21-301 Combinatorics

Homework 2

Due: Friday, September 18

1. Prove that for any $k, n \geq 1$ that

$$
\sum_{\substack{a_{1}+\ldots+a_{2 k}=n \\ a_{1}, \ldots, a_{2 k} \geq 0}}(-1)^{a_{1}+\cdots+a_{k}}\binom{n}{a_{1}, \ldots, a_{2 k}}=0 .
$$

Solution: We start with the expression

$$
\left(x_{1}+x_{2}+\cdots+x_{2 k}\right)^{n}=\sum_{\substack{a_{1}+\ldots+a_{2 k}=n \\ a_{1}, \ldots, a_{2 k} \geq 0}}\binom{n}{a_{1}, \ldots, a_{2 k}} x_{1}^{a_{1}} x_{2}^{a_{2}} \cdots x_{2 k}^{a_{2 k}}
$$

and then put $x_{1}=x_{2}=\cdots=x_{k}=-1$ and $x_{k+1}=x_{k+2}=\cdots=x_{2 k}=1$ to get the result we want.
2. (a) Let \mathcal{S}_{k} denote the collection of k-sets $\left\{1 \leq i_{1}<i_{2}<\cdots<i_{k} \leq m-3\right\} \subseteq[m]$ such that $i_{t+1}-i_{t} \geq 4$ for $1 \leq t<k$. Show that

$$
\left|\mathcal{S}_{k}\right|=\binom{m-3 k}{k}
$$

(b) How many of the 4^{n} sequences $x_{1} x_{2} \cdots x_{n}, x_{i} \in\{a, b, c, d\}, i=1,2, \ldots, n$ are there such that $a b c d$ does not appear as a consecutive subsequence e.g. if $n=6$ then we include $a d b b c c$ in the count, but we exclude $a a b c d a$.
[You should use Inclusion-Exclusion and expect to have your answer as a sum.]

Solution:

(a) For a first argument, let $z_{1}=i_{1}, z_{2}=i_{2}-i_{1}, \ldots, z_{k}=i_{k}-i_{k+1}, z_{k+1}=m-i_{k}$. We can count the number of choices for $z_{1}, z_{2}, \ldots, z_{k+1}$. But these are the solutions to

$$
z_{1}+z_{2}+\cdots+z_{k+1}=m, z_{1} \geq 1, z_{2}, z_{3}, \ldots, z_{k} \geq 4, z_{k+1} \geq 3
$$

The number of such is

$$
\binom{m-1-4(k-1)-3+k+1-1}{k+1-1}=\binom{m-3 k}{k} .
$$

Alternatively, we can represent a k-set by a sequence of $k 1$'s and $m-k 0$'s in the usual way. Now we need every pair of 1's separated by at least 30 's. We can start with a sequence of $m-3 k 0$'s, choose k of them and replace each of these $k 0$'s by 1000 . This process is reversible. For the 0,1 sequences we are counting each 1 is followed by at least 3 0's. Just replace 1000 by 0 to get a sequence of $m-k 0$'s.
(b) Let $A=\{a, b, c, d\}^{n}$. Then let

$$
A_{k}=\left\{x \in A: x_{k}=a, x_{k+1}=b, x_{k+2}=c, x_{k+3}=d\right\}
$$

for $k=1,2, \ldots, n-3$.
Let $\mathcal{S}=\bigcup_{k \geq 0} \mathcal{S}_{k}$. Then

$$
\left|A_{S}\right|= \begin{cases}4^{n-4|S|} & S \in \mathcal{S}_{|S|} \\ 0 & S \notin \mathcal{S}_{|S|}\end{cases}
$$

Then we must compute

$$
\begin{aligned}
\left|\bigcap_{i=1}^{m} \bar{A}_{i}\right| & =\sum_{S \in \mathcal{S}}(-1)^{|S|}\left|A_{S}\right| \\
& =\sum_{S \in \mathcal{S}_{|S|}}(-1)^{|S|} 4^{n-4|S|} \\
& =4^{n} \sum_{k=0}^{m}(-1)^{k}\left|\mathcal{S}_{k}\right| 4^{-4 k} \\
& =4^{n} \sum_{k=0}^{m}(-1)^{k} \left\lvert\,\binom{ m-3 k}{k} 4^{-4 k}\right.
\end{aligned}
$$

3. How many ways are there of placing m distinguishable balls into n boxes so that no box contains more than $m / 2$ balls.
(You should use Inclusion-Exclusion and expect to have your answer as a sum.)
Solution: Let A be the set of n^{m} allocations of balls to boxes. Let A_{i} denote the allocations in A in which box i gets at least $\mu=\lfloor m / 2\rfloor+1$ balls. (μ is the smallest integer greater than $m / 2)$. We want the size of $\bigcap_{i=1}^{m} \bar{A}_{i}$.
Now

$$
\left|A_{i}\right|=\sum_{k=\mu}^{m}\binom{m}{k}(n-1)^{m-k}
$$

and $A_{S}=\emptyset$ for $|S| \geq 2$. So,

$$
\left|\bigcap_{i=1}^{m} \bar{A}_{i}\right|=n^{m}-n \sum_{k=\mu}^{m}\binom{m}{k}(n-1)^{m-k} .
$$

