21-301 Combinatorics

Homework 3

Due: Monday, October 5

1. Suppose that you are asked to multiply a collection of $m \times m$ matrices to form the product $A_{1} A_{2} \cdots A_{n+1}$. Let $C_{0}=1$ and let C_{n} be the number of ways to do this. For example $C_{2}=2$. We can compute $\left(A_{1} A_{2}\right) A_{3}$ or $A_{1}\left(A_{2} A_{3}\right)$. Show that

$$
C_{n+1}=\sum_{k=0}^{n} C_{k} C_{n-k}
$$

Determine C_{n}.
2. A box has m drawers; Drawer i contains g_{i} gold coins, s_{i} silver coins and ℓ_{i} lead coins, for $i=1,2, \ldots, m$. Assume that one drawer is selected randomly and that three randomly selected coins from that drawer turn out each to be of a distinct type. What is the probability that the chosen drawer is drawer 1 ?
3. A particle sits at the left hand end of a line $0-1-2-\cdots-L$. When at 0 it moves to 1. When at $i \in[1, L-1]$ it makes a move to $i-1$ with probability $1 / 5$ and a move to $i+1$ with probability $4 / 5$. When at L it stops.
Let E_{k} denote the expected number of visits to 0 if we started the walk at k.
(a) Explain why

$$
\begin{aligned}
E_{L} & =0 \\
E_{0} & =1+E_{1} \\
E_{k} & =\frac{1}{5} E_{k-1}+\frac{4}{5} E_{k+1} \quad \text { for } 0<k<L
\end{aligned}
$$

(b) Given that $E_{k}=\frac{A}{4^{k}}+B$ is a solution to your equations for some A, B, determine A, B and hence find E_{0}.

