21-301 Combinatorics

Homework 1

Due: Friday, September 4

1. How many integral solutions of

$$
x_{1}+x_{2}+x_{3}+x_{4}+x_{5}=100
$$

satisfy $x_{1} \geq 4, x_{2} \geq 8, x_{3} \geq-2, x_{4} \geq 3$ and $x_{5} \geq 0$?
2. Show that if $n \geq q \geq 0$ then

$$
\sum_{k=0}^{\ell}\binom{\ell-k}{m}\binom{q+k}{n}=\binom{\ell+q+1}{m+n+1}
$$

3. How many ways are there of placing $k 1$'s and $n-k 0$'s at the vertices of an n vertex polygon, so that every pair of 1 's are separated by at least $\ell 0$'s?
