21-301 Combinatorics

Homework 6

Due: Monday, November 2

1. Let $\chi(G)$ be the chromatic number of graph $G=(V, E)$. Let $\alpha(G), \kappa(G)$ denote the size of the largest independent set of G, clique of G respectively.
Show that

$$
\chi(G) \geq \max \left\{\frac{|V|}{\alpha(G)}, \kappa(G)\right\} .
$$

Show further that $\chi(G) \chi(\bar{G}) \geq|V|$.
Here \bar{G} is the complement of G i.e. the graph with edge set $\binom{V}{2} \backslash E$.
2. Let $G=(V, E)$ be a graph with $k n$ vertices. Show, by the probabilistic method, that there is a partition $V=V_{1} \cup V_{2} \cup \cdots \cup V_{k}$ with $\left|V_{i}\right|=n, i=1,2, \ldots, k$ such that at most $|E| / k$ of the edges of G have both of their endpoints in the same part of the partition.
3. Let P_{1}, P_{2} be two paths of maximum length in a connected graph G. Prove that P_{1}, P_{2} share a common vertex.

