21-301 Combinatorics

Homework 1

Due: Friday, September 5

1. How many integral solutions of

$$
x_{1}+x_{2}+x_{3}+x_{4}+x_{5}=100
$$

satisfy $x_{1} \geq 4, x_{2} \geq 8, x_{3} \geq-2, x_{4} \geq 3$ and $x_{5} \geq 0$?
Solution Let

$$
y_{1}=x_{1}-4, \quad y_{2}=x_{2}-8, \quad y_{3}=x_{3}+2, \quad y_{4}=x_{4}-3, \quad y_{5}=x_{5} .
$$

An integral solution of $x_{1}+x_{2}+x_{3}+x_{4}+x_{5}=100$ such that $x_{1} \geq 4, x_{2} \geq 8, x_{3} \geq-2$, $x_{4} \geq 3$ and $x_{5} \geq 0$ corresponds to an integral solution of $y_{1}+y_{2}+y_{3}+y_{4}+y_{5}=87$ such that $y_{1}, \ldots, y_{5} \geq 0$. From a result in class,
$\mid\left\{\left(y_{1}, y_{2}, y_{3}, y_{4}, y_{5}\right): y_{1}, \ldots, y_{5} \in Z_{+}\right.$and $\left.y_{1}+\cdots+y_{5}=87\right\} \left\lvert\,=\binom{87+5-1}{5-1}=\binom{91}{4}\right.$.
2. Show that if $n \geq q \geq 0$ then

$$
\sum_{k=0}^{\ell}\binom{\ell-k}{m}\binom{q+k}{n}=\binom{\ell+q+1}{m+n+1}
$$

Solution Let $S=\binom{[\ell+q+1]}{m+n+1}$. If $\left\{x_{1}<x_{2}<\cdots<x_{m+n+1}\right\} \in S$ then put X in S_{k} if $x_{m+1}=\ell-k+1$. Our assumption $n \geq q$ implies that $x_{m+1} \leq \ell+1$ and so $0 \leq k \leq \ell$. The sets $S_{0}, S_{1}, \ldots, S_{k}$ partition S and $\left|S_{k}\right|=\binom{\ell-k}{m}\binom{q+k}{n}$.
3. How many ways are there of placing k 1's and $n-k 0$'s at the vertices of an n vertex polygon, so that every pair of 1 's are separated by at least $\ell 0$'s?
Solution Choose a vertex v of the polygon in n ways and then place a 1 there. For the remainder we must choose $a_{1}, \ldots, a_{k} \geq \ell$ such that $a_{1}+\cdots+a_{k}=n-k$ and then go round the cycle (clockwise) putting $a_{1} 0$'s followed by a 1 and then $a_{2} 0$'s followed by a 1 etc..
Each pattern π arises k times in this way. There are k choices of v that correspond to a 1 of the pattern. Having chosen v there is a unique choice of $a_{1}, a_{2}, \ldots, a_{k}$ that will now give π.
There are $\binom{n-k \ell-1}{k-1}$ ways of choosing the a_{i} and so the answer to our question is

$$
\frac{n}{k}\binom{n-k \ell-1}{k-1}
$$

