21-301 Combinatorics

Homework 8

Due: Monday, November 16

1. Let \mathcal{A} be an intersecting family of subsets of $[n]$ such that $A \in \mathcal{A}$ implies $k \leq|A| \leq \ell \leq$ $n / 2$. Show that

$$
|\mathcal{A}| \leq \sum_{i=k}^{\ell}\binom{n-1}{i-1}
$$

Solution: Let $\mathcal{A}_{i}=\{A \in \mathcal{A}:|A|=i\}$. Then \mathcal{A}_{i} is an intersecting family and so by the Erdős-Ko-Rado theorem, we have $\left|\mathcal{A}_{i}\right| \leq\binom{ n-1}{i-1}$ and the result follows from $|\mathcal{A}|=\left|\mathcal{A}_{k}\right|+\cdots+\left|\mathcal{A}_{\ell}\right|$.
2. Let $m=\lfloor n / 2\rfloor$. Describe a family \mathcal{A} of size $2^{n-1}+\binom{n-1}{m-1}$ that has the following property: If $A_{1}, A_{2} \in \mathcal{A}$ are disjoint then $A_{1} \cup A_{2}=[n]$.
Solution: If $n=2 m+1$ is odd, let $\mathcal{A}=\mathcal{A}_{1} \cup \mathcal{A}_{2}$ where $\mathcal{A}_{1}=\{A \subseteq[n]:|A| \geq m+1\}$ and $\mathcal{A}_{2}=\{A \subseteq[n]:|A|=m, A \ni 1\}$. Here $\left|\mathcal{A}_{1}\right|=2^{n-1}$, because if we partition the subsets of $[n]$ into 2^{n-1} pairs, a set and its complement, then the larger of the two sets is in \mathcal{A}_{1}. Clearly $\left|\mathcal{A}_{2}\right|=\binom{n-1}{m-1}$. Both \mathcal{A}_{1} and \mathcal{A}_{2} are intersecting families and if $A \in \mathcal{A}_{1}, B \in \mathcal{A}_{2}$ and $A \cap B=\emptyset$ then we have $|B|=m$ and $|A| \geq m+1$ and so A, B must be complementary.
If $n=2 m$ is even then let $\mathcal{A}=\{A \subseteq[n]:|A| \geq m\}$. Now

$$
|\mathcal{A}|=\left|\mathcal{A}_{1}\right|+\binom{n}{m}=\left|\mathcal{A}_{1}\right|+\frac{1}{2}\binom{n}{m}+\frac{1}{2}\binom{n}{m}=2^{n-1}+\frac{1}{2}\binom{n}{m}=2^{n-1}+\binom{n-1}{m-1} .
$$

Here, $\left|\mathcal{A}_{1}\right|+\frac{1}{2}\binom{n}{m}=2^{n-1}$ because we can obtain this number of sets by taking one set from each pair of complementary sets. Each $A \in \mathcal{A}_{1}$ intersects all sets of size m or more and two sets of size m fail to intersect only when they are complementary.
3. Consider the following game: There is a pile of n chips. A move consists of removing any proper factor of n chips from the pile. (For the purposes of this question, a proper factor of n, is any factor, including 1 , that is strictly less than n). The player to leave a pile with one chip wins. Determine the N and P positions and a winning strategy from an N position.
Solution: n is a P-position iff it is odd. If n is even then the next player can simply remove one chip. If n is odd, then any factor of n is also odd.

