21-301 Combinatorics

Homework 7

Due: Friday, November 6

1. Use the pigeon-hole principle to show that for every integer $k \geq 1$ there exists a power of 3 that ends with $000 \cdots 0001$ ($k 0$'s).
Solution: If we consider the infinite sequence $u_{\ell}=3^{\ell} \bmod 10^{k+1}$ for $\ell=1,2, \ldots$, then by the PHP there exist $m<n$ such that $u_{m}=u_{n}$, In which case,

$$
3^{n}-3^{m}=10^{k+1} s \text { or } 3^{n-m}\left(3^{m}-1\right)=10^{k+1} s
$$

for some positive integer s.
Now 3 and 10 are co-prime and therefore $3^{m}-1=10^{k+1} s^{\prime}$ for some positive integer s^{\prime}, and this implies the result.
2. Show that if the edges of K_{m+n} are colored red and blue then either (i) there is a red path with m edges or (ii) a vertex of blue degree at least n.
Solution: If there is no vertex of blue degree at least n then the red graph has minimum degree at least m. Let $P=x_{1}, x_{2}, \ldots, x_{k}$ be a longest path in the red graph. All of x_{k} 's neighbors in the red graph lie on P, else P can be extended. But x_{k} has at least m neighbours and so $k \geq m+1$.
3. Show that if $n=2 m$ is even and the edges of K_{n} are colored red or blue then either (i) there is a red triangle or (ii) there is a vertex of blue degree at least $m-1$.
Solution: If the blue graph has maximum degree $m-2$ then the blue graph contains an independent set of size $\frac{n^{2}}{n(m-2)+n}>2$ i.e. it contains an idependent set of size three and this corresponds to a red triangle.

