(N^+(T) = \emptyset \).

\(T = \emptyset \) implies \(N^+(C) = \emptyset \).

Thus we can assume
\(S, T \neq \emptyset \) and \(N^+(T) \neq \emptyset \).
\(N^+(T) \cap C = \emptyset \) and so \(N^+(T) \cap S \neq \emptyset \).

Thus \(\exists x \in T, y \in S \) such that \(xy \in A \).

The cycle \((v_1, x, y, v_3, \ldots, v_k, v_1) \) is a cycle of length \(k + 1 \).
Robbin’s Theorem

Theorem 5 A connected graph G has an orientation which is strongly connected iff G is 2-edge connected.

Only if: Suppose that G has a cut edge $e = xy$.

If we orient e from x to y (resp. y to x) then there is no directed path from y to x (resp. x to y).
If: Suppose G is 2-edge connected. It contains a cycle C which we can orient to produce a directed cycle.

At a general stage of the process we have a set of vertices $S \supseteq C$ and an orientation of the edges of $G[S]$ which is strongly connected.

If $S \neq V$ choose $x \in S$, $y \notin S$.

There are 2 edge disjoint paths P_1, P_2 joining y to x.

Let a_i be the first vertex of P_i which is in S.

Orient $P_1[y, a_1]$ from y to a_1.

Orient $P_2[y, a_2]$ from a_2 to y.
Claim: The subgraph $G[S \cup P_1 \cup P_2]$ is strongly connected.

Let $S' = S \cup P_1 \cup P_2$. We must show that there is a directed path from α to β for all $\alpha, \beta \in S'$.

(i) $\alpha, \beta \in S$: \exists a directed path from α to β in S.

(ii) $\alpha \in S$, $\beta \in P_1 \setminus S$: Go from α to a_2 in S, from a_2 to y on P_2, from y to β along P_1.

(iii) $\alpha \in S$, $\beta \in P_2 \setminus S$: Go from α to a_2 in S, from a_2 to β on P_2.

(iv) $\alpha \in P_1 \setminus S$, $\beta \in S$: Go from α to α_1 on P_1, from a_1 to β in S.

(v) $\alpha \in P_2 \setminus S$, $\beta \in S$: Go from α to y on P_1, from y to a_1 on P_1, from a_1 to β in S.

Continuing in this way we can orient the whole graph.

\[\Box\]
Directed Euler Tours

An Euler tour of a digraph D is a directed walk which traverses each arc of D exactly once.

Theorem 6 A digraph D has an Euler tour iff $G(D)$ is connected and $d^+(v) = d^-(v)$ for all $v \in V$.

Proof This is similar to the undirected case.

If: Suppose $W = (v_1, v_2, \ldots, v_m, v_1)$ ($m = |A|$) is an Euler Tour. Fix $v \in V$. Whenever W visits v it enters through a new arc and leaves through a new arc. Thus each visit requires one entering arc and one leaving arc. Thus $d^+(v) = d^-(v)$.

Only if: We use induction on the number of arcs. D is not a DAG as it has no sources or sinks. Thus it must have a directed cycle C. Now remove the edges of C. Each component C_i of $G(D - C)$ satisfies the degree conditions and so contains an Euler tour W_i. Now, as in the undirected case, go round the cycle C and the first time you visit C_i add the tour W_i. This produces an Euler tour of the whole digraph D.

23
As a simple application of the previous theorem we consider the following problem. A 0-1 sequence \(x = (x_1, x_2, \ldots, x_m) \) has property \(P_n \) if for every 0-1 sequence \(y = (y_1, y_2, \ldots, y_n) \) there is an index \(k \) such that \(x_k = y_1, x_{k+1} = y_2, \ldots, x_{k+n-1} = y_n \). Here \(x_t = x_{m+1-t} \) if \(t > m \).

Note that we must have \(m \geq 2^n \) in order to have a distinct \(k \) for each possible \(x \).

Theorem 7 There exists a sequence of length \(2^n \) with property \(P_n \).

Proof Define the digraph \(D_n \) with vertex set \(\{0, 1\}^{n-1} \) and \(2^n \) directed arcs of the form
\(\left((p_1, p_2, \ldots, p_{n-1}), (p_2, p_3, \ldots, p_n)\right) \).

\(G(D_n) \) is connected as we can join \((p_1, p_2, \ldots, p_{n-1})\) to \((q_1, q_2, \ldots, q_{n-1})\) by the path \((p_1, p_2, \ldots, p_{n-1})\), \((p_2, p_3 \ldots, p_{n-1}, q_1)\), \((p_3, p_4, \ldots, p_{n-1}, q_1, q_2)\), \ldots, \((q_1, q_2, \ldots, q_{n-1})\). Each vertex of \(D_n \) has indegree and outdegree 2 and so it has an Euler tour \(W \).
Suppose that W visits the vertices of D_n in the sequence $(v_1, v_2, \ldots, v_{2^n})$. Let x_i be the first bit of v_i. We claim that $x_1, x_2, \ldots, x_{2^n}$ has property P_n. Give arc $((p_1, p_2, \ldots, p_{n-1}), (p_2, p_3, \ldots, p_n))$ the label (p_1, p_2, \ldots, p_n). No other arc has this label.

Given (y_1, y_2, \ldots, y_n) let k be such that (v_k, v_{k+1}) has this label. Then $v_k = (y_1, y_2, \ldots, y_{n-1})$ and $v_{k+1} = (y_2, y_3, \ldots, y_n)$ and then $x_k = y_1, x_{k+1} = y_2, \ldots, x_{k+n-1} = y_n$. \qed