\[\exists N(p,q,r) \text{ such that } y \leq N(p,q,r) \]

and we color \([n] \) Red/Blue then there exists \(S \subseteq [n] \), \(|S| = p \) and \((S) \) is Red OR exists \(T \subseteq [n] \), \(|T| = q \) and \((T) \) is Blue.

We proved this for \(r = 2 \).

Assume inductively that claim is true for \(r - 1 \) and \(r \) with \(p' + q' < p + q \).

Assume \(r \geq 3 \)

\[n = M + 1, \quad M \text{ very big} \]
M is big enough so that either there is a set \(S \) of size \(p, \) \(p = N \left(p^{-1}, q^{r_1} \right) \), such that \((\tilde{S}) \) is Red or there is \(T \) of size \(q^r, \) \(q = N \left(p, q^{-1} \right) \), such that \((\tilde{T}) \) is Blue.

Assume \(S \) exists.

Either there is a Blue \(S' \) of size \(q^r \) or there is a Red \(S'' \) of size \(p^{-1-r} \) and \((\tilde{S''}) \) is Red.

Then \(S' \cup S'' \in S \) is a Red set of size \(p \).
Applications

Schur's Theorem

\[\tau_k = N(\underbrace{3, 3, \ldots, 3}_k; 2) = \text{smallest } n \text{ such that if we } k \text{-color the edges of } K_n \text{ then there exists a mono-chromatic } \Delta. \]

Theorem

For all partitions of \([n]\) there exist \(l \) and \(x, y, z \in S_i\) such that \(x+y=z.\)

Proof

\[n = \tau_k. \] Need to color edges of \(K_n\)

\[u, v, w \text{ where } |u-v| \leq S_i. \]

\[x < y < z \]

\[u = y-x \in S_i; \]

\[v = z-y \in S_i; \]

\[W = z-x \in S_i; \]

\[u + v = w. \]
A set \mathcal{P} points in \mathbb{R}^2 is in general position if no 3 points are collinear.

Theorem

If $n \geq N(k,k;3)$ and X is a set of n points in \mathbb{R}^2 in general position then X contains a k-subset that forms a convex polygon.
If every 4 points of a set Y are convex then Y is convex.

We must show that there exists a k-set Y such that all 4-subsets of Y are convex.

Coloring: label points of $X = X_1, X_2, \ldots, X_n$ anti-clockwise X_i or clockwise X_i

Red

Blue
So there exist \(Y \) such that every \(\triangle \) in \(Y \) has same color.

Claim: \(Y \) defines a convex polygon.

\[
\begin{align*}
\text{Case 1} & \quad a < b < c < d \\
\text{Case 2} & \quad a < b < d < c \\
\text{Case 3} & \quad a < c < b < d
\end{align*}
\]

\[
\begin{align*}
\text{abc is Blue} & \quad \times \\
\text{abd is Red} & \quad \times \\
\text{abc is Blue} & \quad \times \\
\text{abd is Red} & \quad \times \\
\text{acb is Red} & \quad \times \\
\text{acd is Red} & \quad \times \\
\text{bcd is Blue}
\end{align*}
\]
Define $\Gamma(H_1, H_2)$ to minimize Γ such that in any 2-coloring of K_n, there is a Red H_1 or a Blue H_2.

We have dealt with case where H_1, H_2 are complete.

Claim: $R(P_3, P_3) = 5 \quad [R(\Delta, \Delta) = 6]

R(P_3, P_3) > 4

\[\begin{array}{c}
1 \\
2 \\
3 \\
4 \\
\end{array} \]
\(R(P_3, P_3) \leq S. \)