1. Suppose that in a town of n citizens, clubs C_1, C_2, \ldots, C_m must satisfy (i) $|C_i|$ is even for $i = 1, 2, \ldots, m$ and (ii) $|C_i \cap C_j|$ is odd for $1 \leq i < j \leq m$. Show that $m \leq n$.

(Hint: Consider the cases n odd and n even separately. In the n even case consider the matrix $M = AA^T$ where A is made up from the incidence vectors of the columns of C_1, C_2, \ldots, C_m.)

Solution: Let 1 denote the all ones vector of dimension n. Let $x_i, i = 1, 2, \ldots, m$ denote the incidence vectors of the clubs C_1, C_2, \ldots, C_m.

Assume first that n is odd. In which case we let $D_j = [n] \setminus C_j$ for $j = 1, 2, \ldots, n$. Then $|D_j|$ is odd for $j = 1, 2, \ldots, n$ and $|D_i \cap D_j| = n - |C_i \cup C_j| = n - |C_i| - |C_j| + |C_i \cap C_j|$ is even for $i \neq j$.

The result now follows from Odd town.

The n even case is more tricky. Let A be the $n \times m$ matrix with columns x_1, x_2, \ldots, x_m.

Our assumptions imply that (i) $1^T A = 0$ and so $\text{rank}(A) \leq n - 1$ and (ii) $B = AA^T = J - I$. We now have the contradiction that $n = \text{rank}(B) \leq \text{rank}(A) \leq n - 1$, where $\text{rank}(B) = n$ follows from $B^2 = J^2 - J - J + I = I$.

2. Let $A_1, A_2, \ldots, A_m \subseteq [n]$ be such that for $1 \leq i < j \leq m$, $d_{i,j} = |(A_i \setminus A_j) \cup (A_j \setminus A_i)|$ takes one of two values. Show that $m \leq (n + 1)(n + 4)/2$.

Solution: Let x_i be the incidence vector of A_i for $i = 1, 2, \ldots, m$. Then $||x_i - x_j|| \in \left\{d_1^{1/2}, d_2^{1/2}\right\}$ where d_1, d_2 are the two values mentioned in the question.

3. Each edge of K_n appears an odd number of times as an edge in the collection G_1, G_2, \ldots, G_m of bipartite subgraphs of K_n. Show that $m \geq (n - 1)/2$.

[Hint: Let A_k, B_k, M_k, S be as in the notes on Linear Algebraic Methods and consider the $2n \times n$ matrix $T = \left[\begin{array}{c} S \\ \ \ \ I_n \end{array}\right]$.

Solution: We deduce from the conditions in the question that $S + S^T = J_n - I_n$ over F_2.

Furthermore, if $m < (n - 1)/2$ then $\text{rank}(T) \leq n - 1$ and there exists $x \neq 0$ such that $Tx = 0$. But then, (1) implies that $x = 0$, contradiction.