21-301 Combinatorics

Homework 10
Due: Wednesday, December 2

1. How many ways are there of k-coloring the squares of the above cross if the group acting is $e_{0}, e_{1}, e_{2}, e_{3}$ where e_{j} is rotation by $2 \pi j / 4$. Assume that instead of 13 squares there are $4 n+1$.

Solution:

So the total number of colorings is

$$
\frac{k^{4 n+1}+k^{n+1}+k^{2 n+1}+k^{n+1}}{4} .
$$

2. How many ways are there of k-coloring the squares of the same cross if the group acting is $e_{0}, e_{1}, e_{2}, e_{3}, p, q, r, s$ where p, q, r, s are horizontal, vertical, diagonal reflections.
Solution:

$$
\begin{array}{ccccccccc}
g & e_{0} & e_{1} & e_{2} & e_{3} & p & q & r & s \\
|F i x(g)| & k^{4 n+1} & k^{n+1} & k^{2 n+1} & k^{n+1} & k^{3 n+1} & k^{3 n+1} & k^{2 n+1} & k^{2 n+1}
\end{array}
$$

So the total number of colorings is

$$
\frac{k^{4 n+1}+k^{n+1}+k^{2 n+1}+k^{n+1}+k^{3 n+1}+k^{3 n+1}+k^{2 n+1}+k^{2 n+1}}{8} .
$$

3. How many ways are there of k-coloring the 7 vertices of the tree below if the group acting is has elements e, g_{a}, g_{b}, g_{c} where e is the identity and g_{x} rigidly rotates the tree below x.

Solution:

$$
\begin{array}{ccccc}
g & e & g_{a} & g_{b} & g_{c} \\
|F i x(g)| & k^{7} & k^{4} & k^{6} & k^{6}
\end{array}
$$

So the total number of colorings is

$$
\frac{k^{7}+k^{4}+k^{6}+k^{6}}{4}
$$

