Department of Mathematics
Carnegie Mellon University

21-301 Combinatorics, Fall 2015: Test 2

Name:______________________________

<table>
<thead>
<tr>
<th>Problem</th>
<th>Points</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>100</td>
<td></td>
</tr>
</tbody>
</table>
Q1: (20pts)
Use the Pigeon-Hole Principle to show that if n is odd and π is a permutation of $[n]$ then the product $\prod_{i=1}^{n}(i - \pi(i))$ is even.

Solution: Let $n = 2m + 1$. There are $m + 1$ odd numbers in $[n]$ and m even numbers. By the PHP there must be an odd i such that $\pi(i)$ is also odd. But then $i - \pi(i)$ is even and the product itself is even.
Q2: (40pts)
Let \(G = (V, E) \) be a graph of maximum degree \(d \). Let \(V_1, V_2, \ldots, V_r \) be a partition of \(V \) such that \(|V_i| \geq 10d \) for \(i = 1, 2, \ldots, r \). Use the local lemma to show that \(G \) contains a set \(S \) such that (i) \(|S \cap V_i| = 1 \) for \(i = 1, 2, \ldots, r \) and (ii) \(S \) is independent, i.e. contains no edges of \(G \).

Solution: We can remove vertices from each \(V_i \) if needed and so we can assume w.l.o.g. that \(|V_i| = 10d \) for \(i = 1, 2, \ldots, r \). Choose \(v_i \) randomly from \(V_i \) for \(i = 1, 2, \ldots, r \) and let \(S = \{v_1, v_2, \ldots, v_r\} \). For an edge \(e = \{x, y\} \in E \) we let \(\mathcal{E}_e \) be the event that both \(x, y \in S \). Thus \(\mathbb{P}(\mathcal{E}_e) \leq p = \frac{1}{100d^2} \). An event \(\mathcal{E}_e \) depends only on events \(\mathcal{E}_f \) for which \(e \) and \(f \) share a common vertex. Thus the dependency graph has degree at most \(20d^2 \). So, \(4dp \leq \frac{80d^4}{100d^2} = 1 \).
Q3: (40pts)
(a) Show that in any 3-coloring of the edges of K_{17} there is a monochromatic triangle.

Solution: Vertex 1 has degree 16 and so at least one color is used at least 6 times. Let this color be red and suppose that \{1, j\} is red for $j = 2, 3, \ldots, 7$. If there is a red edge \{x, y\} in [2, 7] then \{1, x, y\} is a red triangle. Otherwise [2, 7] is 2-colored and because $R(3, 3) = 6$ it must contain a monochromatic triangle.

(b) Give a 3-coloring of the edges of K_{10} without a monochromatic triangle.

Solution: Partition [10] into two 5-sets S_1, S_2. Color the edges between S_1, S_2 with color 1. This does not create a triangle of color 1. Then because $R(3, 3) = 6$, we can use colors 2, 3 to color the edges in each V_i without creating a monochromatic triangle.