1. Given a set of \(n^2 + 1 \) positive integers, show that either there exists a subset \(A \) of size \(n + 1 \) such that either (1) no element of \(A \) divides another element of \(A \), or (2) for every \(a, b \in A \) with \(a < b \), we have \(a \) divides \(b \).

Solution:
This follows directly from Dilworth’s theorem. If there is no set \(A \) satisfying (1) then the maximum size of anti-chain in the divisibility poset is at most \(n \). Therefore the poset can be covered by at most \(n \) chains. One of which must be of size at least \(n + 1 \), giving (2).

2. (a) How many strings of length \(n \) consisting of 0’s and 1’s have no two consecutive 1’s?
(b) How many strings of length \(n \) consisting of 0’s and 1’s have no three consecutive 1’s and no three consecutive 0’s?

Solution:
(a) Let \(\alpha_n \) be the number of strings made of zeros and ones with no two consecutive ones. If \(a_n \) ends in a 0, we have \(\alpha_{n-1} \) possible strings. If \(a_n \) ends in a 1, it must end in a 01, so we have \(\alpha_{n-2} \) possible strings. So,

\[
\alpha_n = \alpha_{n-1} + \alpha_{n-2}.
\]

There is one empty valid sequence, two valid sequences of length 1 and three of length 2.
Therefore \(\alpha_n = F_{n+1} \), where \(F_n \) is the \(n \)'th Fibonacci number.

(b) Let \(a_n \) be a string of length \(n \) that satisfies the condition in the problem. Define \(b_{n-1} \) as follows: \(b_i = 1 \) iff \(a_i = a_{i+1} \) and 0 otherwise. The string \(b_{n-1} \) has no two consecutive ones. From (a) above, there are \(F_n \) strings of the defined type. For each string \(b_{n-1} \) there are 2 strings \(a_n \). So, the answer is \(2F_n \).

3. Find \(a_n \) if \(a_n = 6a_{n-1} + 7a_{n-2}, a_0 = 2, a_1 = 10 \).

Solution:
Let \(a(x) = \sum a_n x^n \). Then

\[
a(x) - 2 - 10x = 6x(a(x) - 2) + 7x^2 a(x),
\]

\[
a(x) = \frac{2 - 2x}{1 - 6x - 7x^2};
\]

\[
a(x) = \frac{3/2}{1 - 7x} + \frac{1/2}{1 + x}.
\]

So

\[
a_n = \frac{3}{2} 7^n + \frac{1}{2} (-1)^n.
\]