21-301 Combinatorics

Homework 3

Due: Monday, October 5

1. Suppose that you are asked to multiply a collection of $m \times m$ matrices to form the product $A_{1} A_{2} \cdots A_{n+1}$. Let $C_{0}=1$ and let C_{n} be the number of ways to do this. For example $C_{2}=2$. We can compute $\left(A_{1} A_{2}\right) A_{3}$ or $A_{1}\left(A_{2} A_{3}\right)$. Show that

$$
C_{n+1}=\sum_{k=0}^{n} C_{k} C_{n-k} .
$$

Determine C_{n}.
Solution: The term $C_{k} C_{n-k}$ counts the number of ways of first computing the products $C_{1} C_{2} \cdots C_{k}$ and $C_{k+1} C_{k+2} \cdots C_{n+1}$ and then multiplying the two resulting matrices together. By summing over k we count all possible ways of doing the multiplication.
Let a_{n} be the number of solutions to the polygon triangulation problem. Thus $a_{0}=$ $0, a_{1}=a_{2}=1$ and $a_{n}=\sum_{k=0}^{n} a_{k} a_{n-k}$ for $n \geq 2$. We claim that $C_{n}=a_{n+1}=\frac{1}{n+1}\binom{2 n}{n}$. We prove this by induction on n. It is clearly true for $n=0$. So,

$$
\begin{aligned}
C_{n+1} & =\sum_{k=0}^{n} C_{k} C_{n-k} \\
& =\sum_{k=0}^{n} a_{k+1} a_{n+1-k} \quad \text { by induction } \\
& =a_{1} a_{n+1}+a_{2} a_{n}+\cdots+a_{n+1} a_{1} \quad \text { expanding sum } \\
& =a_{0} a_{n+2}+a_{1} a_{n+1}+a_{2} a_{n}+\cdots+a_{n+1} a_{1}+a_{n+2} a_{0} \quad \text { since } a_{0}=0 \\
& =a_{n+2} .
\end{aligned}
$$

This completes the inductive step.
2. A box has m drawers; Drawer i contains g_{i} gold coins, s_{i} silver coins and ℓ_{i} lead coins, for $i=1,2, \ldots, m$. Assume that one drawer is selected randomly and that three randomly selected coins from that drawer turn out each to be of a distinct type. What is the probability that the chosen drawer is drawer 1 ?
Solution: Let B be the event that the coins are of a distinct type and let D_{i} be the event that drawer i is chosen. What we are asked for is

$$
\operatorname{Pr}\left(D_{1} \mid B\right)=\frac{\operatorname{Pr}\left(D_{1} \cap B\right)}{\operatorname{Pr}(B)}
$$

Now

$$
\operatorname{Pr}\left(D_{i} \cap B\right)=\frac{1}{m} \cdot \frac{g_{i} s_{i} \ell_{i}}{\left(g_{i}+s_{i}+\ell_{i}\right)\left(g_{i}+s_{i}+\ell_{i}-1\right)\left(g_{i}+s_{i}+\ell_{i}-2\right)}
$$

and so

$$
\operatorname{Pr}(B)=\sum_{i=1}^{m} \operatorname{Pr}\left(D_{i} \cap B\right)=\frac{1}{m} \sum_{i=1}^{m} \frac{g_{i} s_{i} \ell_{i}}{\left(g_{i}+s_{i}+\ell_{i}\right)\left(g_{i}+s_{i}+\ell_{i}-1\right)\left(g_{i}+s_{i}+\ell_{i}-2\right)} .
$$

Therefore,

$$
\begin{aligned}
\operatorname{Pr}\left(D_{1} \mid B\right)= & \frac{g_{1} s_{1} \ell_{1}}{\left(g_{1}+s_{1}+\ell_{1}\right)\left(g_{1}+s_{1}+\ell_{1}-1\right)\left(g_{1}+s_{1}+\ell_{1}-2\right)} \times \\
& \left(\sum_{i=1}^{m} \frac{g_{i} s_{i} \ell_{i}}{\left(g_{i}+s_{i}+\ell_{i}\right)\left(g_{i}+s_{i}+\ell_{i}-1\right)\left(g_{i}+s_{i}+\ell_{i}-2\right)}\right)^{-1} .
\end{aligned}
$$

3. A particle sits at the left hand end of a line $0-1-2-\cdots-L$. When at 0 it moves to 1. When at $i \in[1, L-1]$ it makes a move to $i-1$ with probability $1 / 5$ and a move to $i+1$ with probability $4 / 5$. When at L it stops.
Let E_{k} denote the expected number of visits to 0 if we started the walk at k.
(a) Explain why

$$
\begin{aligned}
E_{L} & =0 \\
E_{0} & =1+E_{1} \\
E_{k} & =\frac{1}{5} E_{k-1}+\frac{4}{5} E_{k+1} \quad \text { for } 0<k<L .
\end{aligned}
$$

(b) Given that $E_{k}=\frac{A}{4^{k}}+B$ is a solution to your equations for some A, B, determine A, B and hence find E_{0}.

Solution:

$E_{L}=0$ because the particle will not move from $L . E_{0}=1+E_{1}$ because the particle must move to position 1 and then the expected number of extra visits to 0 will now be E_{1}. Finally,

$$
\begin{aligned}
& E_{k}= \\
& \mathbf{E}(\# \text { visits } \mid \text { moves right }) \operatorname{Pr}(\text { moves right })+\mathbf{E}(\# \text { visits } \mid \text { moves left }) \operatorname{Pr}(\text { moves left }) \\
& =\frac{1}{5} E_{k-1}+\frac{4}{5} E_{k+1} .
\end{aligned}
$$

$E_{L}=0$ implies then that $\frac{A}{4^{L}}+B=0$ and so $B=-\frac{A}{4^{L}}$.
$E_{0}=1+E_{1}$ implies then that $A+B=1+\frac{1}{4} A+B$ which implies that $A=4 / 3$.
Thus

$$
E_{0}=\frac{4-4^{1-L}}{3}
$$

