21-301 Combinatorics

Homework 2

Due: Friday, September 18

1. Prove that for any $k, n \geq 1$ that

$$
\sum_{\substack{a_{1}+\cdots+a_{2 k}=n \\ a_{1}, \ldots, a_{2 k} \geq 0}}(-1)^{a_{1}+\cdots+a_{k}}\binom{n}{a_{1}, \ldots, a_{2 k}}=0 .
$$

2. (a) Let \mathcal{S}_{k} denote the collection of k-sets $\left\{1 \leq i_{1}<i_{2}<\cdots<i_{k} \leq m-3\right\} \subseteq[m]$ such that $i_{t+1}-i_{t} \geq 4$ for $1 \leq t<k$. Show that

$$
\left|\mathcal{S}_{k}\right|=\binom{m-3 k}{k} .
$$

(b) How many of the 4^{n} sequences $x_{1} x_{2} \cdots x_{n}, x_{i} \in\{a, b, c, d\}, i=1,2, \ldots, n$ are there such that $a b c d$ does not appear as a consecutive subsequence e.g. if $n=6$ then we include $a d b b c c$ in the count, but we exclude $a a b c d a$.
[You should use Inclusion-Exclusion and expect to have your answer as a sum.]
3. How many ways are there of placing m distinguishable balls into n boxes so that no box contains more than $m / 2$ balls.
(You should use Inclusion-Exclusion and expect to have your answer as a sum.)

