Ramsey's Theorem

Given positive integers $k, l \geq 1$, there exists $R(k, l)$ such that if $n \geq R(k, l)$ then in any two coloring (Red/Blue) of the edges of K_n, there exists either a copy of K_k with all Red edges or a copy of K_l with all Blue edges.

Proof

We know that $R(1, k), R(2, k), R(k, 1), R(k, 2)$ exist for all k.

We show that

$$R(k, l) \leq R(k, l-1) + R(k-1, l)$$

This shows that $R(k, l)$ exists for all k, l, by induction on $k + l$.

\[\begin{array}{c}
0, 0 \text{ exists} \\
0, 1 \text{ exists} \\
1, 0 \text{ exists} \\
1, 1 \text{ exists} \\
\end{array} \]
Assume inductively that $R(k-1, l) \neq R(k, l-1)$ exist.

Let $N = R(k-1, l) + R(k, l-1)$.

Take any 2-coloring of K_n.

Either (i) $|V_R| \geq R(k-1, l)$ or (ii) $|V_B| \geq R(k, l-1)$

$|V_R| + |V_B| = n - 1$

Assume (i) is true.

Then we a 2-coloring of the edge of V_R.

Either \exists Blue $K_k \subseteq V_R$ or \exists Red $K_{k-1} \subseteq V_R$. Add n to get a Red K_k.
\[R(k, l) \leq \binom{k+l-2}{k-1} \]

Proof

Induction on \(k+l \).

- **True for** \(k+l = 2 \) as a base case.

1. \(k = 1 \)
 - \(R(1, l) = 1 \)
 - \(l = 1 \)

2. \(k = 2 \)
 - \(R(2, 2) = 2 \)
 - \(l = 2 \)

Inductive Step:

\[
R(k, l) \leq R(k-1, l) + R(k, l-1)
\]

\[
\leq \binom{k+l-3}{k-2} + \binom{k+l-3}{k-1}
\]

\[
= \binom{k+l-2}{k-1}
\]

In particular,

\[
R(k, k) \leq \binom{2k-2}{k-1} < 4^k
\]
Lower bound.

\[R(k, k) \geq 2^{k/2} \]

We show that if \(N \leq 2^{k/2} \) then there is a 2-coloring of \(K_n \) with \(n \) Red \(K_k \) and \(2^{k/2} \) Blue \(K_k \).

We take a random 2-coloring \(G \) of \(K_n \).

\(C_1, C_2, \ldots, C_N \), \(N = \binom{n}{k} \) are the vertices.

The \(k \)-cliques \(D \) of \(K_n \).

\[E_{R_{i,j}} = C_j \text{ is Red} \]

\[E_{R_{i,j}} = C_j \text{ is Blue} \]

\[E = \bigcup_j E_{R_{i,j}} \]

\[E = \bigcup_j E_{B_{i,j}} \]
\[P(E_R \cup E_B) \leq P(E_R) + P(E_B) \]

\[= 2 P(E_R) \]

\[= 2 P(\bigcup_{j=0}^{N} E_{R_{ij}}) \]

\[\leq 2 \sum_{a=1}^{2} P(E_{R_{a,b}}) \]

\[= 2 \binom{n}{k} \left(\frac{1}{2} \right) \]

\[\leq 2 \frac{n^k}{k!} \left(\frac{1}{2} \right)^{\frac{k}{2}} \]

\[\leq 2 \frac{2^{k/2} - (\frac{1}{2})^{\frac{k}{2}}}{k!} \]

\[= 2 \frac{1 + \frac{k}{2}}{k!} \]

\[< \frac{1}{1} \]
More general version

Ramsey's theorem is about 2-colorings of
the 2-element subsets of \([n]\)

1. We can use more colors
2. We can color the \(r\)-subset of \([n]\)

Theorem

Let \(s \geq 1\), \(q_1, q_2, \ldots, q_s \geq r\) be given

\[
\exists N = \{q_1, q_2, \ldots, q_s; r\} \quad \text{such that} \quad \forall n \geq N
\]

and we color all the \(r\)-subset of \([n]\)

with \(r\) colors then \(\exists 1 \leq j \leq s\) and a set

\(T \subseteq [n]\) such that \(|T| = q_j\) and all

\(r\)-subset of \(T\) are given color \(j\).