21-301 Combinatorics

Homework 6

Due: Monday, November 2

1. Let $\chi(G)$ be the chromatic number of graph $G=(V, E)$. Let $\alpha(G), \kappa(G)$ denote the size of the largest independent set of G, clique of G respectively.
Show that

$$
\chi(G) \geq \max \left\{\frac{|V|}{\alpha(G)}, \kappa(G)\right\}
$$

Show further that $\chi(G) \chi(\bar{G}) \geq|V|$.
Here \bar{G} is the complement of G i.e. the graph with edge set $\binom{V}{2} \backslash E$.
Solution: If S is a clique of size s then we need at least s colors, just to color S. Thus $\chi(G) \geq \kappa(G)$. Observe next that in a proper coloring, a set of vertices of the same color must form an independent set. Thus a proper coloring partitions the vertex set into a set of color classes $C_{1}, C_{2}, \ldots, C_{k}$ where $\left|C_{i}\right| \leq \alpha(G)$ for $1 \leq i \leq k$. This implies that $k \geq|V| / \alpha(G)$.
For the second part, we have

$$
\chi(G) \geq \frac{|V|}{\alpha(G)}=\frac{|V|}{\kappa(\bar{G})}
$$

Hence,

$$
\chi(G) \chi(\bar{G}) \geq \chi(G) \kappa(\bar{G}) \geq \frac{|V|}{\kappa(\bar{G})} \kappa(\bar{G})=|V| .
$$

2. Let $G=(V, E)$ be a graph with $k n$ vertices. Show, by the probabilistic method, that there is a partition $V=V_{1} \cup V_{2} \cup \cdots \cup V_{k}$ with $\left|V_{i}\right|=n, i=1,2, \ldots, k$ such that at most $|E| / k$ of the edges of G have both of their endpoints in the same part of the partition.
Solution: Let $V_{1}, V_{2}, \ldots, V_{k}$ be a random partition of the vertex set. Let $e=(v, w)$ be an edge of E. Then

$$
\begin{aligned}
& \operatorname{Pr}\left(\exists i: e \subseteq V_{i}\right)=\sum_{i=1}^{k} \operatorname{Pr}\left(w \in V_{i} \mid v \in V_{i}\right) \operatorname{Pr}\left(v \in V_{i}\right)= \\
& \sum_{i=1}^{k} \frac{\binom{k n-2}{n-2}}{\binom{k n-1}{n-1}} \frac{1}{k}=\frac{n-1}{k n-1}<\frac{1}{k} .
\end{aligned}
$$

If Z is the number of edges of G that have both of their endpoints in the same part of the partition, then $\mathbf{E}(Z) \leq|E| / k$ and so the required partition must exist.
3. Let P_{1}, P_{2} be two paths of maximum length in a connected graph G. Prove that P_{1}, P_{2} share a common vertex.
Solution Suppose that P_{1}, P_{2} are vertex disjoint. Let $P_{1}=\left(u_{1}, u_{2}, \ldots, u_{k}\right)$ and $P_{2}=$ $\left(v_{1}, v_{2}, \ldots, v_{k}\right)$. Let $Q=\left(u_{i}=w_{1}, w_{2}, \ldots, w_{\ell}=v_{j}\right)$ be a shortest path from a vetex in P_{1} to a vertex in P_{2}. Such a path exists because G is connected. Now $w_{2}, w_{3}, \ldots, w_{\ell-1}$ are
not vertices of P_{1} or P_{2}, since Q is a shortest path. Assume w.l.o.g. that $i, j \geq k / 2$. Then the path $u_{1}, u_{2}, \ldots, u_{i}, w_{2}, \ldots, w_{\ell-1}, u_{j}, u_{j-1}, \ldots, u_{1}$ has length at least $i+j+1 \geq k+1$, contradiction.

