21-301 Combinatorics

Homework 3

Due: Monday, September 28

1. Suppose that in the Tower of Hanoi problem there are n sets of k rings of the same size. For example you there could be two rings of size 1, two rings of size 2 and 2 rings of size 3 , here $n=3$ and $k=2$. You can put a ring onto another ring of the same size or larger. How long does it take to move the rings on Peg 1 to peg 3 under these circumstances?
Solution: Let $H_{n, k}$ be the minimum number of moves required. Then

$$
H_{n, k}=2 H_{n-1, k}+k
$$

for $n \geq 2 . H_{1, k}=k$.
One can solve this eqaution using generating functions or just notice that

$$
H_{n, k}=k H_{n, 1}=k\left(2^{n}-1\right)
$$

This is true for $n=1$ and inductively

$$
H_{n, k}=2 H_{n-1, k}+k=k\left(2 H_{n-1,1}+1\right)=k H_{n, 1} .
$$

2. Show that the number of sequences out of $\{a, b, c\}^{n}$ which do not contain a consecutive sub-sequence of the form $a b c$ satisfies the recurrence $b_{0}=1, b_{1}=3, b_{2}=9$ and

$$
\begin{align*}
& b_{n}=2 b_{n-1}+c_{n} \tag{1}\\
& c_{n}=c_{n-1}+b_{n-2}+c_{n-2}+b_{n-3} \tag{2}
\end{align*}
$$

where c_{n} is the number of such sequences that start with a.
Now find a recurrence only involving b_{n}, by using (1) to eliminate c_{n} from (2).
Solution: There are $2 b_{n-1}$ sequences of the required form that start with b or c. There are c_{n} sequences that start with a. This explains (1).
There are c_{n-1} sequences that start with $a a, b_{n-2}$ sequences that start with $a c, c_{n-2}$ sequences that start with $a b a$ and b_{n-3} sequences that start with $a b b$. This covers the possibilities for sequences starting with a.
We have

$$
b_{n}-2 b_{n-1}=b_{n-1}-2 b_{n-2}+b_{n-2}+b_{n-2}-2 b_{n-3}+b_{n-3}
$$

and so

$$
b_{n}=3 b_{n-1}-b_{n-3} .
$$

3. Let $a_{0}, a_{1}, a_{2}, \ldots$ be the sequence defined by the recurrence relation

$$
a_{n}+3 a_{n-1}+2 a_{n-2}=n+1 \quad \text { for } n \geq 2
$$

with initial conditions $a_{0}=1$ and $a_{1}=3$. Determine the generating function for this sequence, and use the generating function to determine a_{n} for all n.

Solution:

$$
\begin{gathered}
\sum_{n=2}^{\infty}\left(a_{n}+3 a_{n-1}+2 a_{n-2}\right) x^{n}=\sum_{n=2}^{\infty}(n+1) x^{n} \\
a(x)-1-3 x+3 x(a(x)-1)+2 x^{2} a(x)=\frac{1}{(1-x)^{2}}-1-2 x \\
a(x)\left(1+3 x+2 x^{2}\right)=\frac{1}{(1-x)^{2}}+4 x \\
a(x)=\frac{1}{(1+x)(1+2 x)(1-x)^{2}}+\frac{4 x}{(1+x)(1+2 x)} \\
=\frac{15 / 4}{1+x}+\frac{-28 / 9}{1+2 x}+\frac{7 / 36}{1-x}+\frac{1 / 6}{(1-x)^{2}} \\
=\sum_{n=0}^{\infty}\left(\frac{15}{4}(-1)^{n}-\frac{28}{9}(-2)^{n}+\frac{7}{36}+\frac{1}{6}(n+1)\right) x^{n} .
\end{gathered}
$$

So

$$
a_{n}=\frac{15}{4}(-1)^{n}-\frac{28}{9}(-2)^{n}+\frac{7}{36}+\frac{1}{6}(n+1) \quad \text { for } n \geq 0 .
$$

