21-301 Combinatorics Homework 2 Due: Friday, September 18

1. Prove that for any $k,n\geq 1$ that

$$\sum_{\substack{a_1 + \dots + a_{2k} = n \\ a_1, \dots, a_{2k} \ge 0}} (-1)^{a_1 + \dots + a_k} \binom{n}{a_1, \dots, a_{2k}} = 0.$$

2. (a) Let \mathcal{S}_k denote the collection of k-sets $\{1 \leq i_1 < i_2 < \cdots < i_k \leq m-3\} \subseteq [m]$ such that $i_{t+1} - i_t \geq 4$ for $1 \leq t < k$. Show that

$$|\mathcal{S}_k| = \binom{m-3k}{k}.$$

(b) How many of the 4^n sequences $x_1x_2 \cdots x_n$, $x_i \in \{a, b, c, d\}$, $i = 1, 2, \ldots, n$ are there such that *abcd* does not appear as a consecutive subsequence e.g. if n = 6 then we include *adbbcc* in the count, but we exclude *aabcda*.

[You should use Inclusion-Exclusion and expect to have your answer as a sum.]

3. How many ways are there of placing m distinguishable balls into n boxes so that no box contains more than m/2 balls.
(You should use Inclusion-Exclusion and expect to have your answer as a sum.)