21-301 Combinatorics

Homework 9
Due: Monday, November 23

1. Consider the following take-away game: There is a pile of n chips. A move consists of removing 3^{k} chips for some $k \geq 1$. Compute the Sprague-Grundy numbers $g(n)$ for $n \geq 0$.
Solution: After looking at the first few numbers $0,0,0,1,1,1,0,0,0,1,1,1,0,0, \ldots$ one sees that

$$
g(n)=\left\{\begin{array}{lll}
0 & n=0,1,2 & \bmod 6 \\
1 & n=3,4,5 & \bmod 6
\end{array}\right.
$$

We verify this by induction. It is true for $n \leq 6$ by inspection. For $n>6$ we have $g(n)=\operatorname{mex}\{g(n-3), g(n-9), \ldots$,$\} . Observe that if k \geq 2$ then $3^{k}=3\left(3^{k-1}-1\right)+3$ and so $3^{k} \bmod 6=3$. It follows that $g(n)=\operatorname{mex}\{g(n-3)\}$ and the induction step follows.
2. Poker Nim: In this game there is a collection of piles of chips plus an extra bag containing a finite number of chips. For a move one can either (i) make a regular Nim move or (ii) take some chips from the bag and put them onto one of the piles. How should one play this game?
Solution: To play the game one evaluates the position as in Nim. A position is N/P iff it is N / P in Nim without the bag. If a player X is in a losing position and takes p chips from the bag and places it on pile h then the next player can respond by removing p chips from pile h. Thus player X will still be in a losing Nim position. Eventually the bag becomes empty and we are back to standard Nim.
3. Consider the following game: There is a pile of chips. A move consists of removing s chips where $s \in S$, assuming that there are at least s chips left. If $|S|$ is finite, show that the Sprague-Grundy numbers satisfy $g(n) \leq|S|$ where n is the number of chips remaining.
Solution: Observe that for any finite set $A, \operatorname{mex}(A) \leq|A|$ since $\operatorname{mex}(A)>|A|$ implies that $A \subseteq\{0,1,2, \ldots,|A|\}$ which is obviously impossible. In the take-away game $g(n)$ is the mex of a set of size at most $|S|$ and the result follows.

