21-301 Combinatorics

Homework 5

Due: Monday, October 26

1. Prove that if u, v are the only vertices of odd degree in a graph G, then there is a path from u to v in G.

Solution: We have to show that u, v are in the same component of G. But is they are in different components, $u \in C_{1}, v \in C_{2}$ then the sub-graph induced by C_{1} has one odd vertex, u. This contradicts the fact that every graph has an even number of vertices.
2. Let $G=(V, E)$ be a graph with minimum degree at least three. Show that it contains a cycle of even length. (Hint: Consider a longest path).
Solution: Let $P=\left(x=x_{0}, x_{1}, \ldots, x_{k}\right)$ be a longest path in G. Let $x_{1}, x_{i}, x_{j}, 1<$ $i<j$ be three neighbors of x. If i is odd then the cycle $\left(x_{0}, x_{1}, \ldots, x_{i}, x_{0}\right)$ has $i+1$ edges and is even and so we can assume that i, j are both even. But then the cycle $\left(x_{0}, x_{i}, x_{i+1}, \ldots, x_{j}, x_{0}\right)$ has $j-i+2$ edges and is even.
3. Prove that if $T_{1}, T_{2}, \ldots, T_{k}$ are pair-wise intersecting sub-trees of a tree T, then T has a vertex common to $T_{1}, T_{2}, \ldots, T_{k}$. (Hint: use induction on k).
Solution: Assume inductively that $H=\bigcap_{i=1}^{k} T_{i}$ is non-empty. H must be a sub-tree of T, for if $u, v \in H$ then each T_{i} contains the path from u to v in T. Now let $\Gamma=T \backslash H$ be obtained by deleting the vertices of H from T. Let $C_{1}, C_{2}, \ldots, C_{m}$ be the components of Γ. Each C_{i} contains a unique vertex v_{i} that is adjacent to Γ. If C_{1} contained two such vertices u, u^{\prime} then either the path from u to u^{\prime} goes through Γ and then u, u^{\prime} are in different components of Γ or it avoids Γ and then T contains a cycle, contradiction. Suppose now that T_{k+1} does not share a vertex with Γ. Then T_{k+1} must be contained in a single component C_{1}, say. For if T_{k+1} meets C_{1} and C_{2} then T_{k+1} must contain a path from C_{1} to C_{2} and this must go through Γ. We claim now that v_{1} belongs to $T_{1}, T_{2}, \ldots, T_{k+1}$. Suppose that $w \in C_{1}$ is in T_{1} and T_{k+1}. Then T_{1} contains a path from w to Γ and this goes through v_{1}. But then $v_{1} \in \Gamma$, contradiction.

